[mlir][sparse] enable integral abs recognition

The end-to-end test for this new feature also exposed a bug
in LLVM IR lowering (since then, fixed), where we need to account
for the min-poison bit as extra argument.

    declare i32 @llvm.abs.i32(i32 <src>, i1 <is_int_min_poison>)

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D131712
This commit is contained in:
Aart Bik 2022-08-11 12:22:21 -07:00
parent 79f34ae7fe
commit 8dd07e36ca
4 changed files with 121 additions and 0 deletions

View File

@ -32,6 +32,7 @@ enum Kind {
// Unary operations.
kAbsF,
kAbsC,
kAbsI,
kCeilF,
kFloorF,
kSqrtF,

View File

@ -40,6 +40,7 @@ TensorExp::TensorExp(Kind k, unsigned x, unsigned y, Value v, Operation *o)
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
case kCeilF:
case kFloorF:
case kSqrtF:
@ -310,6 +311,7 @@ bool Merger::isSingleCondition(unsigned t, unsigned e) const {
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
case kCeilF:
case kFloorF:
case kSqrtF:
@ -398,6 +400,7 @@ static const char *kindToOpSymbol(Kind kind) {
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
return "abs";
case kCeilF:
return "ceil";
@ -497,6 +500,7 @@ void Merger::dumpExp(unsigned e) const {
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
case kCeilF:
case kFloorF:
case kSqrtF:
@ -630,6 +634,7 @@ unsigned Merger::buildLattices(unsigned e, unsigned i) {
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
case kCeilF:
case kFloorF:
case kSqrtF:
@ -896,6 +901,8 @@ Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value v) {
return addExp(kAbsF, e);
if (isa<complex::AbsOp>(def))
return addExp(kAbsC, e);
if (isa<math::AbsIOp>(def))
return addExp(kAbsI, e);
if (isa<math::CeilOp>(def))
return addExp(kCeilF, e);
if (isa<math::FloorOp>(def))
@ -1079,6 +1086,8 @@ Value Merger::buildExp(RewriterBase &rewriter, Location loc, unsigned e,
auto eltType = type.getElementType().cast<FloatType>();
return rewriter.create<complex::AbsOp>(loc, eltType, v0);
}
case kAbsI:
return rewriter.create<math::AbsIOp>(loc, v0);
case kCeilF:
return rewriter.create<math::CeilOp>(loc, v0);
case kFloorF:

View File

@ -0,0 +1,110 @@
// RUN: mlir-opt %s --sparse-compiler | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
#trait_op = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = OP a(i)"
}
module {
func.func @sparse_absf(%arg0: tensor<?xf64, #SparseVector>)
-> tensor<?xf64, #SparseVector> {
%c0 = arith.constant 0 : index
%d = tensor.dim %arg0, %c0 : tensor<?xf64, #SparseVector>
%xin = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arg0: tensor<?xf64, #SparseVector>)
outs(%xin: tensor<?xf64, #SparseVector>) {
^bb0(%a: f64, %x: f64) :
%result = math.absf %a : f64
linalg.yield %result : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
func.func @sparse_absi(%arg0: tensor<?xi32, #SparseVector>)
-> tensor<?xi32, #SparseVector> {
%c0 = arith.constant 0 : index
%d = tensor.dim %arg0, %c0 : tensor<?xi32, #SparseVector>
%xin = bufferization.alloc_tensor(%d) : tensor<?xi32, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arg0: tensor<?xi32, #SparseVector>)
outs(%xin: tensor<?xi32, #SparseVector>) {
^bb0(%a: i32, %x: i32) :
%result = math.absi %a : i32
linalg.yield %result : i32
} -> tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// Driver method to call and verify sign kernel.
func.func @entry() {
%c0 = arith.constant 0 : index
%df = arith.constant 99.99 : f64
%di = arith.constant 9999 : i32
%pnan = arith.constant 0x7FF0000001000000 : f64
%nnan = arith.constant 0xFFF0000001000000 : f64
%pinf = arith.constant 0x7FF0000000000000 : f64
%ninf = arith.constant 0xFFF0000000000000 : f64
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [3], [5], [11], [13], [17], [18], [20], [21], [28], [29], [31] ],
[ -1.5, 1.5, -10.2, 11.3, 1.0, -1.0,
0x7FF0000001000000, // +NaN
0xFFF0000001000000, // -NaN
0x7FF0000000000000, // +Inf
0xFFF0000000000000, // -Inf
-0.0, // -Zero
0.0 // +Zero
]
> : tensor<32xf64>
%v2 = arith.constant sparse<
[ [0], [3], [5], [11], [13], [17], [18], [21], [31] ],
[ -2147483648, -2147483647, -1000, -1, 0,
1, 1000, 2147483646, 2147483647
]
> : tensor<32xi32>
%sv1 = sparse_tensor.convert %v1
: tensor<32xf64> to tensor<?xf64, #SparseVector>
%sv2 = sparse_tensor.convert %v2
: tensor<32xi32> to tensor<?xi32, #SparseVector>
// Call abs kernels.
%0 = call @sparse_absf(%sv1) : (tensor<?xf64, #SparseVector>)
-> tensor<?xf64, #SparseVector>
%1 = call @sparse_absi(%sv2) : (tensor<?xi32, #SparseVector>)
-> tensor<?xi32, #SparseVector>
//
// Verify the results.
//
// CHECK: ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0, 99.99 )
// CHECK-NEXT: ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647, 9999, 9999, 9999, 9999 )
//
%x = sparse_tensor.values %0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%y = sparse_tensor.values %1 : tensor<?xi32, #SparseVector> to memref<?xi32>
%a = vector.transfer_read %x[%c0], %df: memref<?xf64>, vector<13xf64>
%b = vector.transfer_read %y[%c0], %di: memref<?xi32>, vector<13xi32>
vector.print %a : vector<13xf64>
vector.print %b : vector<13xi32>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %sv2 : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %0 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %1 : tensor<?xi32, #SparseVector>
return
}
}

View File

@ -230,6 +230,7 @@ protected:
// Unary operations.
case kAbsF:
case kAbsC:
case kAbsI:
case kCeilF:
case kFloorF:
case kSqrtF: