forked from OSchip/llvm-project
IR: Rewrite ConstantUniqueMap
Rewrite `ConstantUniqueMap` to be more similar to `ConstantAggrUniqueMap`. - Use a `DenseMap` with custom MapInfo instead of a `std::map` with linear lookups and deletion. - Don't waste memory explicitly storing (heavyweight) keys. Only `ConstantExpr` and `InlineAsm` actually use this data structure, so I also updated them to use it. This code cleanup is a precursor to reducing RAUW traffic on `ConstantExpr` -- I felt badly adding a new (linear) call to `ConstantUniqueMap::FindExistingKey`, so this designs away the concern. A follow-up commit will transition the users of `ConstantAggrUniqueMap` over. llvm-svn: 215957
This commit is contained in:
parent
3fa26b7661
commit
8d12558bad
|
@ -25,12 +25,9 @@ namespace llvm {
|
|||
class PointerType;
|
||||
class FunctionType;
|
||||
class Module;
|
||||
|
||||
struct InlineAsmKeyType;
|
||||
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
|
||||
bool HasLargeKey>
|
||||
class ConstantUniqueMap;
|
||||
template<class ConstantClass, class TypeClass, class ValType>
|
||||
struct ConstantCreator;
|
||||
template <class ConstantClass> class ConstantUniqueMap;
|
||||
|
||||
class InlineAsm : public Value {
|
||||
public:
|
||||
|
@ -40,9 +37,8 @@ public:
|
|||
};
|
||||
|
||||
private:
|
||||
friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>;
|
||||
friend class ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&,
|
||||
PointerType, InlineAsm, false>;
|
||||
friend struct InlineAsmKeyType;
|
||||
friend class ConstantUniqueMap<InlineAsm>;
|
||||
|
||||
InlineAsm(const InlineAsm &) LLVM_DELETED_FUNCTION;
|
||||
void operator=(const InlineAsm&) LLVM_DELETED_FUNCTION;
|
||||
|
|
|
@ -1507,7 +1507,7 @@ static inline Constant *getFoldedCast(
|
|||
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
||||
|
||||
// Look up the constant in the table first to ensure uniqueness.
|
||||
ExprMapKeyType Key(opc, C);
|
||||
ConstantExprKeyType Key(opc, C);
|
||||
|
||||
return pImpl->ExprConstants.getOrCreate(Ty, Key);
|
||||
}
|
||||
|
@ -1842,7 +1842,7 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
|
|||
return FC; // Fold a few common cases.
|
||||
|
||||
Constant *ArgVec[] = { C1, C2 };
|
||||
ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
|
||||
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
|
||||
|
||||
LLVMContextImpl *pImpl = C1->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
|
||||
|
@ -1919,7 +1919,7 @@ Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
|
|||
return SC; // Fold common cases
|
||||
|
||||
Constant *ArgVec[] = { C, V1, V2 };
|
||||
ExprMapKeyType Key(Instruction::Select, ArgVec);
|
||||
ConstantExprKeyType Key(Instruction::Select, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = C->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
|
||||
|
@ -1954,7 +1954,7 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
|
|||
"getelementptr index type missmatch");
|
||||
ArgVec.push_back(cast<Constant>(Idxs[i]));
|
||||
}
|
||||
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
|
||||
const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
|
||||
InBounds ? GEPOperator::IsInBounds : 0);
|
||||
|
||||
LLVMContextImpl *pImpl = C->getContext().pImpl;
|
||||
|
@ -1973,7 +1973,7 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
|
|||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { LHS, RHS };
|
||||
// Get the key type with both the opcode and predicate
|
||||
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
|
||||
const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
|
||||
|
||||
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
|
||||
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
|
||||
|
@ -1994,7 +1994,7 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
|
|||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { LHS, RHS };
|
||||
// Get the key type with both the opcode and predicate
|
||||
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
|
||||
const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
|
||||
|
||||
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
|
||||
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
|
||||
|
@ -2015,7 +2015,7 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
|
|||
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { Val, Idx };
|
||||
const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = Val->getContext().pImpl;
|
||||
Type *ReqTy = Val->getType()->getVectorElementType();
|
||||
|
@ -2035,7 +2035,7 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
|
|||
return FC; // Fold a few common cases.
