Revert r52459, which was causing an infinite loop or massive slowdown on MultiSource/Applications/SPASS, and possibly others as well.

Please reapply once this is fixed.

llvm-svn: 52465
This commit is contained in:
Owen Anderson 2008-06-18 17:32:16 +00:00
parent 095ca74a7f
commit 9094cc957e
1 changed files with 359 additions and 459 deletions

View File

@ -10,10 +10,10 @@
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
// pass also deletes dead return values in a similar way.
// pass also deletes dead arguments in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
// interprocedural passes, which add possibly-dead arguments.
//
//===----------------------------------------------------------------------===//
@ -42,66 +42,40 @@ namespace {
/// DAE - The dead argument elimination pass.
///
class VISIBILITY_HIDDEN DAE : public ModulePass {
public:
/// Struct that represent either a (part of a) return value or a function
/// argument. Used so that arguments and return values can be used
/// interchangably.
struct RetOrArg {
RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), IsArg(IsArg) {}
const Function *F;
unsigned Idx;
bool IsArg;
/// Make RetOrArg comparable, so we can put it into a map
bool operator<(const RetOrArg &O) const {
if (F != O.F)
return F < O.F;
else if (Idx != O.Idx)
return Idx < O.Idx;
else
return IsArg < O.IsArg;
}
};
/// Liveness enum - During our initial pass over the program, we determine
/// that things are either definately alive, definately dead, or in need of
/// interprocedural analysis (MaybeLive).
///
enum Liveness { Live, MaybeLive, Dead };
/// Convenience wrapper
RetOrArg CreateRet(const Function *F, unsigned Idx) { return RetOrArg(F, Idx, false); }
/// Convenience wrapper
RetOrArg CreateArg(const Function *F, unsigned Idx) { return RetOrArg(F, Idx, true); }
/// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
/// all of the arguments in the program. The Dead set contains arguments
/// which are completely dead (never used in the function). The MaybeLive
/// set contains arguments which are only passed into other function calls,
/// thus may be live and may be dead. The Live set contains arguments which
/// are known to be alive.
///
std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
typedef std::multimap<RetOrArg, RetOrArg> UseMap;
/// This map maps a return value or argument to all return values or
/// arguments it uses.
/// For example (indices are left out for clarity):
/// - Uses[ret F] = ret G
/// This means that F calls G, and F returns the value returned by G.
/// - Uses[arg F] = ret G
/// This means that some function calls G and passes its result as an
/// argument to F.
/// - Uses[ret F] = arg F
/// This means that F returns one of its own arguments.
/// - Uses[arg F] = arg G
/// This means that G calls F and passes one of its own (G's) arguments
/// directly to F.
UseMap Uses;
/// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
/// functions in the program. The Dead set contains functions whose return
/// value is known to be dead. The MaybeLive set contains functions whose
/// return values are only used by return instructions, and the Live set
/// contains functions whose return values are used, functions that are
/// external, and functions that already return void.
///
std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
typedef std::set<RetOrArg> LiveSet;
/// InstructionsToInspect - As we mark arguments and return values
/// MaybeLive, we keep track of which instructions could make the values
/// live here. Once the entire program has had the return value and
/// arguments analyzed, this set is scanned to promote the MaybeLive objects
/// to be Live if they really are used.
std::vector<Instruction*> InstructionsToInspect;
/// This set contains all values that have been determined to be live
LiveSet LiveValues;
typedef SmallVector<RetOrArg, 5> UseVector;
/// This is the set of functions that have been inspected. Since LiveValues
/// keeps a list of live values for inspected functions only, this way we
/// can prevent uninspected functions becoming completely dead.
std::set<Function*> InspectedFunctions;
/// CallSites - Keep track of the call sites of functions that have
/// MaybeLive arguments or return values.
