[mlir][SCF][bufferize] Bufferize scf.if/execute_region terminators separately

This allows for better type inference during bufferization and is in preparation of supporting memory spaces.

Differential Revision: https://reviews.llvm.org/D128581
This commit is contained in:
Matthias Springer 2022-06-27 13:17:45 +02:00
parent 7ebf70d85d
commit 8e691e1f24
4 changed files with 69 additions and 78 deletions

View File

@ -75,41 +75,17 @@ struct ExecuteRegionOpInterface
LogicalResult bufferize(Operation *op, RewriterBase &rewriter, LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const { const BufferizationOptions &options) const {
auto executeRegionOp = cast<scf::ExecuteRegionOp>(op); auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
assert(executeRegionOp.getRegion().getBlocks().size() == 1 &&
// Compute new result types. "only 1 block supported");
SmallVector<Type> newResultTypes; auto yieldOp =
for (Type type : executeRegionOp->getResultTypes()) { cast<scf::YieldOp>(executeRegionOp.getRegion().front().getTerminator());
if (auto tensorType = type.dyn_cast<TensorType>()) { TypeRange newResultTypes(yieldOp.getResults());
// TODO: Infer the result type instead of computing it.
newResultTypes.push_back(getMemRefType(tensorType, options));
} else {
newResultTypes.push_back(type);
}
}
// Create new op and move over region. // Create new op and move over region.
auto newOp = auto newOp =
rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes); rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes);
newOp.getRegion().takeBody(executeRegionOp.getRegion()); newOp.getRegion().takeBody(executeRegionOp.getRegion());
// Update terminator.
assert(newOp.getRegion().getBlocks().size() == 1 &&
"only 1 block supported");
Block *newBlock = &newOp.getRegion().front();
auto yieldOp = cast<scf::YieldOp>(newBlock->getTerminator());
rewriter.setInsertionPoint(yieldOp);
SmallVector<Value> newYieldValues;
for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
Value val = it.value();
if (val.getType().isa<TensorType>()) {
newYieldValues.push_back(rewriter.create<bufferization::ToMemrefOp>(
yieldOp.getLoc(), newResultTypes[it.index()], val));
} else {
newYieldValues.push_back(val);
}
}
rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
// Update all uses of the old op. // Update all uses of the old op.
rewriter.setInsertionPointAfter(newOp); rewriter.setInsertionPointAfter(newOp);
SmallVector<Value> newResults; SmallVector<Value> newResults;
@ -184,64 +160,62 @@ struct IfOpInterface
LogicalResult bufferize(Operation *op, RewriterBase &rewriter, LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const { const BufferizationOptions &options) const {
OpBuilder::InsertionGuard g(rewriter);
auto ifOp = cast<scf::IfOp>(op); auto ifOp = cast<scf::IfOp>(op);
auto thenYieldOp = cast<scf::YieldOp>(ifOp.thenBlock()->getTerminator());
auto elseYieldOp = cast<scf::YieldOp>(ifOp.elseBlock()->getTerminator());
// Compute new types of the bufferized scf.if op. // Reconcile type mismatches between then/else branches by inserting memref
SmallVector<Type> newTypes; // casts.
for (Type returnType : ifOp->getResultTypes()) { SmallVector<Value> thenResults, elseResults;
if (auto tensorType = returnType.dyn_cast<TensorType>()) { bool insertedCast = false;
// TODO: Infer the result type instead of computing it. for (unsigned i = 0; i < thenYieldOp.getResults().size(); ++i) {
newTypes.push_back(getMemRefType(tensorType, options)); Value thenValue = thenYieldOp.getResults()[i];
} else { Value elseValue = elseYieldOp.getResults()[i];
newTypes.push_back(returnType); if (thenValue.getType() == elseValue.getType()) {
thenResults.push_back(thenValue);
elseResults.push_back(elseValue);
continue;
} }
// Type mismatch between then/else yield value. Cast both to a memref type
// with a fully dynamic layout map.
auto thenMemrefType = thenValue.getType().cast<BaseMemRefType>();
auto elseMemrefType = elseValue.getType().cast<BaseMemRefType>();
if (thenMemrefType.getMemorySpaceAsInt() !=
elseMemrefType.getMemorySpaceAsInt())
return op->emitError("inconsistent memory space on then/else branches");
rewriter.setInsertionPoint(thenYieldOp);
BaseMemRefType memrefType = getMemRefTypeWithFullyDynamicLayout(
ifOp.getResultTypes()[i].cast<TensorType>(),
thenMemrefType.getMemorySpaceAsInt());
thenResults.push_back(rewriter.create<memref::CastOp>(
thenYieldOp.getLoc(), memrefType, thenValue));
rewriter.setInsertionPoint(elseYieldOp);
elseResults.push_back(rewriter.create<memref::CastOp>(
elseYieldOp.getLoc(), memrefType, elseValue));
insertedCast = true;
}
if (insertedCast) {
rewriter.setInsertionPoint(thenYieldOp);
rewriter.replaceOpWithNewOp<scf::YieldOp>(thenYieldOp, thenResults);
rewriter.setInsertionPoint(elseYieldOp);
rewriter.replaceOpWithNewOp<scf::YieldOp>(elseYieldOp, elseResults);
} }
// Create new op. // Create new op.
rewriter.setInsertionPoint(ifOp);
ValueRange resultsValueRange(thenResults);
TypeRange newTypes(resultsValueRange);
auto newIfOp = auto newIfOp =
rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(), rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(),
/*withElseRegion=*/true); /*withElseRegion=*/true);
// Remove terminators.
if (!newIfOp.thenBlock()->empty()) {
rewriter.eraseOp(newIfOp.thenBlock()->getTerminator());
rewriter.eraseOp(newIfOp.elseBlock()->getTerminator());
}
// Move over then/else blocks. // Move over then/else blocks.
rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock()); rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock());
rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock()); rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock());
// Update scf.yield of new then-block.
auto thenYieldOp = cast<scf::YieldOp>(newIfOp.thenBlock()->getTerminator());
rewriter.setInsertionPoint(thenYieldOp);
SmallVector<Value> thenYieldValues;
for (OpOperand &operand : thenYieldOp->getOpOperands()) {
if (operand.get().getType().isa<TensorType>()) {
ensureToMemrefOpIsValid(operand.get(),
newTypes[operand.getOperandNumber()]);
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
operand.get().getLoc(), newTypes[operand.getOperandNumber()],
operand.get());
operand.set(toMemrefOp);
}
}
// Update scf.yield of new else-block.
auto elseYieldOp = cast<scf::YieldOp>(newIfOp.elseBlock()->getTerminator());
rewriter.setInsertionPoint(elseYieldOp);
SmallVector<Value> elseYieldValues;
for (OpOperand &operand : elseYieldOp->getOpOperands()) {
if (operand.get().getType().isa<TensorType>()) {
ensureToMemrefOpIsValid(operand.get(),
newTypes[operand.getOperandNumber()]);
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
operand.get().getLoc(), newTypes[operand.getOperandNumber()],
operand.get());
operand.set(toMemrefOp);
}
}
// Replace op results. // Replace op results.
replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults()); replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults());
@ -869,6 +843,24 @@ struct YieldOpInterface
if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp, scf::WhileOp>( if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp, scf::WhileOp>(
yieldOp->getParentOp())) yieldOp->getParentOp()))
return yieldOp->emitError("unsupported scf::YieldOp parent"); return yieldOp->emitError("unsupported scf::YieldOp parent");
// TODO: Bufferize scf.yield inside scf.while/scf.for here.
// (Currently bufferized together with scf.while/scf.for.)
if (isa<scf::ForOp, scf::WhileOp>(yieldOp->getParentOp()))
return success();
SmallVector<Value> newResults;
for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
Value value = it.value();
if (value.getType().isa<TensorType>()) {
Value buffer = getBuffer(rewriter, value, options);
newResults.push_back(buffer);
} else {
newResults.push_back(value);
}
}
replaceOpWithNewBufferizedOp<scf::YieldOp>(rewriter, op, newResults);
return success(); return success();
} }
}; };