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { Val, Elt, Idx };
|
||||
const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = Val->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
|
||||
|
@ -2055,7 +2055,7 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
|
|||
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { V1, V2, Mask };
|
||||
const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
|
||||
|
@ -2075,7 +2075,7 @@ Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
|
|||
return FC;
|
||||
|
||||
Constant *ArgVec[] = { Agg, Val };
|
||||
const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
|
||||
const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
|
||||
|
||||
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
||||
|
@ -2096,7 +2096,7 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg,
|
|||
return FC;
|
||||
|
||||
Constant *ArgVec[] = { Agg };
|
||||
const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
|
||||
const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
|
||||
|
||||
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
||||
|
|
|
@ -314,66 +314,148 @@ struct OperandTraits<CompareConstantExpr> :
|
|||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
|
||||
|
||||
struct ExprMapKeyType {
|
||||
ExprMapKeyType(unsigned opc,
|
||||
ArrayRef<Constant*> ops,
|
||||
unsigned short flags = 0,
|
||||
unsigned short optionalflags = 0,
|
||||
ArrayRef<unsigned> inds = None)
|
||||
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
|
||||
operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
|
||||
uint8_t opcode;
|
||||
uint8_t subclassoptionaldata;
|
||||
uint16_t subclassdata;
|
||||
std::vector<Constant*> operands;
|
||||
SmallVector<unsigned, 4> indices;
|
||||
bool operator==(const ExprMapKeyType& that) const {
|
||||
return this->opcode == that.opcode &&
|
||||
this->subclassdata == that.subclassdata &&
|
||||
this->subclassoptionaldata == that.subclassoptionaldata &&
|
||||
this->operands == that.operands &&
|
||||
this->indices == that.indices;
|
||||
}
|
||||
bool operator<(const ExprMapKeyType & that) const {
|
||||
return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
|
||||
indices) <
|
||||
std::tie(that.opcode, that.operands, that.subclassdata,
|
||||
that.subclassoptionaldata, that.indices);
|
||||
}
|
||||
struct InlineAsmKeyType;
|
||||
struct ConstantExprKeyType;
|
||||
|
||||
bool operator!=(const ExprMapKeyType& that) const {
|
||||
return !(*this == that);
|
||||
}
|
||||
template <class ConstantClass> struct ConstantInfo;
|
||||
template <> struct ConstantInfo<ConstantExpr> {
|
||||
typedef ConstantExprKeyType ValType;
|
||||
typedef Type TypeClass;
|
||||
};
|
||||
template <> struct ConstantInfo<InlineAsm> {
|
||||
typedef InlineAsmKeyType ValType;
|
||||
typedef PointerType TypeClass;
|
||||
};
|
||||
|
||||
struct InlineAsmKeyType {
|
||||
InlineAsmKeyType(StringRef AsmString,
|
||||
StringRef Constraints, bool hasSideEffects,
|
||||
bool isAlignStack, InlineAsm::AsmDialect asmDialect)
|
||||
: asm_string(AsmString), constraints(Constraints),
|
||||
has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
|
||||
asm_dialect(asmDialect) {}
|
||||
std::string asm_string;
|
||||
std::string constraints;
|
||||
bool has_side_effects;
|
||||
bool is_align_stack;
|
||||
InlineAsm::AsmDialect asm_dialect;
|
||||
bool operator==(const InlineAsmKeyType& that) const {
|
||||
return this->asm_string == that.asm_string &&
|
||||
this->constraints == that.constraints &&
|
||||
this->has_side_effects == that.has_side_effects &&
|
||||
this->is_align_stack == that.is_align_stack &&
|
||||
this->asm_dialect == that.asm_dialect;
|
||||
StringRef AsmString;
|
||||
StringRef Constraints;
|
||||
bool HasSideEffects;
|
||||
bool IsAlignStack;
|
||||
InlineAsm::AsmDialect AsmDialect;
|
||||
|
||||
InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
|
||||
bool HasSideEffects, bool IsAlignStack,
|
||||
InlineAsm::AsmDialect AsmDialect)
|
||||
: AsmString(AsmString), Constraints(Constraints),
|
||||
HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
|
||||
AsmDialect(AsmDialect) {}
|
||||
InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
|
||||
: AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
|
||||
HasSideEffects(Asm->hasSideEffects()),
|
||||
IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
|
||||
|
||||
bool operator==(const InlineAsmKeyType &X) const {
|
||||
return HasSideEffects == X.HasSideEffects &&
|
||||
IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
|
||||
AsmString == X.AsmString && Constraints == X.Constraints;
|
||||
}
|
||||
bool operator<(const InlineAsmKeyType& that) const {
|
||||
return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
|
||||
asm_dialect) <
|
||||
std::tie(that.asm_string, that.constraints, that.has_side_effects,
|
||||
that.is_align_stack, that.asm_dialect);
|
||||
bool operator==(const InlineAsm *Asm) const {
|
||||
return HasSideEffects == Asm->hasSideEffects() &&
|
||||
IsAlignStack == Asm->isAlignStack() &&
|
||||
AsmDialect == Asm->getDialect() &&
|
||||
AsmString == Asm->getAsmString() &&
|
||||
Constraints == Asm->getConstraintString();
|
||||
}
|
||||
unsigned getHash() const {
|
||||
return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
|
||||
AsmDialect);
|
||||
}
|
||||
|
||||
bool operator!=(const InlineAsmKeyType& that) const {
|
||||
return !(*this == that);
|
||||
typedef typename ConstantInfo<InlineAsm>::TypeClass TypeClass;
|
||||
InlineAsm *create(TypeClass *Ty) const {
|
||||
return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
|
||||
IsAlignStack, AsmDialect);
|
||||
}
|
||||
};
|
||||
|
||||
struct ConstantExprKeyType {
|
||||
uint8_t Opcode;
|
||||
uint8_t SubclassOptionalData;
|
||||
uint16_t SubclassData;
|
||||
ArrayRef<Constant *> Ops;
|
||||
ArrayRef<unsigned> Indexes;
|
||||
|
||||
ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
|
||||
unsigned short SubclassData = 0,
|
||||
unsigned short SubclassOptionalData = 0,
|
||||
ArrayRef<unsigned> Indexes = None)
|
||||
: Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
|
||||
SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
|
||||
ConstantExprKeyType(const ConstantExpr *CE,
|
||||
SmallVectorImpl<Constant *> &Storage)
|
||||
: Opcode(CE->getOpcode()),
|
||||
SubclassOptionalData(CE->getRawSubclassOptionalData()),
|
||||
SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
|
||||
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
|
||||
assert(Storage.empty() && "Expected empty storage");
|
||||
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
|
||||
Storage.push_back(CE->getOperand(I));
|
||||
Ops = Storage;
|
||||
}
|
||||
|
||||
bool operator==(const ConstantExprKeyType &X) const {
|
||||
return Opcode == X.Opcode && SubclassData == X.SubclassData &&
|
||||
SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
|
||||
Indexes == X.Indexes;
|
||||
}
|
||||
|
||||
bool operator==(const ConstantExpr *CE) const {
|
||||
if (Opcode != CE->getOpcode())
|
||||
return false;
|
||||
if (SubclassOptionalData != CE->getRawSubclassOptionalData())
|
||||
return false;
|
||||
if (Ops.size() != CE->getNumOperands())
|
||||
return false;
|
||||
if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
|
||||
return false;
|
||||
for (unsigned I = 0, E = Ops.size(); I != E; ++I)
|
||||
if (Ops[I] != CE->getOperand(I))
|
||||
return false;
|
||||
if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
unsigned getHash() const {
|
||||
return hash_combine(Opcode, SubclassOptionalData, SubclassData,
|
||||
hash_combine_range(Ops.begin(), Ops.end()),
|
||||
hash_combine_range(Indexes.begin(), Indexes.end()));
|
||||
}
|
||||
|
||||
typedef typename ConstantInfo<ConstantExpr>::TypeClass TypeClass;
|
||||
ConstantExpr *create(TypeClass *Ty) const {
|
||||
switch (Opcode) {
|
||||
default:
|
||||
if (Instruction::isCast(Opcode))
|
||||
return new UnaryConstantExpr(Opcode, Ops[0], Ty);
|
||||
if ((Opcode >= Instruction::BinaryOpsBegin &&
|
||||
Opcode < Instruction::BinaryOpsEnd))
|
||||
return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
|
||||
SubclassOptionalData);
|
||||
llvm_unreachable("Invalid ConstantExpr!");
|
||||
case Instruction::Select:
|
||||
return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ExtractElement:
|
||||
return new ExtractElementConstantExpr(Ops[0], Ops[1]);
|
||||
case Instruction::InsertElement:
|
||||
return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ShuffleVector:
|
||||
return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::InsertValue:
|
||||
return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
