[ARM] GlobalISel: Support array parameters/arguments

Clang coerces structs into arrays, so it's a good idea to support them.
Most of the support boils down to getting the splitToValueTypes helper
to actually split types. We then use G_INSERT/G_EXTRACT to deal with the
parts.

llvm-svn: 304132
This commit is contained in:
Diana Picus 2017-05-29 07:01:52 +00:00
parent bae0a1d43c
commit 8cca8cb0ce
4 changed files with 369 additions and 19 deletions

View File

@ -34,6 +34,9 @@ ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI)
static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI,
Type *T) {
if (T->isArrayTy())
return true;
EVT VT = TLI.getValueType(DL, T, true);
if (!VT.isSimple() || VT.isVector() ||
!(VT.isInteger() || VT.isFloatingPoint()))
@ -148,23 +151,47 @@ struct OutgoingValueHandler : public CallLowering::ValueHandler {
};
} // End anonymous namespace.
void ARMCallLowering::splitToValueTypes(const ArgInfo &OrigArg,
SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL,
MachineRegisterInfo &MRI) const {
void ARMCallLowering::splitToValueTypes(
const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
MachineFunction &MF, const SplitArgTy &PerformArgSplit) const {
const ARMTargetLowering &TLI = *getTLI<ARMTargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
const DataLayout &DL = MF.getDataLayout();
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function *F = MF.getFunction();
SmallVector<EVT, 4> SplitVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
assert(SplitVTs.size() == 1 && "Unsupported type");
if (SplitVTs.size() == 1) {
// Even if there is no splitting to do, we still want to replace the
// original type (e.g. pointer type -> integer).
SplitArgs.emplace_back(OrigArg.Reg, SplitVTs[0].getTypeForEVT(Ctx),
OrigArg.Flags, OrigArg.IsFixed);
return;
}
// Even if there is no splitting to do, we still want to replace the original
// type (e.g. pointer type -> integer).
SplitArgs.emplace_back(OrigArg.Reg, SplitVTs[0].getTypeForEVT(Ctx),
OrigArg.Flags, OrigArg.IsFixed);
unsigned FirstRegIdx = SplitArgs.size();
for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) {
EVT SplitVT = SplitVTs[i];
Type *SplitTy = SplitVT.getTypeForEVT(Ctx);
auto Flags = OrigArg.Flags;
bool NeedsConsecutiveRegisters =
TLI.functionArgumentNeedsConsecutiveRegisters(
SplitTy, F->getCallingConv(), F->isVarArg());
if (NeedsConsecutiveRegisters) {
Flags.setInConsecutiveRegs();
if (i == e - 1)
Flags.setInConsecutiveRegsLast();
}
SplitArgs.push_back(
ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*SplitTy, DL)),
SplitTy, Flags, OrigArg.IsFixed});
}
for (unsigned i = 0; i < Offsets.size(); ++i)
PerformArgSplit(SplitArgs[FirstRegIdx + i].Reg, Offsets[i] * 8);
}
/// Lower the return value for the already existing \p Ret. This assumes that
@ -187,7 +214,8 @@ bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder,