std::multimap<Function*, CallSite> CallSites;
public:
static char ID; // Pass identification, replacement for typeid
@ -111,19 +85,20 @@ namespace {
virtual bool ShouldHackArguments() const { return false; }
private:
Liveness IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses);
Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses, unsigned RetValNum = 0);
Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
Liveness getArgumentLiveness(const Argument &A);
bool isMaybeLiveArgumentNowLive(Argument *Arg);
void SurveyFunction(Function &F);
void MarkValue(const RetOrArg &RA, Liveness L, const UseVector &MaybeLiveUses);
void MarkLive(RetOrArg RA);
bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
void SurveyFunction(Function &Fn);
void MarkArgumentLive(Argument *Arg);
void MarkRetValLive(Function *F);
void MarkReturnInstArgumentLive(ReturnInst *RI);
void RemoveDeadArgumentsFromFunction(Function *F);
};
}
char DAE::ID = 0;
static RegisterPass<DAE>
X("deadargelim", "Dead Argument Elimination");
@ -180,7 +155,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
// the old function, but has fewer arguments.
const FunctionType *FTy = Fn.getFunctionType();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
@ -258,111 +233,58 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
return true;
}
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
if (F->getReturnType() == Type::VoidTy)
return 0;
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
else
return 1;
static inline bool CallPassesValueThoughVararg(Instruction *Call,
const Value *Arg) {
CallSite CS = CallSite::get(Call);
const Type *CalledValueTy = CS.getCalledValue()->getType();
const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
AI != CS.arg_end(); ++AI)
if (AI->get() == Arg)
return true;
return false;
}
/// IsMaybeAlive - This checks Use for liveness. If Use is live, returns Live,
/// else returns MaybeLive. Also, adds Use to MaybeLiveUses in the latter case.
DAE::Liveness DAE::IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses) {
// We're live if our use is already marked as live
if (LiveValues.count(Use))
// getArgumentLiveness - Inspect an argument, determining if is known Live
// (used in a computation), MaybeLive (only passed as an argument to a call), or
// Dead (not used).
DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
const Function *F = A.getParent();
// If this is the return value of a struct function, it's not really dead.
if (F->hasStructRetAttr() && &*(F->arg_begin()) == &A)
return Live;
if (A.use_empty()) // First check, directly dead?
return Dead;
// We're maybe live otherwise, but remember that we must become live if
// Use becomes live.
MaybeLiveUses.push_back(Use);
return MaybeLive;
}
// Scan through all of the uses, looking for non-argument passing uses.
for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
// Return instructions do not immediately effect liveness.
if (isa<ReturnInst>(*I))
continue;
/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeAlive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses, unsigned RetValNum) {
Value *V = *U;
if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
// The value is returned from another function. It's only live when the
// caller's return value is live
RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
// We might be live, depending on the liveness of Use
return IsMaybeLive(Use, MaybeLiveUses);
}
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex() && IV->hasIndices())
// The use we are examining is inserted into an aggregate. Our liveness
// depends on all uses of that aggregate, but if it is used as a return
// value, only index at which we were inserted counts.
RetValNum = *IV->idx_begin();
// Note that if we are used as the aggregate operand to the insertvalue,
// we don't change RetValNum, but do survey all our uses.
Liveness Result = Dead;
for (Value::use_iterator I = IV->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses, RetValNum);
if (Result == Live)
break;
}
return Result;
CallSite CS = CallSite::get(const_cast<User*>(*I));
if (!CS.getInstruction()) {
// If its used by something that is not a call or invoke, it's alive!
return Live;
}
CallSite CS = CallSite::get(V);
if (CS.getInstruction()) {
Function *F = CS.getCalledFunction();
if (F) {
// Used in a direct call
// Check for vararg. Do - 1 to skip the first operand to call (the
// function itself).
if (U.getOperandNo() - 1 >= F->getFunctionType()->getNumParams())
// The value is passed in through a vararg! Must be live.
return Live;
// If it's an indirect call, mark it alive...
Function *Callee = CS.getCalledFunction();
if (!Callee) return Live;
// Value passed to a normal call. It's only live when the corresponding
// argument (operand number - 1 to skip the function pointer operand) to
// the called function turns out live
RetOrArg Use = CreateArg(F, U.getOperandNo() - 1);
return IsMaybeLive(Use, MaybeLiveUses);
} else {
// Used in any other way? Value must be live.
return Live;
}
}
// Used in any other way? Value must be live.
return Live;
}
/// SurveyUses - This looks at all the uses of the given return value
/// (possibly a partial return value from a function returning a struct).