|
||||
case Instruction::ExtractValue:
|
||||
return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
|
||||
case Instruction::GetElementPtr:
|
||||
return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
|
||||
SubclassOptionalData);
|
||||
case Instruction::ICmp:
|
||||
return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
|
||||
Ops[0], Ops[1]);
|
||||
case Instruction::FCmp:
|
||||
return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
|
||||
Ops[0], Ops[1]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -412,228 +494,99 @@ struct ConstantArrayCreator {
|
|||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass>
|
||||
struct ConstantKeyData {
|
||||
typedef void ValType;
|
||||
static ValType getValType(ConstantClass *C) {
|
||||
llvm_unreachable("Unknown Constant type!");
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
||||
static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
|
||||
unsigned short pred = 0) {
|
||||
if (Instruction::isCast(V.opcode))
|
||||
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
|
||||
if ((V.opcode >= Instruction::BinaryOpsBegin &&
|
||||
V.opcode < Instruction::BinaryOpsEnd))
|
||||
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
|
||||
V.subclassoptionaldata);
|
||||
if (V.opcode == Instruction::Select)
|
||||
return new SelectConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ExtractElement)
|
||||
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::InsertElement)
|
||||
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ShuffleVector)
|
||||
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::InsertValue)
|
||||
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
|
||||
V.indices, Ty);
|
||||
if (V.opcode == Instruction::ExtractValue)
|
||||
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
|
||||
if (V.opcode == Instruction::GetElementPtr) {
|
||||
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
|
||||
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
|
||||
V.subclassoptionaldata);
|
||||
}
|
||||
|
||||
// The compare instructions are weird. We have to encode the predicate
|
||||
// value and it is combined with the instruction opcode by multiplying
|
||||
// the opcode by one hundred. We must decode this to get the predicate.
|
||||
if (V.opcode == Instruction::ICmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
|
||||
V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::FCmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
|
||||
V.operands[0], V.operands[1]);
|
||||
llvm_unreachable("Invalid ConstantExpr!");
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantKeyData<ConstantExpr> {
|
||||
typedef ExprMapKeyType ValType;
|
||||
static ValType getValType(ConstantExpr *CE) {
|
||||
std::vector<Constant*> Operands;
|
||||
Operands.reserve(CE->getNumOperands());
|
||||
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
|
||||
Operands.push_back(cast<Constant>(CE->getOperand(i)));
|
||||
return ExprMapKeyType(CE->getOpcode(), Operands,
|
||||
CE->isCompare() ? CE->getPredicate() : 0,
|
||||
CE->getRawSubclassOptionalData(),
|
||||
CE->hasIndices() ?
|
||||
CE->getIndices() : ArrayRef<unsigned>());
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
|
||||
static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
|
||||
return new InlineAsm(Ty, Key.asm_string, Key.constraints,
|
||||
Key.has_side_effects, Key.is_align_stack,
|
||||
Key.asm_dialect);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantKeyData<InlineAsm> {
|
||||
typedef InlineAsmKeyType ValType;
|
||||
static ValType getValType(InlineAsm *Asm) {
|
||||
return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
|
||||
Asm->hasSideEffects(), Asm->isAlignStack(),
|
||||
Asm->getDialect());
|
||||
}
|
||||
};
|
||||
|
||||
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
|
||||
bool HasLargeKey = false /*true for arrays and structs*/ >
|
||||
class ConstantUniqueMap {
|
||||
template <class ConstantClass> class ConstantUniqueMap {
|
||||
public:
|
||||
typedef std::pair<TypeClass*, ValType> MapKey;
|
||||
typedef std::map<MapKey, ConstantClass *> MapTy;
|
||||
typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
|
||||
private:
|
||||
/// Map - This is the main map from the element descriptor to the Constants.