SmallVector<ArgInfo, 4> SplitVTs;
ArgInfo RetInfo(VReg, Val->getType());
setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
splitToValueTypes(RetInfo, SplitVTs, DL, MF.getRegInfo());
splitToValueTypes(RetInfo, SplitVTs, MF,
[&](unsigned Reg, uint64_t Offset) {});
CCAssignFn *AssignFn =
TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg());
@ -335,8 +363,10 @@ bool ARMCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
return false;
auto &MF = MIRBuilder.getMF();
auto &MBB = MIRBuilder.getMBB();
auto DL = MF.getDataLayout();
auto &TLI = *getTLI<ARMTargetLowering>();
auto &MRI = MF.getRegInfo();
auto Subtarget = TLI.getSubtarget();
@ -355,10 +385,31 @@ bool ARMCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
for (auto &Arg : F.args()) {
ArgInfo AInfo(VRegs[Idx], Arg.getType());
setArgFlags(AInfo, Idx + AttributeList::FirstArgIndex, DL, F);
splitToValueTypes(AInfo, ArgInfos, DL, MF.getRegInfo());
LLT Ty = MRI.getType(VRegs[Idx]);
bool Split = false;
unsigned Dst = VRegs[Idx];
splitToValueTypes(AInfo, ArgInfos, MF, [&](unsigned Reg, uint64_t Offset) {
if (!Split) {
Split = true;
Dst = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildUndef(Dst);
}
unsigned Tmp = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildInsert(Tmp, Dst, Reg, Offset);
Dst = Tmp;
});
if (Dst != VRegs[Idx]) {
assert(Split && "Destination changed but no split occured?");
MIRBuilder.buildCopy(VRegs[Idx], Dst);
}
Idx++;
}
if (!MBB.empty())
MIRBuilder.setInstr(*MBB.begin());
FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(),
AssignFn);
return handleAssignments(MIRBuilder, ArgInfos, ArgHandler);
@ -407,7 +458,9 @@ bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
if (!Arg.IsFixed)
return false;
splitToValueTypes(Arg, ArgInfos, DL, MRI);
splitToValueTypes(Arg, ArgInfos, MF, [&](unsigned Reg, uint64_t Offset) {
MIRBuilder.buildExtract(Reg, Arg.Reg, Offset);
});
}
auto ArgAssignFn = TLI.CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
@ -423,7 +476,8 @@ bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
return false;
ArgInfos.clear();
splitToValueTypes(OrigRet, ArgInfos, DL, MRI);
splitToValueTypes(OrigRet, ArgInfos, MF,
[&](unsigned Reg, uint64_t Offset) {});
auto RetAssignFn = TLI.CCAssignFnForReturn(CallConv, /*IsVarArg=*/false);
CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn);

View File

@ -42,11 +42,14 @@ private:
bool lowerReturnVal(MachineIRBuilder &MIRBuilder, const Value *Val,
unsigned VReg, MachineInstrBuilder &Ret) const;
typedef std::function<void(unsigned Reg, uint64_t Offset)> SplitArgTy;
/// Split an argument into one or more arguments that the CC lowering can cope
/// with (e.g. replace pointers with integers).
void splitToValueTypes(const ArgInfo &OrigArg,
SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, MachineRegisterInfo &MRI) const;
MachineFunction &MF,