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses.
DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
// Assume it's dead (which will only hold if there are no uses at all..)
Liveness Result = Dead;
// Check each use
for (Value::use_iterator I = V->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses);
if (Result == Live)
break;
// Check to see if it's passed through a va_arg area: if so, we cannot
// remove it.
if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
return Live; // If passed through va_arg area, we cannot remove it
}
return Result;
return MaybeLive; // It must be used, but only as argument to a function
}
// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value. This fills in the
@ -372,36 +294,13 @@ DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(Function &F) {
InspectedFunctions.insert(&F);
bool FunctionIntrinsicallyLive = false;
unsigned RetCount = NumRetVals(&F);
// Assume all return values are dead
typedef SmallVector<Liveness, 5> RetVals;
RetVals RetValLiveness(RetCount, Dead);
Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
// These vectors maps each return value to the uses that make it MaybeLive, so
// we can add those to the MaybeLiveRetVals list if the return value
// really turns out to be MaybeLive. Initializes to RetCount empty vectors
typedef SmallVector<UseVector, 5> RetUses;
// Intialized to a list of RetCount empty lists
RetUses MaybeLiveRetUses(RetCount);
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() != F.getFunctionType()->getReturnType()) {
// We don't support old style multiple return values
FunctionIntrinsicallyLive = true;
break;
}
if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic()))
if (!F.hasInternalLinkage() &&
(!ShouldHackArguments() || F.isIntrinsic()))
FunctionIntrinsicallyLive = true;
if (!FunctionIntrinsicallyLive) {
DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
const Type *STy = dyn_cast<StructType>(F.getReturnType());
// Loop all uses of the function
else
for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
// If the function is PASSED IN as an argument, its address has been taken
if (I.getOperandNo() != 0) {
@ -416,138 +315,191 @@ void DAE::SurveyFunction(Function &F) {
FunctionIntrinsicallyLive = true;
break;
}
// If we end up here, we are looking at a direct call to our function.
// Now, check how our return value(s) is/are used in this caller. Don't
// bother checking return values if all of them are live already
if (NumLiveRetVals != RetCount) {
if (STy) {
// Check all uses of the return value
for (Value::use_iterator I = TheCall->use_begin(),
E = TheCall->use_end(); I != E; ++I) {
ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
if (Ext && Ext->hasIndices()) {
// This use uses a part of our return value, survey the uses of that
// part and store the results for this index only.
unsigned Idx = *Ext->idx_begin();
if (RetValLiveness[Idx] != Live) {
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
if (RetValLiveness[Idx] == Live)
NumLiveRetVals++;
}
} else {
// Used by something else than extractvalue. Mark all
// return values as live.
for (unsigned i = 0; i != RetCount; ++i )
RetValLiveness[i] = Live;
NumLiveRetVals = RetCount;
// Check to see if the return value is used...
if (RetValLiveness != Live)
for (Value::use_iterator I = TheCall->use_begin(),
E = TheCall->use_end(); I != E; ++I)
if (isa<ReturnInst>(cast<Instruction>(*I))) {
RetValLiveness = MaybeLive;
} else if (isa<CallInst>(cast<Instruction>(*I)) ||
isa<InvokeInst>(cast<Instruction>(*I))) {
if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
!CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
RetValLiveness = Live;
break;
} else {
RetValLiveness = MaybeLive;
}
} else {
RetValLiveness = Live;
break;
}
} else {
// Single return value
RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
if (RetValLiveness[0] == Live)
NumLiveRetVals = RetCount;
}
}
}
}
if (FunctionIntrinsicallyLive) {
DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
// Mark all arguments as live
unsigned i = 0;
DOUT << " Intrinsically live fn: " << F.getName() << "\n";
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI, ++i)
MarkLive(CreateArg(&F, i));
// Mark all return values as live
i = 0;
for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i)
MarkLive(CreateRet(&F, i));
AI != E; ++AI)
LiveArguments.insert(AI);
LiveRetVal.insert(&F);
return;
}
// Now we've inspected all callers, record the liveness of our return values.
