[mlir][sparse] minor cleanup of Merger

Removed inconsistent name prefixes, added consistency checks
on debug strings, added more assertions to verify assumptions
that may be lifted in the future.

Reviewed By: gussmith23

Differential Revision: https://reviews.llvm.org/D106108
This commit is contained in:
Aart Bik 2021-07-16 09:02:58 -07:00
parent 0bf4b81d57
commit 8fe65972cb
1 changed files with 143 additions and 92 deletions

View File

@ -21,11 +21,11 @@ namespace sparse_tensor {
TensorExp::TensorExp(Kind k, unsigned x, unsigned y, Value v)
: kind(k), val(v) {
switch (kind) {
case Kind::kTensor:
case kTensor:
assert(x != -1u && y == -1u && !v);
tensor = x;
break;
case Kind::kInvariant:
case kInvariant:
assert(x == -1u && y == -1u && v);
break;
case kAbsF:
@ -99,10 +99,10 @@ unsigned Merger::takeDisj(Kind kind, unsigned s0, unsigned s1) {
for (unsigned p : latSets[s0])
latSets[s].push_back(p);
// Map binary 0-y to unary -y.
if (kind == Kind::kSubF)
s1 = mapSet(Kind::kNegF, s1);
else if (kind == Kind::kSubI)
s1 = mapSet(Kind::kNegI, s1);
if (kind == kSubF)
s1 = mapSet(kNegF, s1);
else if (kind == kSubI)
s1 = mapSet(kNegI, s1);
// Followed by all in s1.
for (unsigned p : latSets[s1])
latSets[s].push_back(p);
@ -110,7 +110,7 @@ unsigned Merger::takeDisj(Kind kind, unsigned s0, unsigned s1) {
}
unsigned Merger::mapSet(Kind kind, unsigned s0) {
assert(Kind::kAbsF <= kind && kind <= Kind::kNegI);
assert(kAbsF <= kind && kind <= kNegI);
unsigned s = addSet();
for (unsigned p : latSets[s0]) {
unsigned e = addExp(kind, latPoints[p].exp);
@ -129,8 +129,7 @@ unsigned Merger::optimizeSet(unsigned s0) {
if (p0 != p1) {
// Is this a straightforward copy?
unsigned e = latPoints[p1].exp;
if (tensorExps[e].kind == Kind::kTensor &&
tensorExps[e].tensor == outTensor)
if (tensorExps[e].kind == kTensor && tensorExps[e].tensor == outTensor)
continue;
// Conjunction already covered?
for (unsigned p2 : latSets[s]) {
@ -162,9 +161,9 @@ llvm::BitVector Merger::simplifyCond(unsigned s0, unsigned p0) {
}
// Now apply the two basic rules.
llvm::BitVector simple = latPoints[p0].bits;
bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse);
bool reset = isSingleton && hasAnyDimOf(simple, kSparse);
for (unsigned b = 0, be = simple.size(); b < be; b++) {
if (simple[b] && !isDim(b, Dim::kSparse)) {
if (simple[b] && !isDim(b, kSparse)) {
if (reset)
simple.reset(b);
reset = true;
@ -189,7 +188,7 @@ bool Merger::latGT(unsigned i, unsigned j) const {
bool Merger::onlyDenseDiff(unsigned i, unsigned j) {
llvm::BitVector tmp = latPoints[j].bits;
tmp ^= latPoints[i].bits;
return !hasAnyDimOf(tmp, Dim::kSparse);
return !hasAnyDimOf(tmp, kSparse);
}
bool Merger::hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
@ -201,23 +200,27 @@ bool Merger::hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
bool Merger::isConjunction(unsigned t, unsigned e) const {
switch (tensorExps[e].kind) {
case Kind::kTensor:
case kTensor:
return tensorExps[e].tensor == t;
case kAbsF:
case kCeilF:
case kFloorF:
case kNegF:
case kNegI:
case Kind::kDivF: // note: x / c only
case Kind::kDivS:
case Kind::kDivU:
case Kind::kShrS: // note: x >> inv only
case Kind::kShrU:
case Kind::kShlI:
return isConjunction(t, tensorExps[e].children.e0);
case Kind::kMulF:
case Kind::kMulI:
case Kind::kAndI:
case kDivF: // note: x / c only
case kDivS:
case kDivU:
assert(!maybeZero(tensorExps[e].children.e1));
return isConjunction(t, tensorExps[e].children.e0);
case kShrS: // note: x >> inv only
case kShrU:
case kShlI:
assert(isInvariant(tensorExps[e].children.e1));
return isConjunction(t, tensorExps[e].children.e0);
case kMulF:
case kMulI:
case kAndI:
return isConjunction(t, tensorExps[e].children.e0) ||
isConjunction(t, tensorExps[e].children.e1);
default:
@ -231,20 +234,66 @@ bool Merger::isConjunction(unsigned t, unsigned e) const {
// Print methods (for debugging).
