[mlir][Linalg] Add 1-d depthwise conv with opdsl

Differential Revision: https://reviews.llvm.org/D113686
This commit is contained in:
Nicolas Vasilache 2021-11-11 17:33:24 +00:00
parent 800694a697
commit 8fd2f56c99
3 changed files with 109 additions and 0 deletions

View File

@ -1383,6 +1383,83 @@ structured_op: !LinalgStructuredOpConfig
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv1D_nw
cpp_class_name: DepthwiseConv1DNwOp
doc: |-
Performs depth-wise 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output. Multiplier is set to 1
which is a special case for most dpethwise convolutions.
implements:
- LinalgConvolutionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: I
usage: InputOperand
type_var: T1
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1 * s2 + s3 * s4, s5)>
- !LinalgOperandDefConfig
name: K
usage: InputOperand
type_var: T2
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s3, s5)>
- !LinalgOperandDefConfig
name: O
usage: OutputOperand
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1, s5)>
- !LinalgOperandDefConfig
name: strides
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s2)>
- !LinalgOperandDefConfig
name: dilations
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d0, d1 * s2 + d3 * s4,
d2)>
- affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d3, d2)>
- affine_map<(d0, d1, d2, d3)[s0, s1, s2, s3, s4, s5] -> (d0, d1, d2)>
iterator_types:
- parallel
- parallel
- parallel
- reduction
assignments:
- !ScalarAssign
arg: O
value: !ScalarExpression
scalar_apply:
fn_name: add
operands:
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
scalar_apply:
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv2D_nhw
cpp_class_name: DepthwiseConv2DNhwOp

View File

@ -309,6 +309,25 @@ def conv_3d_ndhwc_dhwcf(
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c
]) * cast(U, K[D.kd, D.kh, D.kw, D.c, D.f])
@linalg_structured_op
def depthwise_conv1D_nw(
I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.IC),
K=TensorDef(T2, S.KW, S.IC),
O=TensorDef(U, S.N, S.OW, S.IC, output=True),
strides=AttributeDef(S.SW),
dilations=AttributeDef(S.DW)):
"""Performs depth-wise 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output. Multiplier is set to 1
which is a special case for most dpethwise convolutions.
"""
implements(ConvolutionOpInterface)
domain(D.n, D.ow, D.ic, D.kw)
O[D.n, D.ow, D.ic] += \
cast(U, I[D.n, D.ow * S.SW + D.kw * S.DW, D.ic]) * \
cast(U, K[D.kw, D.ic])
@linalg_structured_op
def depthwise_conv2D_nhw(
I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC),

View File

@ -29,6 +29,19 @@ func @depthwise_conv2D_nhwc_memref(%input: memref<2x4x5x2xf32>, %filter: memref<
return
}
// CHECK-LABEL: func @depthwise_conv1D_nw_tensor
func @depthwise_conv1D_nw_tensor(%input: tensor<1x113x96xf32>, %filter: tensor<3x96xf32>) -> tensor<1x56x96xf32> {
%init = linalg.init_tensor [1, 56, 96] : tensor<1x56x96xf32>
// CHECK: %{{.+}} = linalg.depthwise_conv1D_nw
// CHECK-SAME: {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>}
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x96xf32>, tensor<3x96xf32>)
// CHECK-SAME: outs(%{{.+}} : tensor<1x56x96xf32>) -> tensor<1x56x96xf32>
%0 = linalg.depthwise_conv1D_nw {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>}
ins(%input, %filter: tensor<1x113x96xf32>, tensor<3x96xf32>)
outs(%init: tensor<1x56x96xf32>) -> tensor<1x56x96xf32>
return %0: tensor<1x56x96xf32>
}
// CHECK-LABEL: func @depthwise_conv2D_nhw_tensor
func @depthwise_conv2D_nhw_tensor(%input: tensor<1x113x113x96xf32>, %filter: tensor<3x3x96xf32>) -> tensor<1x56x56x96xf32> {
%init = linalg.init_tensor [1, 56, 56, 96] : tensor<1x56x56x96xf32>