for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) {
RetOrArg Ret = CreateRet(&F, i);
// Mark the result down
MarkValue(Ret, RetValLiveness[i], MaybeLiveRetUses[i]);
}
DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
// Now, check all of our arguments
unsigned i = 0;
UseVector MaybeLiveArgUses;
for (Function::arg_iterator AI = F.arg_begin(),
E = F.arg_end(); AI != E; ++AI, ++i) {
// See what the effect of this use is (recording any uses that cause
// MaybeLive in MaybeLiveArgUses)
Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
RetOrArg Arg = CreateArg(&F, i);
// Mark the result down
MarkValue(Arg, Result, MaybeLiveArgUses);
// Clear the vector again for the next iteration
MaybeLiveArgUses.clear();
switch (RetValLiveness) {
case Live: LiveRetVal.insert(&F); break;
case MaybeLive: MaybeLiveRetVal.insert(&F); break;
case Dead: DeadRetVal.insert(&F); break;
}
}
/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also records any uses in MaybeLiveUses such that RA will be
/// marked live if any use in MaybeLiveUses gets marked live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L, const UseVector &MaybeLiveUses) {
switch (L) {
case Live: MarkLive(RA); break;
DOUT << " Inspecting args for fn: " << F.getName() << "\n";
// If it is not intrinsically alive, we know that all users of the
// function are call sites. Mark all of the arguments live which are
// directly used, and keep track of all of the call sites of this function
// if there are any arguments we assume that are dead.
//
bool AnyMaybeLiveArgs = false;
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI)
switch (getArgumentLiveness(*AI)) {
case Live:
DOUT << " Arg live by use: " << AI->getName() << "\n";
LiveArguments.insert(AI);
break;
case Dead:
DOUT << " Arg definitely dead: " << AI->getName() <<"\n";
DeadArguments.insert(AI);
break;
case MaybeLive:
{
// Note any uses of this value, so this return value can be
// marked live whenever one of the uses becomes live.
UseMap::iterator Where = Uses.begin();
for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
UE = MaybeLiveUses.end(); UI != UE; ++UI)
Where = Uses.insert(Where, UseMap::value_type(*UI, RA));
DOUT << " Arg only passed to calls: " << AI->getName() << "\n";
AnyMaybeLiveArgs = true;
MaybeLiveArguments.insert(AI);
break;
}
case Dead: break;
// If there are any "MaybeLive" arguments, we need to check callees of
// this function when/if they become alive. Record which functions are
// callees...
if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
for (Value::use_iterator I = F.use_begin(), E = F.use_end();
I != E; ++I) {
if (AnyMaybeLiveArgs)
CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
if (RetValLiveness == MaybeLive)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
InstructionsToInspect.push_back(cast<Instruction>(*UI));
}
}
// isMaybeLiveArgumentNowLive - Check to see if Arg is alive. At this point, we
// know that the only uses of Arg are to be passed in as an argument to a
// function call or return. Check to see if the formal argument passed in is in
// the LiveArguments set. If so, return true.
//
bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
if (isa<ReturnInst>(*I)) {
if (LiveRetVal.count(Arg->getParent())) return true;
continue;
}
CallSite CS = CallSite::get(*I);
// We know that this can only be used for direct calls...
Function *Callee = CS.getCalledFunction();
// Loop over all of the arguments (because Arg may be passed into the call
// multiple times) and check to see if any are now alive...
CallSite::arg_iterator CSAI = CS.arg_begin();
for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
AI != E; ++AI, ++CSAI)
// If this is the argument we are looking for, check to see if it's alive
if (*CSAI == Arg && LiveArguments.count(AI))
return true;
}
return false;
}
/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
/// Mark it live in the specified sets and recursively mark arguments in callers
/// live that are needed to pass in a value.