const SplitArgTy &PerformArgSplit) const;
};
} // End of namespace llvm
#endif

View File

@ -620,6 +620,297 @@ entry:
ret float %r
}
declare arm_aapcscc void @tiny_int_arrays_target([2 x i32])
define arm_aapcscc void @test_tiny_int_arrays([2 x i32] %arr) {
; CHECK-LABEL: name: test_tiny_int_arrays
; CHECK: liveins: %r0, %r1
; CHECK: [[R0:%[0-9]+]](s32) = COPY %r0
; CHECK: [[R1:%[0-9]+]](s32) = COPY %r1
; CHECK: [[ARG_ARR0:%[0-9]+]](s64) = IMPLICIT_DEF
; CHECK: [[ARG_ARR1:%[0-9]+]](s64) = G_INSERT [[ARG_ARR0]], [[R0]](s32), 0
; CHECK: [[ARG_ARR2:%[0-9]+]](s64) = G_INSERT [[ARG_ARR1]], [[R1]](s32), 32
; CHECK: [[ARG_ARR:%[0-9]+]](s64) = COPY [[ARG_ARR2]]
; CHECK: ADJCALLSTACKDOWN 0, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: [[R0:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s64), 0
; CHECK: [[R1:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s64), 32
; CHECK: %r0 = COPY [[R0]]
; CHECK: %r1 = COPY [[R1]]
; CHECK: BLX @tiny_int_arrays_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %r0, implicit %r1
; CHECK: ADJCALLSTACKUP 0, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcscc void @tiny_int_arrays_target([2 x i32] %arr)
ret void
}
declare arm_aapcscc void @multiple_int_arrays_target([2 x i32], [2 x i32])
define arm_aapcscc void @test_multiple_int_arrays([2 x i32] %arr0, [2 x i32] %arr1) {
; CHECK-LABEL: name: test_multiple_int_arrays
; CHECK: liveins: %r0, %r1
; CHECK: [[R0:%[0-9]+]](s32) = COPY %r0
; CHECK: [[R1:%[0-9]+]](s32) = COPY %r1
; CHECK: [[R2:%[0-9]+]](s32) = COPY %r2
; CHECK: [[R3:%[0-9]+]](s32) = COPY %r3
; CHECK: [[ARG_ARR0_0:%[0-9]+]](s64) = IMPLICIT_DEF
; CHECK: [[ARG_ARR0_1:%[0-9]+]](s64) = G_INSERT [[ARG_ARR0_0]], [[R0]](s32), 0
; CHECK: [[ARG_ARR0_2:%[0-9]+]](s64) = G_INSERT [[ARG_ARR0_1]], [[R1]](s32), 32
; CHECK: [[ARG_ARR0:%[0-9]+]](s64) = COPY [[ARG_ARR0_2]]
; CHECK: [[ARG_ARR1_0:%[0-9]+]](s64) = IMPLICIT_DEF
; CHECK: [[ARG_ARR1_1:%[0-9]+]](s64) = G_INSERT [[ARG_ARR1_0]], [[R2]](s32), 0
; CHECK: [[ARG_ARR1_2:%[0-9]+]](s64) = G_INSERT [[ARG_ARR1_1]], [[R3]](s32), 32
; CHECK: [[ARG_ARR1:%[0-9]+]](s64) = COPY [[ARG_ARR1_2]]
; CHECK: ADJCALLSTACKDOWN 0, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BLX @multiple_int_arrays_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %r0, implicit %r1, implicit %r2, implicit %r3
; CHECK: ADJCALLSTACKUP 0, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcscc void @multiple_int_arrays_target([2 x i32] %arr0, [2 x i32] %arr1)
ret void
}
declare arm_aapcscc void @large_int_arrays_target([20 x i32])
define arm_aapcscc void @test_large_int_arrays([20 x i32] %arr) {
; CHECK-LABEL: name: test_large_int_arrays
; CHECK: fixedStack:
; The parameters live in separate stack locations, one for each element that
; doesn't fit in the registers.
; CHECK-DAG: id: [[FIRST_STACK_ID:[0-9]+]], offset: 0, size: 4
; CHECK-DAG: id: [[LAST_STACK_ID:[-0]+]], offset: 60, size: 4
; CHECK: liveins: %r0, %r1, %r2, %r3
; CHECK-DAG: [[R0:%[0-9]+]](s32) = COPY %r0
; CHECK-DAG: [[R1:%[0-9]+]](s32) = COPY %r1
; CHECK-DAG: [[R2:%[0-9]+]](s32) = COPY %r2
; CHECK-DAG: [[R3:%[0-9]+]](s32) = COPY %r3
; CHECK: [[FIRST_STACK_ELEMENT_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[FIRST_STACK_ID]]
; CHECK: [[FIRST_STACK_ELEMENT:%[0-9]+]](s32) = G_LOAD [[FIRST_STACK_ELEMENT_FI]]{{.*}}load 4 from %fixed-stack.[[FIRST_STACK_ID]]
; CHECK: [[LAST_STACK_ELEMENT_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[LAST_STACK_ID]]
; CHECK: [[LAST_STACK_ELEMENT:%[0-9]+]](s32) = G_LOAD [[LAST_STACK_ELEMENT_FI]]{{.*}}load 4 from %fixed-stack.[[LAST_STACK_ID]]
; CHECK: [[ARG_ARR0:%[0-9]+]](s640) = IMPLICIT_DEF
; CHECK: [[ARG_ARR1:%[0-9]+]](s640) = G_INSERT [[ARG_ARR0]], [[R0]](s32), 0
; CHECK: [[ARG_ARR2:%[0-9]+]](s640) = G_INSERT [[ARG_ARR1]], [[R1]](s32), 32
; CHECK: [[ARG_ARR3:%[0-9]+]](s640) = G_INSERT [[ARG_ARR2]], [[R2]](s32), 64
; CHECK: [[ARG_ARR4:%[0-9]+]](s640) = G_INSERT [[ARG_ARR3]], [[R3]](s32), 96
; CHECK: [[ARG_ARR5:%[0-9]+]](s640) = G_INSERT [[ARG_ARR4]], [[FIRST_STACK_ELEMENT]](s32), 128
; CHECK: [[ARG_ARR6:%[0-9]+]](s640) = G_INSERT {{%[0-9]+}}, [[LAST_STACK_ELEMENT]](s32), 608
; CHECK: [[ARG_ARR:%[0-9]+]](s640) = COPY [[ARG_ARR6]]
; CHECK: ADJCALLSTACKDOWN 64, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: [[R0:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 0
; CHECK: [[R1:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 32
; CHECK: [[R2:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 64
; CHECK: [[R3:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 96
; CHECK: [[FIRST_STACK_ELEMENT:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 128
; CHECK: [[LAST_STACK_ELEMENT:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s640), 608
; CHECK: %r0 = COPY [[R0]]
; CHECK: %r1 = COPY [[R1]]
; CHECK: %r2 = COPY [[R2]]
; CHECK: %r3 = COPY [[R3]]
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[OFF_FIRST_ELEMENT:%[0-9]+]](s32) = G_CONSTANT i32 0
; CHECK: [[FIRST_STACK_ARG_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[OFF_FIRST_ELEMENT]](s32)
; CHECK: G_STORE [[FIRST_STACK_ELEMENT]](s32), [[FIRST_STACK_ARG_ADDR]]{{.*}}store 4
; Match the second-to-last offset, so we can get the correct SP for the last element
; CHECK: G_CONSTANT i32 56
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[OFF_LAST_ELEMENT:%[0-9]+]](s32) = G_CONSTANT i32 60
; CHECK: [[LAST_STACK_ARG_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[OFF_LAST_ELEMENT]](s32)
; CHECK: G_STORE [[LAST_STACK_ELEMENT]](s32), [[LAST_STACK_ARG_ADDR]]{{.*}}store 4
; CHECK: BLX @large_int_arrays_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %r0, implicit %r1, implicit %r2, implicit %r3
; CHECK: ADJCALLSTACKUP 64, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcscc void @large_int_arrays_target([20 x i32] %arr)