//
static const char *kOpSymbols[] = {
"", "", "abs", "ceil", "floor", "-", "-", "*", "*", "/", "/",
"+", "+", "-", "-", "&", "|", "^", "a>>", ">>", "<<"};
static const char *kindToOpSymbol(Kind kind) {
switch (kind) {
case kTensor:
return "tensor";
case kInvariant:
return "invariant";
case kAbsF:
return "abs";
case kCeilF:
return "ceil";
case kFloorF:
return "floor";
case kNegF:
return "-";
case kNegI:
return "-";
case kMulF:
return "*";
case kMulI:
return "*";
case kDivF:
return "/";
case kDivS:
return "/";
case kDivU:
return "/";
case kAddF:
return "+";
case kAddI:
return "+";
case kSubF:
return "-";
case kSubI:
return "-";
case kAndI:
return "&";
case kOrI:
return "|";
case kXorI:
return "^";
case kShrS:
return "a>>";
case kShrU:
return ">>";
case kShlI:
return "<<";
}
llvm_unreachable("unexpected kind for symbol");
}
void Merger::dumpExp(unsigned e) const {
switch (tensorExps[e].kind) {
case Kind::kTensor:
case kTensor:
if (tensorExps[e].tensor == syntheticTensor)
llvm::dbgs() << "synthetic_";
else if (tensorExps[e].tensor == outTensor)
llvm::dbgs() << "output_";
llvm::dbgs() << "tensor_" << tensorExps[e].tensor;
break;
case Kind::kInvariant:
case kInvariant:
llvm::dbgs() << "invariant";
break;
case kAbsF:
@ -252,13 +301,13 @@ void Merger::dumpExp(unsigned e) const {
case kFloorF:
case kNegF:
case kNegI:
llvm::dbgs() << kOpSymbols[tensorExps[e].kind] << " ";
llvm::dbgs() << kindToOpSymbol(tensorExps[e].kind) << " ";
dumpExp(tensorExps[e].children.e0);
break;
default:
llvm::dbgs() << "(";
dumpExp(tensorExps[e].children.e0);
llvm::dbgs() << " " << kOpSymbols[tensorExps[e].kind] << " ";
llvm::dbgs() << " " << kindToOpSymbol(tensorExps[e].kind) << " ";
dumpExp(tensorExps[e].children.e1);
llvm::dbgs() << ")";
}
@ -290,16 +339,16 @@ void Merger::dumpBits(const llvm::BitVector &bits) const {
unsigned i = index(b);
llvm::dbgs() << " i_" << t << "_" << i << "_";
switch (dims[t][i]) {
case Dim::kSparse:
case kSparse:
llvm::dbgs() << "S";
break;
case Dim::kDense:
case kDense:
llvm::dbgs() << "D";
break;
case Dim::kSingle:
case kSingle:
llvm::dbgs() << "T";
break;
case Dim::kUndef:
case kUndef:
llvm::dbgs() << "U";
break;
}
@ -316,13 +365,13 @@ void Merger::dumpBits(const llvm::BitVector &bits) const {
unsigned Merger::buildLattices(unsigned e, unsigned i) {
Kind kind = tensorExps[e].kind;
switch (kind) {
case Kind::kTensor:
case Kind::kInvariant: {
case kTensor:
case kInvariant: {
// Either the index is really used in the tensor expression, or it is
// set to the undefined index in that dimension. An invariant expression
// is set to a synthetic tensor with undefined indices only.
unsigned s = addSet();
unsigned t = kind == Kind::kTensor ? tensorExps[e].tensor : syntheticTensor;
unsigned t = kind == kTensor ? tensorExps[e].tensor : syntheticTensor;
latSets[s].push_back(addLat(t, i, e));
return s;
}
@ -338,9 +387,9 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
// --+---+---+
// | 0 |-y |
return mapSet(kind, buildLattices(tensorExps[e].children.e0, i));
case Kind::kMulF:
case Kind::kMulI:
case Kind::kAndI:
case kMulF:
case kMulI:
case kAndI:
// A multiplicative operation only needs to be performed
// for the conjunction of sparse iteration spaces.