///
void DAE::MarkArgumentLive(Argument *Arg) {
std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
if (It == MaybeLiveArguments.end() || *It != Arg) return;
DOUT << " MaybeLive argument now live: " << Arg->getName() <<"\n";
MaybeLiveArguments.erase(It);
LiveArguments.insert(Arg);
// Loop over all of the call sites of the function, making any arguments
// passed in to provide a value for this argument live as necessary.
//
Function *Fn = Arg->getParent();
unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
for (; I != CallSites.end() && I->first == Fn; ++I) {
CallSite CS = I->second;
Value *ArgVal = *(CS.arg_begin()+ArgNo);
if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
MarkArgumentLive(ActualArg);
} else {
// If the value passed in at this call site is a return value computed by
// some other call site, make sure to mark the return value at the other
// call site as being needed.
CallSite ArgCS = CallSite::get(ArgVal);
if (ArgCS.getInstruction())
if (Function *Fn = ArgCS.getCalledFunction())
MarkRetValLive(Fn);
}
}
}
/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(RetOrArg RA) {
if (!LiveValues.insert(RA).second)
return; // We were already marked Live
/// MarkArgumentLive - The MaybeLive return value for the specified function is
/// now known to be alive. Propagate this fact to the return instructions which
/// produce it.
void DAE::MarkRetValLive(Function *F) {
assert(F && "Shame shame, we can't have null pointers here!");
if (RA.IsArg)
DOUT << "DAE - Marking argument " << RA.Idx << " to function " << RA.F->getNameStart() << " live\n";
else
DOUT << "DAE - Marking return value " << RA.Idx << " of function " << RA.F->getNameStart() << " live\n";
// Check to see if we already knew it was live
std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
if (I == MaybeLiveRetVal.end() || *I != F) return; // It's already alive!
std::pair<UseMap::iterator, UseMap::iterator> Range = Uses.equal_range(RA);
UseMap::iterator E = Range.second;
UseMap::iterator I = Range.first;
for (; I != E; ++I)
MarkLive(I->second);
// Erase RA from the Uses map (from the lower bound to wherever we ended up
// after the loop).
Uses.erase(Range.first, Range.second);
DOUT << " MaybeLive retval now live: " << F->getName() << "\n";
MaybeLiveRetVal.erase(I);
LiveRetVal.insert(F); // It is now known to be live!
// Loop over all of the functions, noticing that the return value is now live.
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
MarkReturnInstArgumentLive(RI);
}
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. This function is a noop for any Function created
// by this function before, or any function that was not inspected for liveness.
void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
Value *Op = RI->getOperand(0);
if (Argument *A = dyn_cast<Argument>(Op)) {
MarkArgumentLive(A);
} else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
if (Function *F = CI->getCalledFunction())
MarkRetValLive(F);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
if (Function *F = II->getCalledFunction())
MarkRetValLive(F);
}
}
// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
// specified by the DeadArguments list. Transform the function and all of the
// callees of the function to not have these arguments.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Don't process functions we didn't inspect (such as external functions, or
// functions that we've newly created).
if (!InspectedFunctions.count(F))
return false;
void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
// the old function, but has fewer arguments.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
@ -558,78 +510,28 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// The existing function return attributes.
ParameterAttributes RAttrs = PAL.getParamAttrs(0);
// Find out the new return value
// Make the function return void if the return value is dead.
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy;
unsigned RetCount = NumRetVals(F);
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
if (RetTy != Type::VoidTy) {
const StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
// Look at each of the original return values individually
for (unsigned i = 0; i != RetCount; ++i) {
RetOrArg Ret = CreateRet(F, i);
if (LiveValues.erase(Ret)) {
RetTypes.push_back(STy->getElementType(i));
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
DOUT << "DAE - Removing return value " << i << " from " << F->getNameStart() << "\n";
}
}
else
// We used to return a single value
if (LiveValues.erase(CreateRet(F, 0))) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
DOUT << "DAE - Removing return value from " << F->getNameStart() << "\n";
++NumRetValsEliminated;
}
if (RetTypes.size() == 0)
// No return types? Make it void
NRetTy = Type::VoidTy;
else if (RetTypes.size() == 1)
// One return type? Just a simple value then
NRetTy = RetTypes.front();
else
// More return types? Return a struct with them
NRetTy = StructType::get(RetTypes);
} else {
NRetTy = Type::VoidTy;
if (DeadRetVal.count(F)) {
RetTy = Type::VoidTy;
RAttrs &= ~ParamAttr::typeIncompatible(RetTy);
DeadRetVal.erase(F);
}
// Remove any incompatible attributes
RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
// Remember which arguments are still alive
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
// a new set of parameter attributes to correspond. Skip the first parameter
// attribute, since that belongs to the return value.