ret void
}
declare arm_aapcscc void @fp_arrays_aapcs_target([3 x double])
define arm_aapcscc void @test_fp_arrays_aapcs([3 x double] %arr) {
; CHECK-LABEL: name: test_fp_arrays_aapcs
; CHECK: fixedStack:
; CHECK: id: [[ARR2_ID:[0-9]+]], offset: 0, size: 8
; CHECK: liveins: %r0, %r1, %r2, %r3
; CHECK: [[ARR0_0:%[0-9]+]](s32) = COPY %r0
; CHECK: [[ARR0_1:%[0-9]+]](s32) = COPY %r1
; LITTLE: [[ARR0:%[0-9]+]](s64) = G_SEQUENCE [[ARR0_0]](s32), 0, [[ARR0_1]](s32), 32
; BIG: [[ARR0:%[0-9]+]](s64) = G_SEQUENCE [[ARR0_1]](s32), 0, [[ARR0_0]](s32), 32
; CHECK: [[ARR1_0:%[0-9]+]](s32) = COPY %r2
; CHECK: [[ARR1_1:%[0-9]+]](s32) = COPY %r3
; LITTLE: [[ARR1:%[0-9]+]](s64) = G_SEQUENCE [[ARR1_0]](s32), 0, [[ARR1_1]](s32), 32
; BIG: [[ARR1:%[0-9]+]](s64) = G_SEQUENCE [[ARR1_1]](s32), 0, [[ARR1_0]](s32), 32
; CHECK: [[ARR2_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[ARR2_ID]]
; CHECK: [[ARR2:%[0-9]+]](s64) = G_LOAD [[ARR2_FI]]{{.*}}load 8 from %fixed-stack.[[ARR2_ID]]
; CHECK: [[ARR_MERGED_0:%[0-9]+]](s192) = IMPLICIT_DEF
; CHECK: [[ARR_MERGED_1:%[0-9]+]](s192) = G_INSERT [[ARR_MERGED_0]], [[ARR0]](s64), 0
; CHECK: [[ARR_MERGED_2:%[0-9]+]](s192) = G_INSERT [[ARR_MERGED_1]], [[ARR1]](s64), 64
; CHECK: [[ARR_MERGED_3:%[0-9]+]](s192) = G_INSERT [[ARR_MERGED_2]], [[ARR2]](s64), 128
; CHECK: [[ARR_MERGED:%[0-9]+]](s192) = COPY [[ARR_MERGED_3]]
; CHECK: ADJCALLSTACKDOWN 8, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: [[ARR0:%[0-9]+]](s64) = G_EXTRACT [[ARR_MERGED]](s192), 0
; CHECK: [[ARR1:%[0-9]+]](s64) = G_EXTRACT [[ARR_MERGED]](s192), 64
; CHECK: [[ARR2:%[0-9]+]](s64) = G_EXTRACT [[ARR_MERGED]](s192), 128
; CHECK: [[ARR0_0:%[0-9]+]](s32) = G_EXTRACT [[ARR0]](s64), 0
; CHECK: [[ARR0_1:%[0-9]+]](s32) = G_EXTRACT [[ARR0]](s64), 32
; LITTLE: %r0 = COPY [[ARR0_0]](s32)
; LITTLE: %r1 = COPY [[ARR0_1]](s32)
; BIG: %r0 = COPY [[ARR0_1]](s32)
; BIG: %r1 = COPY [[ARR0_0]](s32)
; CHECK: [[ARR1_0:%[0-9]+]](s32) = G_EXTRACT [[ARR1]](s64), 0
; CHECK: [[ARR1_1:%[0-9]+]](s32) = G_EXTRACT [[ARR1]](s64), 32
; LITTLE: %r2 = COPY [[ARR1_0]](s32)
; LITTLE: %r3 = COPY [[ARR1_1]](s32)
; BIG: %r2 = COPY [[ARR1_1]](s32)
; BIG: %r3 = COPY [[ARR1_0]](s32)
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[ARR2_OFFSET:%[0-9]+]](s32) = G_CONSTANT i32 0
; CHECK: [[ARR2_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[ARR2_OFFSET]](s32)
; CHECK: G_STORE [[ARR2]](s64), [[ARR2_ADDR]](p0){{.*}}store 8
; CHECK: BLX @fp_arrays_aapcs_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %r0, implicit %r1, implicit %r2, implicit %r3
; CHECK: ADJCALLSTACKUP 8, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcscc void @fp_arrays_aapcs_target([3 x double] %arr)
ret void
}
declare arm_aapcs_vfpcc void @fp_arrays_aapcs_vfp_target([3 x double], [3 x float], [4 x double])
define arm_aapcs_vfpcc void @test_fp_arrays_aapcs_vfp([3 x double] %x, [3 x float] %y, [4 x double] %z) {
