[InstCombine] fold fdiv with non-splat divisor to fmul: X/C --> X * (1/C)

llvm-svn: 325590
This commit is contained in:
Sanjay Patel 2018-02-20 16:08:15 +00:00
parent d3860e6670
commit 90f4c8ec29
5 changed files with 50 additions and 26 deletions

View File

@ -79,6 +79,10 @@ public:
/// scalar constant or a vector constant with all normal elements.
bool isNormalFP() const;
/// Return true if this scalar has an exact multiplicative inverse or this
/// vector has an exact multiplicative inverse for each element in the vector.
bool hasExactInverseFP() const;
/// Return true if evaluation of this constant could trap. This is true for
/// things like constant expressions that could divide by zero.
bool canTrap() const;

View File

@ -228,6 +228,19 @@ bool Constant::isNormalFP() const {
return true;
}
bool Constant::hasExactInverseFP() const {
if (auto *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().getExactInverse(nullptr);
if (!getType()->isVectorTy())
return false;
for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
return false;
}
return true;
}
/// Constructor to create a '0' constant of arbitrary type.
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {

View File

@ -1289,32 +1289,27 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
}
/// Try to convert X/C into X * (1/C).
static Instruction *foldFDivConstantDivisor(BinaryOperator &FDiv) {
// TODO: Handle non-splat vector constants.
const APFloat *C;
if (!match(FDiv.getOperand(1), m_APFloat(C)))
static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
// This returns false if the inverse would be a denormal.
APFloat Reciprocal(C->getSemantics());
bool HasRecip = C->getExactInverse(&Reciprocal);
// If the inverse is not exact, we may still be able to convert if we are
// not operating with strict math.
if (!HasRecip && FDiv.hasAllowReciprocal() && C->isFiniteNonZero()) {
Reciprocal = APFloat(C->getSemantics(), 1.0f);
Reciprocal.divide(*C, APFloat::rmNearestTiesToEven);
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Function attributes can tell us that denorms are flushed?
HasRecip = !Reciprocal.isDenormal();
}
if (!HasRecip)
// If the constant divisor has an exact inverse, this is always safe. If not,
// then we can still create a reciprocal if fast-math-flags allow it and the
// constant is a regular number (not zero, infinite, or denormal).
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
return nullptr;
auto *RecipCFP = ConstantFP::get(FDiv.getType(), Reciprocal);
return BinaryOperator::CreateWithCopiedFlags(Instruction::FMul, RecipCFP,
FDiv.getOperand(0), &FDiv);
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
if (!RecipC->isNormalFP())
return nullptr;
return BinaryOperator::CreateWithCopiedFlags(
Instruction::FMul, I.getOperand(0), RecipC, &I);
}
/// Try to reassociate C / X expressions where X includes another constant.

View File

@ -229,6 +229,9 @@ define float @fmul_distribute1(float %f1) {
}
; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3
; TODO: We don't convert the fast fdiv to fmul because that would be multiplication
; by a denormal, but we could do better when we know that denormals are not a problem.
define double @fmul_distribute2(double %f1, double %f2) {
; CHECK-LABEL: @fmul_distribute2(
; CHECK-NEXT: [[TMP1:%.*]] = fdiv fast double [[F1:%.*]], 0x7FE8000000000000
@ -345,7 +348,9 @@ define float @fmul4(float %f1, float %f2) {
; X / C1 * C2 => X / (C2/C1) if C1/C2 is either a special value of a denormal,
; and C2/C1 is a normal value.
;
; TODO: We don't convert the fast fdiv to fmul because that would be multiplication
; by a denormal, but we could do better when we know that denormals are not a problem.
define float @fmul5(float %f1, float %f2) {
; CHECK-LABEL: @fmul5(
; CHECK-NEXT: [[TMP1:%.*]] = fdiv fast float [[F1:%.*]], 0x47E8000000000000

View File

@ -86,11 +86,9 @@ define <2 x float> @not_exact_but_allow_recip_splat(<2 x float> %x) {
ret <2 x float> %div
}
; FIXME: Vector neglect.
define <2 x float> @exact_inverse_vec(<2 x float> %x) {
; CHECK-LABEL: @exact_inverse_vec(
; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], <float 4.000000e+00, float 8.000000e+00>
; CHECK-NEXT: [[DIV:%.*]] = fmul <2 x float> [[X:%.*]], <float 2.500000e-01, float 1.250000e-01>
; CHECK-NEXT: ret <2 x float> [[DIV]]
;
%div = fdiv <2 x float> %x, <float 4.0, float 8.0>
@ -115,6 +113,15 @@ define <2 x float> @not_exact_inverse_vec(<2 x float> %x) {
ret <2 x float> %div
}
define <2 x float> @not_exact_inverse_vec_arcp(<2 x float> %x) {
; CHECK-LABEL: @not_exact_inverse_vec_arcp(
; CHECK-NEXT: [[DIV:%.*]] = fmul arcp <2 x float> [[X:%.*]], <float 2.500000e-01, float 0x3FD5555560000000>
; CHECK-NEXT: ret <2 x float> [[DIV]]
;
%div = fdiv arcp <2 x float> %x, <float 4.0, float 3.0>
ret <2 x float> %div
}
; (X / Y) / Z --> X / (Y * Z)
define float @div_with_div_numerator(float %x, float %y, float %z) {