//
@ -351,9 +400,9 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
return takeConj(kind, // take binary conjunction
buildLattices(tensorExps[e].children.e0, i),
buildLattices(tensorExps[e].children.e1, i));
case Kind::kDivF:
case Kind::kDivS:
case Kind::kDivU:
case kDivF:
case kDivS:
case kDivU:
// A division is tricky, since 0/0, 0/c, c/0 all have
// specific outcomes for floating-point and integers.
// Thus, we need to traverse the full iteration space.
@ -367,15 +416,16 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
// during expression building, so that the conjunction
// rules applies (viz. x/c = x*(1/c) as far as lattice
// construction is concerned).
assert(!maybeZero(tensorExps[e].children.e1));
return takeConj(kind, // take binary conjunction
buildLattices(tensorExps[e].children.e0, i),
buildLattices(tensorExps[e].children.e1, i));
case Kind::kAddF:
case Kind::kAddI:
case Kind::kSubF:
case Kind::kSubI:
case Kind::kOrI:
case Kind::kXorI:
case kAddF:
case kAddI:
case kSubF:
case kSubI:
case kOrI:
case kXorI:
// An additive operation needs to be performed
// for the disjunction of sparse iteration spaces.
//
@ -386,12 +436,13 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
return takeDisj(kind, // take binary disjunction
buildLattices(tensorExps[e].children.e0, i),
buildLattices(tensorExps[e].children.e1, i));
case Kind::kShrS:
case Kind::kShrU:
case Kind::kShlI:
case kShrS:
case kShrU:
case kShlI:
// A shift operation by an invariant amount (viz. tensor expressions
// can only occur at the left-hand-side of the operator) can be handled
// with the conjuction rule.
assert(isInvariant(tensorExps[e].children.e1));
return takeConj(kind, // take binary conjunction
buildLattices(tensorExps[e].children.e0, i),
buildLattices(tensorExps[e].children.e1, i));
@ -405,7 +456,7 @@ Optional<unsigned> Merger::buildTensorExpFromLinalg(linalg::GenericOp op) {
}
bool Merger::maybeZero(unsigned e) const {
if (tensorExps[e].kind == Kind::kInvariant) {
if (tensorExps[e].kind == kInvariant) {
if (auto c = tensorExps[e].val.getDefiningOp<ConstantIntOp>())
return c.getValue() == 0;
if (auto c = tensorExps[e].val.getDefiningOp<ConstantFloatOp>())
@ -415,7 +466,7 @@ bool Merger::maybeZero(unsigned e) const {
}
bool Merger::isInvariant(unsigned e) const {
return tensorExps[e].kind == Kind::kInvariant;
return tensorExps[e].kind == kInvariant;
}
Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value v) {
@ -427,30 +478,30 @@ Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value v) {
if (arg.getOwner()->getParentOp() == op) {
OpOperand *t = op.getInputAndOutputOperands()[argN];
if (!op.isScalar(t))
return addExp(Kind::kTensor, argN);
return addExp(kTensor, argN);
v = t->get(); // get scalar value
}
// Any other argument (marked as scalar argument for the generic op
// or belonging to an enveloping op) is considered invariant.
return addExp(Kind::kInvariant, v);
return addExp(kInvariant, v);
}
// Something defined outside is invariant.
Operation *def = v.getDefiningOp();
if (def->getBlock() != &op.region().front())
return addExp(Kind::kInvariant, v);
return addExp(kInvariant, v);
// Construct unary operations if subexpression can be built.
if (def->getNumOperands() == 1) {
auto x = buildTensorExp(op, def->getOperand(0));
if (x.hasValue()) {
unsigned e = x.getValue();
if (isa<AbsFOp>(def))
return addExp(Kind::kAbsF, e);
return addExp(kAbsF, e);
if (isa<CeilFOp>(def))
return addExp(Kind::kCeilF, e);
return addExp(kCeilF, e);
if (isa<FloorFOp>(def))
return addExp(Kind::kFloorF, e);
return addExp(kFloorF, e);
if (isa<NegFOp>(def))
return addExp(Kind::kNegF, e);
return addExp(kNegF, e);
// TODO: no negi in std?