View File

@ -8,6 +8,7 @@
// CHECK-LABEL: func @buffer_not_deallocated( // CHECK-LABEL: func @buffer_not_deallocated(
// CHECK-SAME: %[[t:.*]]: tensor<?xf32> // CHECK-SAME: %[[t:.*]]: tensor<?xf32>
func.func @buffer_not_deallocated(%t : tensor<?xf32>, %c : i1) -> tensor<?xf32> { func.func @buffer_not_deallocated(%t : tensor<?xf32>, %c : i1) -> tensor<?xf32> {
// CHECK: %[[m:.*]] = bufferization.to_memref %[[t]]
// CHECK: %[[r:.*]] = scf.if %{{.*}} { // CHECK: %[[r:.*]] = scf.if %{{.*}} {
%r = scf.if %c -> tensor<?xf32> { %r = scf.if %c -> tensor<?xf32> {
// CHECK: %[[some_op:.*]] = "test.some_op" // CHECK: %[[some_op:.*]] = "test.some_op"
@ -20,7 +21,6 @@ func.func @buffer_not_deallocated(%t : tensor<?xf32>, %c : i1) -> tensor<?xf32>
scf.yield %0 : tensor<?xf32> scf.yield %0 : tensor<?xf32>
} else { } else {
// CHECK: } else { // CHECK: } else {
// CHECK: %[[m:.*]] = bufferization.to_memref %[[t]]
// CHECK: %[[cloned:.*]] = bufferization.clone %[[m]] // CHECK: %[[cloned:.*]] = bufferization.clone %[[m]]
// CHECK: scf.yield %[[cloned]] // CHECK: scf.yield %[[cloned]]
scf.yield %t : tensor<?xf32> scf.yield %t : tensor<?xf32>
@ -40,8 +40,8 @@ func.func @write_to_alloc_tensor_or_readonly_tensor(%arg0: tensor<i32>,
%cond: i1, %val: i32) %cond: i1, %val: i32)
-> tensor<i32> -> tensor<i32>
{ {
// CHECK: %[[arg0_m:.*]] = bufferization.to_memref %[[arg0]]
// CHECK: %[[r:.*]] = scf.if {{.*}} { // CHECK: %[[r:.*]] = scf.if {{.*}} {
// CHECK: %[[arg0_m:.*]] = bufferization.to_memref %[[arg0]]
// CHECK: %[[clone:.*]] = bufferization.clone %[[arg0_m]] // CHECK: %[[clone:.*]] = bufferization.clone %[[arg0_m]]
// CHECK: scf.yield %[[clone]] // CHECK: scf.yield %[[clone]]
// CHECK: } else { // CHECK: } else {

View File

@ -206,9 +206,9 @@ func.func @simple_tensor_test(%t1 : tensor<?xf32>, %f : f32) -> tensor<?xf32> {
// CHECK-SCF-SAME: %[[t1:.*]]: tensor<?xf32> {bufferization.writable = true}, %[[c:.*]]: i1, %[[pos:.*]]: index // CHECK-SCF-SAME: %[[t1:.*]]: tensor<?xf32> {bufferization.writable = true}, %[[c:.*]]: i1, %[[pos:.*]]: index
func.func @simple_scf_if(%t1: tensor<?xf32> {bufferization.writable = true}, %c: i1, %pos: index, %f: f32) func.func @simple_scf_if(%t1: tensor<?xf32> {bufferization.writable = true}, %c: i1, %pos: index, %f: f32)
-> (tensor<?xf32>, index) { -> (tensor<?xf32>, index) {
// CHECK-SCF: %[[t1_memref:.*]] = bufferization.to_memref %[[t1]]
// CHECK-SCF: %[[r:.*]] = scf.if %[[c]] -> (memref<?xf32, #{{.*}}>) { // CHECK-SCF: %[[r:.*]] = scf.if %[[c]] -> (memref<?xf32, #{{.*}}>) {
%r1, %r2 = scf.if %c -> (tensor<?xf32>, index) { %r1, %r2 = scf.if %c -> (tensor<?xf32>, index) {
// CHECK-SCF: %[[t1_memref:.*]] = bufferization.to_memref %[[t1]]
// CHECK-SCF: scf.yield %[[t1_memref]] // CHECK-SCF: scf.yield %[[t1_memref]]
scf.yield %t1, %pos : tensor<?xf32>, index scf.yield %t1, %pos : tensor<?xf32>, index
// CHECK-SCF: } else { // CHECK-SCF: } else {

View File

@ -124,11 +124,10 @@ func.func @execute_region_with_conflict(
scf.yield %f1, %t2, %f1 : f32, tensor<?xf32>, f32 scf.yield %f1, %t2, %f1 : f32, tensor<?xf32>, f32
} }
// CHECK: %[[casted:.*]] = memref.cast %[[alloc]]
// CHECK: %[[load:.*]] = memref.load %[[m1]] // CHECK: %[[load:.*]] = memref.load %[[m1]]
%3 = tensor.extract %t1[%idx] : tensor<?xf32> %3 = tensor.extract %t1[%idx] : tensor<?xf32>
// CHECK: return %{{.*}}, %[[casted]], %[[load]] : f32, memref<?xf32, #{{.*}}>, f32 // CHECK: return %{{.*}}, %[[alloc]], %[[load]] : f32, memref<?xf32>, f32
return %0, %1, %3 : f32, tensor<?xf32>, f32 return %0, %1, %3 : f32, tensor<?xf32>, f32
} }