; CHECK-LABEL: name: test_fp_arrays_aapcs_vfp
; CHECK: fixedStack:
; CHECK-DAG: id: [[Z0_ID:[0-9]+]], offset: 0, size: 8
; CHECK-DAG: id: [[Z1_ID:[0-9]+]], offset: 8, size: 8
; CHECK-DAG: id: [[Z2_ID:[0-9]+]], offset: 16, size: 8
; CHECK-DAG: id: [[Z3_ID:[0-9]+]], offset: 24, size: 8
; CHECK: liveins: %d0, %d1, %d2, %s6, %s7, %s8
; CHECK: [[X0:%[0-9]+]](s64) = COPY %d0
; CHECK: [[X1:%[0-9]+]](s64) = COPY %d1
; CHECK: [[X2:%[0-9]+]](s64) = COPY %d2
; CHECK: [[Y0:%[0-9]+]](s32) = COPY %s6
; CHECK: [[Y1:%[0-9]+]](s32) = COPY %s7
; CHECK: [[Y2:%[0-9]+]](s32) = COPY %s8
; CHECK: [[Z0_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[Z0_ID]]
; CHECK: [[Z0:%[0-9]+]](s64) = G_LOAD [[Z0_FI]]{{.*}}load 8
; CHECK: [[Z1_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[Z1_ID]]
; CHECK: [[Z1:%[0-9]+]](s64) = G_LOAD [[Z1_FI]]{{.*}}load 8
; CHECK: [[Z2_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[Z2_ID]]
; CHECK: [[Z2:%[0-9]+]](s64) = G_LOAD [[Z2_FI]]{{.*}}load 8
; CHECK: [[Z3_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[Z3_ID]]
; CHECK: [[Z3:%[0-9]+]](s64) = G_LOAD [[Z3_FI]]{{.*}}load 8
; CHECK: [[X_ARR_0:%[0-9]+]](s192) = IMPLICIT_DEF
; CHECK: [[X_ARR_1:%[0-9]+]](s192) = G_INSERT [[X_ARR_0]], [[X0]](s64), 0
; CHECK: [[X_ARR_2:%[0-9]+]](s192) = G_INSERT [[X_ARR_1]], [[X1]](s64), 64
; CHECK: [[X_ARR_3:%[0-9]+]](s192) = G_INSERT [[X_ARR_2]], [[X2]](s64), 128
; CHECK: [[X_ARR:%[0-9]+]](s192) = COPY [[X_ARR_3]](s192)
; CHECK: [[Y_ARR_0:%[0-9]+]](s96) = IMPLICIT_DEF
; CHECK: [[Y_ARR_1:%[0-9]+]](s96) = G_INSERT [[Y_ARR_0]], [[Y0]](s32), 0
; CHECK: [[Y_ARR_2:%[0-9]+]](s96) = G_INSERT [[Y_ARR_1]], [[Y1]](s32), 32
; CHECK: [[Y_ARR_3:%[0-9]+]](s96) = G_INSERT [[Y_ARR_2]], [[Y2]](s32), 64
; CHECK: [[Y_ARR:%[0-9]+]](s96) = COPY [[Y_ARR_3]](s96)
; CHECK: [[Z_ARR_0:%[0-9]+]](s256) = IMPLICIT_DEF
; CHECK: [[Z_ARR_1:%[0-9]+]](s256) = G_INSERT [[Z_ARR_0]], [[Z0]](s64), 0
; CHECK: [[Z_ARR_2:%[0-9]+]](s256) = G_INSERT [[Z_ARR_1]], [[Z1]](s64), 64
; CHECK: [[Z_ARR_3:%[0-9]+]](s256) = G_INSERT [[Z_ARR_2]], [[Z2]](s64), 128
; CHECK: [[Z_ARR_4:%[0-9]+]](s256) = G_INSERT [[Z_ARR_3]], [[Z3]](s64), 192
; CHECK: [[Z_ARR:%[0-9]+]](s256) = COPY [[Z_ARR_4]](s256)
; CHECK: ADJCALLSTACKDOWN 32, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: [[X0:%[0-9]+]](s64) = G_EXTRACT [[X_ARR]](s192), 0
; CHECK: [[X1:%[0-9]+]](s64) = G_EXTRACT [[X_ARR]](s192), 64
; CHECK: [[X2:%[0-9]+]](s64) = G_EXTRACT [[X_ARR]](s192), 128
; CHECK: [[Y0:%[0-9]+]](s32) = G_EXTRACT [[Y_ARR]](s96), 0
; CHECK: [[Y1:%[0-9]+]](s32) = G_EXTRACT [[Y_ARR]](s96), 32
; CHECK: [[Y2:%[0-9]+]](s32) = G_EXTRACT [[Y_ARR]](s96), 64
; CHECK: [[Z0:%[0-9]+]](s64) = G_EXTRACT [[Z_ARR]](s256), 0
; CHECK: [[Z1:%[0-9]+]](s64) = G_EXTRACT [[Z_ARR]](s256), 64
; CHECK: [[Z2:%[0-9]+]](s64) = G_EXTRACT [[Z_ARR]](s256), 128