|
||||
/// This is the primary way we avoid creating two of the same shape
|
||||
/// constant.
|
||||
MapTy Map;
|
||||
typedef typename ConstantInfo<ConstantClass>::ValType ValType;
|
||||
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
|
||||
typedef std::pair<TypeClass *, ValType> LookupKey;
|
||||
|
||||
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
||||
/// from the constants to their element in Map. This is important for
|
||||
/// removal of constants from the array, which would otherwise have to scan
|
||||
/// through the map with very large keys.
|
||||
InverseMapTy InverseMap;
|
||||
private:
|
||||
struct MapInfo {
|
||||
typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
|
||||
static inline ConstantClass *getEmptyKey() {
|
||||
return ConstantClassInfo::getEmptyKey();
|
||||
}
|
||||
static inline ConstantClass *getTombstoneKey() {
|
||||
return ConstantClassInfo::getTombstoneKey();
|
||||
}
|
||||
static unsigned getHashValue(const ConstantClass *CP) {
|
||||
SmallVector<Constant *, 8> Storage;
|
||||
return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
|
||||
}
|
||||
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
|
||||
return LHS == RHS;
|
||||
}
|
||||
static unsigned getHashValue(const LookupKey &Val) {
|
||||
return hash_combine(Val.first, Val.second.getHash());
|
||||
}
|
||||
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
|
||||
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
|
||||
return false;
|
||||
if (LHS.first != RHS->getType())
|
||||
return false;
|
||||
return LHS.second == RHS;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
|
||||
|
||||
private:
|
||||
MapTy Map;
|
||||
|
||||
public:
|
||||
typename MapTy::iterator map_begin() { return Map.begin(); }
|
||||
typename MapTy::iterator map_end() { return Map.end(); }
|
||||
|
||||
void freeConstants() {
|
||||
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
|
||||
I != E; ++I) {
|
||||
for (auto &I : Map)
|
||||
// Asserts that use_empty().
|
||||
delete I->second;
|
||||
}
|
||||
}
|
||||
|
||||
/// InsertOrGetItem - Return an iterator for the specified element.
|
||||
/// If the element exists in the map, the returned iterator points to the
|
||||
/// entry and Exists=true. If not, the iterator points to the newly
|
||||
/// inserted entry and returns Exists=false. Newly inserted entries have
|
||||
/// I->second == 0, and should be filled in.
|
||||
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
|
||||
&InsertVal,
|
||||
bool &Exists) {
|
||||
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
||||
Exists = !IP.second;
|
||||
return IP.first;
|
||||
delete I.first;
|
||||
}
|
||||
|
||||
private:
|
||||
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
||||
if (HasLargeKey) {
|
||||
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
||||
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
||||
IMI->second->second == CP &&
|
||||
"InverseMap corrupt!");
|
||||
return IMI->second;
|
||||
}
|
||||
|
||||
typename MapTy::iterator I =
|
||||
Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
|
||||
ConstantKeyData<ConstantClass>::getValType(CP)));
|
||||
if (I == Map.end() || I->second != CP) {
|
||||
// FIXME: This should not use a linear scan. If this gets to be a
|
||||
// performance problem, someone should look at this.
|
||||
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
||||
/* empty */;
|
||||
}
|
||||
return I;
|
||||
}
|
||||
|
||||
ConstantClass *Create(TypeClass *Ty, ValRefType V,
|
||||
typename MapTy::iterator I) {
|
||||
ConstantClass* Result =
|
||||
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
||||
ConstantClass *create(TypeClass *Ty, ValType V) {
|
||||
ConstantClass *Result = V.create(Ty);
|
||||
|
||||
assert(Result->getType() == Ty && "Type specified is not correct!");
|
||||
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.insert(std::make_pair(Result, I));
|
||||
insert(Result);
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
public:
|
||||
/// Return the specified constant from the map, creating it if necessary.