unsigned i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++i) {
RetOrArg Arg = CreateArg(F, i);
if (LiveValues.erase(Arg)) {
// a new set of parameter attributes to correspond.
unsigned index = 1;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++index)
if (!DeadArguments.count(I)) {
Params.push_back(I->getType());
ArgAlive[i] = true;
// Get the original parameter attributes (skipping the first one, that is
// for the return value
if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
if (ParameterAttributes Attrs = PAL.getParamAttrs(index))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart() << ") from " << F->getNameStart() << "\n";
}
}
// Reconstruct the ParamAttrsList based on the vector we constructed.
PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
@ -644,11 +546,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
// No change?
if (NFTy == FTy)
return false;
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage());
@ -674,17 +572,14 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs
CallSite::arg_iterator I = CS.arg_begin();
unsigned i = 0;
// Loop over those operands, corresponding to the normal arguments to the
// original function, and add those that are still alive.
for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
// Loop over the operands, deleting dead ones...
CallSite::arg_iterator AI = CS.arg_begin();
index = 1;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++AI, ++index)
if (!DeadArguments.count(I)) { // Remove operands for dead arguments
Args.push_back(*AI);
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
@ -692,9 +587,9 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
Args.push_back(UndefValue::get(Type::Int32Ty));
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
for (; AI != CS.arg_end(); ++AI) {
Args.push_back(*AI);
if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index++))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
@ -719,45 +614,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (!Call->use_empty()) {
if (New->getType() == Type::VoidTy)
// Our return value was unused, replace by null for now, uses will get
// removed later on
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
else if (isa<StructType>(RetTy)) {
// The original return value was a struct, update all uses (which are
// all extractvalue instructions).
for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
I != E;) {
assert(isa<ExtractValueInst>(*I) && "Return value not only used by extractvalue?");
ExtractValueInst *EV = cast<ExtractValueInst>(*I);
// Increment now, since we're about to throw away this use.
++I;
assert(EV->hasIndices() && "Return value used by extractvalue without indices?");
unsigned Idx = *EV->idx_begin();
if (NewRetIdxs[Idx] != -1) {
if (RetTypes.size() > 1) {
// We're still returning a struct, create a new extractvalue
// instruction with the first index updated
std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
NewIdxs[0] = NewRetIdxs[Idx];
Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(), NewIdxs.end(), "retval", EV);
EV->replaceAllUsesWith(NEV);
EV->eraseFromParent();
} else {
// We are now only returning a simple value, remove the
// extractvalue
EV->replaceAllUsesWith(New);
EV->eraseFromParent();
}
} else {
// Value unused, replace uses by null for now, they will get removed
// later on
EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
EV->eraseFromParent();
}
}
New->takeName(Call);
} else {
// The original function had a single return value
else {
Call->replaceAllUsesWith(New);
New->takeName(Call);
}
@ -774,11 +632,13 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well.
i = 0;
// the new arguments, also transfering over the names as well. While we're at
// it, remove the dead arguments from the DeadArguments list.
//
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++i)
if (ArgAlive[i]) {
I2 = NF->arg_begin();
I != E; ++I)
if (!DeadArguments.count(I)) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(I2);
@ -786,8 +646,10 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
++I2;
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on)
// (these are guaranteed to only be operands to call instructions which
// will later be simplified).