; CHECK: [[Z3:%[0-9]+]](s64) = G_EXTRACT [[Z_ARR]](s256), 192
; CHECK: %d0 = COPY [[X0]](s64)
; CHECK: %d1 = COPY [[X1]](s64)
; CHECK: %d2 = COPY [[X2]](s64)
; CHECK: %s6 = COPY [[Y0]](s32)
; CHECK: %s7 = COPY [[Y1]](s32)
; CHECK: %s8 = COPY [[Y2]](s32)
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[Z0_OFFSET:%[0-9]+]](s32) = G_CONSTANT i32 0
; CHECK: [[Z0_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[Z0_OFFSET]](s32)
; CHECK: G_STORE [[Z0]](s64), [[Z0_ADDR]](p0){{.*}}store 8
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[Z1_OFFSET:%[0-9]+]](s32) = G_CONSTANT i32 8
; CHECK: [[Z1_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[Z1_OFFSET]](s32)
; CHECK: G_STORE [[Z1]](s64), [[Z1_ADDR]](p0){{.*}}store 8
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[Z2_OFFSET:%[0-9]+]](s32) = G_CONSTANT i32 16
; CHECK: [[Z2_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[Z2_OFFSET]](s32)
; CHECK: G_STORE [[Z2]](s64), [[Z2_ADDR]](p0){{.*}}store 8
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[Z3_OFFSET:%[0-9]+]](s32) = G_CONSTANT i32 24
; CHECK: [[Z3_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[Z3_OFFSET]](s32)
; CHECK: G_STORE [[Z3]](s64), [[Z3_ADDR]](p0){{.*}}store 8
; CHECK: BLX @fp_arrays_aapcs_vfp_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %d0, implicit %d1, implicit %d2, implicit %s6, implicit %s7, implicit %s8
; CHECK: ADJCALLSTACKUP 32, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcs_vfpcc void @fp_arrays_aapcs_vfp_target([3 x double] %x, [3 x float] %y, [4 x double] %z)
ret void
}
declare arm_aapcscc void @tough_arrays_target([6 x [4 x i32]] %arr)
define arm_aapcscc void @test_tough_arrays([6 x [4 x i32]] %arr) {
; CHECK-LABEL: name: test_tough_arrays
; CHECK: fixedStack:
; The parameters live in separate stack locations, one for each element that
; doesn't fit in the registers.
; CHECK-DAG: id: [[FIRST_STACK_ID:[0-9]+]], offset: 0, size: 4
; CHECK-DAG: id: [[LAST_STACK_ID:[-0]+]], offset: 76, size: 4
; CHECK: liveins: %r0, %r1, %r2, %r3
; CHECK-DAG: [[R0:%[0-9]+]](s32) = COPY %r0
; CHECK-DAG: [[R1:%[0-9]+]](s32) = COPY %r1
; CHECK-DAG: [[R2:%[0-9]+]](s32) = COPY %r2
; CHECK-DAG: [[R3:%[0-9]+]](s32) = COPY %r3
; CHECK: [[FIRST_STACK_ELEMENT_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[FIRST_STACK_ID]]
; CHECK: [[FIRST_STACK_ELEMENT:%[0-9]+]](s32) = G_LOAD [[FIRST_STACK_ELEMENT_FI]]{{.*}}load 4 from %fixed-stack.[[FIRST_STACK_ID]]
; CHECK: [[LAST_STACK_ELEMENT_FI:%[0-9]+]](p0) = G_FRAME_INDEX %fixed-stack.[[LAST_STACK_ID]]
; CHECK: [[LAST_STACK_ELEMENT:%[0-9]+]](s32) = G_LOAD [[LAST_STACK_ELEMENT_FI]]{{.*}}load 4 from %fixed-stack.[[LAST_STACK_ID]]
; CHECK: [[ARG_ARR0:%[0-9]+]](s768) = IMPLICIT_DEF
; CHECK: [[ARG_ARR1:%[0-9]+]](s768) = G_INSERT [[ARG_ARR0]], [[R0]](s32), 0
; CHECK: [[ARG_ARR2:%[0-9]+]](s768) = G_INSERT [[ARG_ARR1]], [[R1]](s32), 32