|
||||
ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
|
||||
LookupKey Lookup(Ty, V);
|
||||
ConstantClass *Result = nullptr;
|
||||
|
||||
/// getOrCreate - Return the specified constant from the map, creating it if
|
||||
/// necessary.
|
||||
ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
|
||||
MapKey Lookup(Ty, V);
|
||||
ConstantClass* Result = nullptr;
|
||||
|
||||
typename MapTy::iterator I = Map.find(Lookup);
|
||||
// Is it in the map?
|
||||
if (I != Map.end())
|
||||
Result = I->second;
|
||||
|
||||
if (!Result) {
|
||||
// If no preexisting value, create one now...
|
||||
Result = Create(Ty, V, I);
|
||||
}
|
||||
auto I = find(Lookup);
|
||||
if (I == Map.end())
|
||||
Result = create(Ty, V);
|
||||
else
|
||||
Result = I->first;
|
||||
assert(Result && "Unexpected nullptr");
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
/// Find the constant by lookup key.
|
||||
typename MapTy::iterator find(LookupKey Lookup) {
|
||||
return Map.find_as(Lookup);
|
||||
}
|
||||
|
||||
/// Insert the constant into its proper slot.
|
||||
void insert(ConstantClass *CP) { Map[CP] = '\0'; }
|
||||
|
||||
/// Remove this constant from the map
|
||||
void remove(ConstantClass *CP) {
|
||||
typename MapTy::iterator I = FindExistingElement(CP);
|
||||
typename MapTy::iterator I = Map.find(CP);
|
||||
assert(I != Map.end() && "Constant not found in constant table!");
|
||||
assert(I->second == CP && "Didn't find correct element?");
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.erase(CP);
|
||||
|
||||
assert(I->first == CP && "Didn't find correct element?");
|
||||
Map.erase(I);
|
||||
}
|
||||
|
||||
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
||||
/// specified by I, update our internal data structures to reflect this
|
||||
/// fact.
|
||||
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
||||
// First, remove the old location of the specified constant in the map.
|
||||
typename MapTy::iterator OldI = FindExistingElement(C);
|
||||
assert(OldI != Map.end() && "Constant not found in constant table!");
|
||||
assert(OldI->second == C && "Didn't find correct element?");
|
||||
|
||||
// Remove the old entry from the map.
|
||||
Map.erase(OldI);
|
||||
|
||||
// Update the inverse map so that we know that this constant is now
|
||||
// located at descriptor I.
|
||||
if (HasLargeKey) {
|
||||
assert(I->second == C && "Bad inversemap entry!");
|
||||
InverseMap[C] = I;
|
||||
}
|
||||
}
|
||||
|
||||
void dump() const {
|
||||
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
|
||||
}
|
||||
void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
|
||||
};
|
||||
|
||||
// Unique map for aggregate constants
|
||||
|
|
|
@ -75,7 +75,7 @@ LLVMContextImpl::~LLVMContextImpl() {
|
|||
// Free the constants. This is important to do here to ensure that they are
|
||||
// freed before the LeakDetector is torn down.
|
||||
std::for_each(ExprConstants.map_begin(), ExprConstants.map_end(),
|
||||
DropReferences());
|
||||
DropFirst());
|
||||
std::for_each(ArrayConstants.map_begin(), ArrayConstants.map_end(),
|
||||
DropFirst());
|
||||
std::for_each(StructConstants.map_begin(), StructConstants.map_end(),
|
||||
|
|
|
@ -289,11 +289,9 @@ public:
|
|||
|
||||
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
|
||||
BlockAddresses;
|
||||
ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
|
||||
ExprConstants;
|
||||
ConstantUniqueMap<ConstantExpr> ExprConstants;
|
||||
|
||||
ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
|
||||
InlineAsm> InlineAsms;
|
||||
ConstantUniqueMap<InlineAsm> InlineAsms;
|
||||
|
||||
ConstantInt *TheTrueVal;
|
||||
ConstantInt *TheFalseVal;
|
||||
|
|
Loading…
Reference in New Issue