}
}
@ -463,35 +514,35 @@ Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value v) {
unsigned e0 = x.getValue();
unsigned e1 = y.getValue();
if (isa<MulFOp>(def))
return addExp(Kind::kMulF, e0, e1);
return addExp(kMulF, e0, e1);
if (isa<MulIOp>(def))
return addExp(Kind::kMulI, e0, e1);
return addExp(kMulI, e0, e1);
if (isa<DivFOp>(def) && !maybeZero(e1))
return addExp(Kind::kDivF, e0, e1);
return addExp(kDivF, e0, e1);
if (isa<SignedDivIOp>(def) && !maybeZero(e1))
return addExp(Kind::kDivS, e0, e1);
return addExp(kDivS, e0, e1);
if (isa<UnsignedDivIOp>(def) && !maybeZero(e1))
return addExp(Kind::kDivU, e0, e1);
return addExp(kDivU, e0, e1);
if (isa<AddFOp>(def))
return addExp(Kind::kAddF, e0, e1);
return addExp(kAddF, e0, e1);
if (isa<AddIOp>(def))
return addExp(Kind::kAddI, e0, e1);
return addExp(kAddI, e0, e1);
if (isa<SubFOp>(def))
return addExp(Kind::kSubF, e0, e1);
return addExp(kSubF, e0, e1);
if (isa<SubIOp>(def))
return addExp(Kind::kSubI, e0, e1);
return addExp(kSubI, e0, e1);
if (isa<AndOp>(def))
return addExp(Kind::kAndI, e0, e1);
return addExp(kAndI, e0, e1);
if (isa<OrOp>(def))
return addExp(Kind::kOrI, e0, e1);
return addExp(kOrI, e0, e1);
if (isa<XOrOp>(def))
return addExp(Kind::kXorI, e0, e1);
return addExp(kXorI, e0, e1);
if (isa<SignedShiftRightOp>(def) && isInvariant(e1))
return addExp(Kind::kShrS, e0, e1);
return addExp(kShrS, e0, e1);
if (isa<UnsignedShiftRightOp>(def) && isInvariant(e1))
return addExp(Kind::kShrU, e0, e1);
return addExp(kShrU, e0, e1);
if (isa<ShiftLeftOp>(def) && isInvariant(e1))
return addExp(Kind::kShlI, e0, e1);
return addExp(kShlI, e0, e1);
}
}
// Cannot build.
@ -501,8 +552,8 @@ Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value v) {
Value Merger::buildExp(PatternRewriter &rewriter, Location loc, unsigned e,
Value v0, Value v1) {
switch (tensorExps[e].kind) {
case Kind::kTensor:
case Kind::kInvariant:
case kTensor:
case kInvariant:
llvm_unreachable("unexpected non-op");
case kAbsF:
return rewriter.create<AbsFOp>(loc, v0);
@ -515,35 +566,35 @@ Value Merger::buildExp(PatternRewriter &rewriter, Location loc, unsigned e,
case kNegI:
assert(v1); // no negi in std
return rewriter.create<SubIOp>(loc, v0, v1);
case Kind::kMulF:
case kMulF:
return rewriter.create<MulFOp>(loc, v0, v1);
case Kind::kMulI:
case kMulI:
return rewriter.create<MulIOp>(loc, v0, v1);
case Kind::kDivF:
case kDivF:
return rewriter.create<DivFOp>(loc, v0, v1);
case Kind::kDivS:
case kDivS:
return rewriter.create<SignedDivIOp>(loc, v0, v1);
case Kind::kDivU:
case kDivU:
return rewriter.create<UnsignedDivIOp>(loc, v0, v1);
case Kind::kAddF:
case kAddF:
return rewriter.create<AddFOp>(loc, v0, v1);
case Kind::kAddI:
case kAddI:
return rewriter.create<AddIOp>(loc, v0, v1);
case Kind::kSubF:
case kSubF:
return rewriter.create<SubFOp>(loc, v0, v1);
case Kind::kSubI:
case kSubI:
return rewriter.create<SubIOp>(loc, v0, v1);
case Kind::kAndI:
case kAndI:
return rewriter.create<AndOp>(loc, v0, v1);
case Kind::kOrI:
case kOrI:
return rewriter.create<OrOp>(loc, v0, v1);
case Kind::kXorI:
case kXorI:
return rewriter.create<XOrOp>(loc, v0, v1);
case Kind::kShrS:
case kShrS:
return rewriter.create<SignedShiftRightOp>(loc, v0, v1);
case Kind::kShrU:
case kShrU:
return rewriter.create<UnsignedShiftRightOp>(loc, v0, v1);
case Kind::kShlI:
case kShlI:
return rewriter.create<ShiftLeftOp>(loc, v0, v1);
}
llvm_unreachable("unexpected expression kind in build");