; CHECK: [[ARG_ARR3:%[0-9]+]](s768) = G_INSERT [[ARG_ARR2]], [[R2]](s32), 64
; CHECK: [[ARG_ARR4:%[0-9]+]](s768) = G_INSERT [[ARG_ARR3]], [[R3]](s32), 96
; CHECK: [[ARG_ARR5:%[0-9]+]](s768) = G_INSERT [[ARG_ARR4]], [[FIRST_STACK_ELEMENT]](s32), 128
; CHECK: [[ARG_ARR6:%[0-9]+]](s768) = G_INSERT {{%[0-9]+}}, [[LAST_STACK_ELEMENT]](s32), 736
; CHECK: [[ARG_ARR:%[0-9]+]](s768) = COPY [[ARG_ARR6]]
; CHECK: ADJCALLSTACKDOWN 80, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: [[R0:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 0
; CHECK: [[R1:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 32
; CHECK: [[R2:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 64
; CHECK: [[R3:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 96
; CHECK: [[FIRST_STACK_ELEMENT:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 128
; CHECK: [[LAST_STACK_ELEMENT:%[0-9]+]](s32) = G_EXTRACT [[ARG_ARR]](s768), 736
; CHECK: %r0 = COPY [[R0]]
; CHECK: %r1 = COPY [[R1]]
; CHECK: %r2 = COPY [[R2]]
; CHECK: %r3 = COPY [[R3]]
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[OFF_FIRST_ELEMENT:%[0-9]+]](s32) = G_CONSTANT i32 0
; CHECK: [[FIRST_STACK_ARG_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[OFF_FIRST_ELEMENT]](s32)
; CHECK: G_STORE [[FIRST_STACK_ELEMENT]](s32), [[FIRST_STACK_ARG_ADDR]]{{.*}}store 4
; Match the second-to-last offset, so we can get the correct SP for the last element
; CHECK: G_CONSTANT i32 72
; CHECK: [[SP:%[0-9]+]](p0) = COPY %sp
; CHECK: [[OFF_LAST_ELEMENT:%[0-9]+]](s32) = G_CONSTANT i32 76
; CHECK: [[LAST_STACK_ARG_ADDR:%[0-9]+]](p0) = G_GEP [[SP]], [[OFF_LAST_ELEMENT]](s32)
; CHECK: G_STORE [[LAST_STACK_ELEMENT]](s32), [[LAST_STACK_ARG_ADDR]]{{.*}}store 4
; CHECK: BLX @tough_arrays_target, csr_aapcs, implicit-def %lr, implicit %sp, implicit %r0, implicit %r1, implicit %r2, implicit %r3
; CHECK: ADJCALLSTACKUP 80, 0, 14, _, implicit-def %sp, implicit %sp
; CHECK: BX_RET 14, _
entry:
notail call arm_aapcscc void @tough_arrays_target([6 x [4 x i32]] %arr)
ret void
}
define i32 @test_shufflevector_s32_v2s32(i32 %arg) {
; CHECK-LABEL: name: test_shufflevector_s32_v2s32
; CHECK: [[ARG:%[0-9]+]](s32) = COPY %r0

View File

@ -45,11 +45,13 @@ define half @test_half(half %a, half %b) {
ret half %res
}
; On ARM, clang lowers structs to arrays.
define void @test_arrays([2 x i32] %this.could.come.from.a.struct) {
; CHECK: remark: {{.*}} unable to lower arguments: void ([2 x i32])*
; CHECK-LABEL: warning: Instruction selection used fallback path for test_arrays
ret void
declare [16 x i32] @ret_demotion_target()
define [16 x i32] @test_ret_demotion() {
; CHECK: remark: {{.*}} unable to translate instruction: call{{.*}} @ret_demotion_target
; CHECK-LABEL: warning: Instruction selection used fallback path for test_ret_demotion
%res = call [16 x i32] @ret_demotion_target()
ret [16 x i32] %res
}
define void @test_structs({i32, i32} %struct) {