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
DeadArguments.erase(I);
}
// If we change the return value of the function we must rewrite any return
@ -795,45 +657,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (F->getReturnType() != NF->getReturnType())
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Value *RetVal;
if (NFTy->getReturnType() == Type::VoidTy) {
RetVal = 0;
} else {
assert (isa<StructType>(RetTy));
// The original return value was a struct, insert
// extractvalue/insertvalue chains to extract only the values we need
// to return and insert them into our new result.
// This does generate messy code, but we'll let it to instcombine to
// clean that up
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
RetVal = llvm::UndefValue::get(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, "newret", RI);
if (RetTypes.size() > 1) {
// We're still returning a struct, so reinsert the value into
// our new return value at the new index
RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], "oldret");
} else {
// We are now only returning a simple value, so just return the
// extracted value
RetVal = EV;
}
}
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
ReturnInst::Create(RetVal, RI);
ReturnInst::Create(0, RI);
BB->getInstList().erase(RI);
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
return true;
}
bool DAE::runOnModule(Module &M) {
@ -848,7 +677,7 @@ bool DAE::runOnModule(Module &M) {
if (F.getFunctionType()->isVarArg())
Changed |= DeleteDeadVarargs(F);
}
// Second phase:loop through the module, determining which arguments are live.
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
@ -857,14 +686,85 @@ bool DAE::runOnModule(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
// Now, remove all dead arguments and return values from each function in
// turn
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
// Increment now, because the function will probably get removed (ie
// replaced by a new one)
Function *F = I++;
Changed |= RemoveDeadStuffFromFunction(F);
// Loop over the instructions to inspect, propagating liveness among arguments
// and return values which are MaybeLive.
while (!InstructionsToInspect.empty()) {
Instruction *I = InstructionsToInspect.back();
InstructionsToInspect.pop_back();
if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
// For return instructions, we just have to check to see if the return
// value for the current function is known now to be alive. If so, any
// arguments used by it are now alive, and any call instruction return
// value is alive as well.
if (LiveRetVal.count(RI->getParent()->getParent()))
MarkReturnInstArgumentLive(RI);
} else {
CallSite CS = CallSite::get(I);
assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
Function *Callee = CS.getCalledFunction();
// If we found a call or invoke instruction on this list, that means that
// an argument of the function is a call instruction. If the argument is
// live, then the return value of the called instruction is now live.
//
CallSite::arg_iterator AI = CS.arg_begin(); // ActualIterator
for (Function::arg_iterator FI = Callee->arg_begin(),
E = Callee->arg_end(); FI != E; ++AI, ++FI) {
// If this argument is another call...
CallSite ArgCS = CallSite::get(*AI);
if (ArgCS.getInstruction() && LiveArguments.count(FI))
if (Function *Callee = ArgCS.getCalledFunction())
MarkRetValLive(Callee);
}
}
}
return Changed;
// Now we loop over all of the MaybeLive arguments, promoting them to be live
// arguments if one of the calls that uses the arguments to the calls they are
// passed into requires them to be live. Of course this could make other
// arguments live, so process callers recursively.
//
// Because elements can be removed from the MaybeLiveArguments set, copy it to
// a temporary vector.
//
std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
MaybeLiveArguments.end());
for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
Argument *MLA = TmpArgList[i];
if (MaybeLiveArguments.count(MLA) &&
isMaybeLiveArgumentNowLive(MLA))
MarkArgumentLive(MLA);
}
// Recover memory early...
CallSites.clear();
// At this point, we know that all arguments in DeadArguments and
// MaybeLiveArguments are dead. If the two sets are empty, there is nothing
// to do.
if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
MaybeLiveRetVal.empty() && DeadRetVal.empty())
return Changed;
// Otherwise, compact into one set, and start eliminating the arguments from
// the functions.
DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
MaybeLiveArguments.clear();
DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
MaybeLiveRetVal.clear();
LiveArguments.clear();
LiveRetVal.clear();
NumArgumentsEliminated += DeadArguments.size();
NumRetValsEliminated += DeadRetVal.size();
while (!DeadArguments.empty())
RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
while (!DeadRetVal.empty())
RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
return true;
}