Adds analyzer support for idempotent and tautological binary operations such as "a*0" and "a+0". This is not very powerful, but does make the analyzer look a little smarter than it actually is.

llvm-svn: 106402
This commit is contained in:
Jordy Rose 2010-06-20 04:56:29 +00:00
parent 2dd9b02cc8
commit 895c899142
2 changed files with 169 additions and 9 deletions

View File

@ -34,6 +34,9 @@ public:
QualType resultTy); QualType resultTy);
virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode op, virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode op,
Loc lhs, NonLoc rhs, QualType resultTy); Loc lhs, NonLoc rhs, QualType resultTy);
SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
const llvm::APSInt &RHS, QualType resultTy);
}; };
} // end anonymous namespace } // end anonymous namespace
@ -211,6 +214,81 @@ static SVal EvalEquality(ValueManager &ValMgr, Loc lhs, Loc rhs, bool isEqual,
return ValMgr.makeTruthVal(isEqual ? lhs == rhs : lhs != rhs, resultTy); return ValMgr.makeTruthVal(isEqual ? lhs == rhs : lhs != rhs, resultTy);
} }
SVal SimpleSValuator::MakeSymIntVal(const SymExpr *LHS,
BinaryOperator::Opcode op,
const llvm::APSInt &RHS,
QualType resultTy) {
bool isIdempotent = false;
// Check for a few special cases with known reductions first.
switch (op) {
default:
// We can't reduce this case; just treat it normally.
break;
case BinaryOperator::Mul:
// a*0 and a*1
if (RHS == 0)
return ValMgr.makeIntVal(0, resultTy);
else if (RHS == 1)
isIdempotent = true;
break;
case BinaryOperator::Div:
// a/0 and a/1
if (RHS == 0)
// This is also handled elsewhere.
return UndefinedVal();
else if (RHS == 1)
isIdempotent = true;
break;
case BinaryOperator::Rem:
// a%0 and a%1
if (RHS == 0)
// This is also handled elsewhere.
return UndefinedVal();
else if (RHS == 1)
return ValMgr.makeIntVal(0, resultTy);
break;
case BinaryOperator::Add:
case BinaryOperator::Sub:
case BinaryOperator::Shl:
case BinaryOperator::Shr:
case BinaryOperator::Xor:
// a+0, a-0, a<<0, a>>0, a^0
if (RHS == 0)
isIdempotent = true;
break;
case BinaryOperator::And:
// a&0 and a&(~0)
if (RHS == 0)
return ValMgr.makeIntVal(0, resultTy);
else if (RHS.isAllOnesValue())
isIdempotent = true;
break;
case BinaryOperator::Or:
// a|0 and a|(~0)
if (RHS == 0)
isIdempotent = true;
else if (RHS.isAllOnesValue()) {
BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
const llvm::APSInt &Result = BVF.Convert(resultTy, RHS);
return nonloc::ConcreteInt(Result);
}
break;
}
// Idempotent ops (like a*1) can still change the type of an expression.
// Wrap the LHS up in a NonLoc again and let EvalCastNL do the dirty work.
if (isIdempotent)
if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
return EvalCastNL(nonloc::SymbolVal(LHSSym), resultTy);
else
return EvalCastNL(nonloc::SymExprVal(LHS), resultTy);
// If we reach this point, the expression cannot be simplified.
// Make a SymExprVal for the entire thing.
return ValMgr.makeNonLoc(LHS, op, RHS, resultTy);
}
SVal SimpleSValuator::EvalBinOpNN(const GRState *state, SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
BinaryOperator::Opcode op, BinaryOperator::Opcode op,
NonLoc lhs, NonLoc rhs, NonLoc lhs, NonLoc rhs,
@ -228,6 +306,12 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
case BinaryOperator::GT: case BinaryOperator::GT:
case BinaryOperator::NE: case BinaryOperator::NE:
return ValMgr.makeTruthVal(false, resultTy); return ValMgr.makeTruthVal(false, resultTy);
case BinaryOperator::Xor:
case BinaryOperator::Sub:
return ValMgr.makeIntVal(0, resultTy);
case BinaryOperator::Or:
case BinaryOperator::And:
return EvalCastNL(lhs, resultTy);
} }
while (1) { while (1) {
@ -336,23 +420,25 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
newRHS = BVF.EvaluateAPSInt(BinaryOperator::Sub, newRHS = BVF.EvaluateAPSInt(BinaryOperator::Sub,
symIntExpr->getRHS(), symIntExpr->getRHS(),
rhsInt->getValue()); rhsInt->getValue());
return ValMgr.makeNonLoc(symIntExpr->getLHS(), lop, *newRHS, return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
resultTy);
} }
} }
// Otherwise, make a SymExprVal out of the expression. // Otherwise, make a SymExprVal out of the expression.
return ValMgr.makeNonLoc(symIntExpr, op, rhsInt->getValue(), resultTy); return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
} }
case nonloc::ConcreteIntKind: { case nonloc::ConcreteIntKind: {
const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
if (isa<nonloc::ConcreteInt>(rhs)) { if (isa<nonloc::ConcreteInt>(rhs)) {
const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
return lhsInt.evalBinOp(ValMgr, op, cast<nonloc::ConcreteInt>(rhs)); return lhsInt.evalBinOp(ValMgr, op, cast<nonloc::ConcreteInt>(rhs));
} } else {
else { const llvm::APSInt& lhsValue = lhsInt.getValue();
// Swap the left and right sides and flip the operator if doing so // Swap the left and right sides and flip the operator if doing so
// allows us to better reason about the expression (this is a form // allows us to better reason about the expression (this is a form
// of expression canonicalization). // of expression canonicalization).
// While we're at it, catch some special cases for non-commutative ops.
NonLoc tmp = rhs; NonLoc tmp = rhs;
rhs = lhs; rhs = lhs;
lhs = tmp; lhs = tmp;
@ -366,7 +452,20 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
case BinaryOperator::NE: case BinaryOperator::NE:
case BinaryOperator::Add: case BinaryOperator::Add:
case BinaryOperator::Mul: case BinaryOperator::Mul:
case BinaryOperator::And:
case BinaryOperator::Xor:
case BinaryOperator::Or:
continue; continue;
case BinaryOperator::Shr:
if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
// At this point lhs and rhs have been swapped.
return rhs;
// FALL-THROUGH
case BinaryOperator::Shl:
if (lhsValue == 0)
// At this point lhs and rhs have been swapped.
return rhs;
return UnknownVal();
default: default:
return UnknownVal(); return UnknownVal();
} }
@ -402,9 +501,9 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
} }
if (isa<nonloc::ConcreteInt>(rhs)) { if (isa<nonloc::ConcreteInt>(rhs)) {
return ValMgr.makeNonLoc(slhs->getSymbol(), op, return MakeSymIntVal(slhs->getSymbol(), op,
cast<nonloc::ConcreteInt>(rhs).getValue(), cast<nonloc::ConcreteInt>(rhs).getValue(),
resultTy); resultTy);
} }
return UnknownVal(); return UnknownVal();

View File

@ -0,0 +1,61 @@
// RUN: %clang_cc1 -analyze -analyzer-experimental-internal-checks -analyzer-check-objc-mem -analyzer-experimental-checks -verify %s
// Trigger a warning if the analyzer reaches this point in the control flow.
#define WARN ((void)*(char*)0)
// There should be no warnings unless otherwise indicated.
void testComparisons (int a) {
// Sema can already catch the simple comparison a==a,
// since that's usually a logic error (and not path-dependent).
int b = a;
if (!(b==a)) WARN;
if (!(b>=a)) WARN;
if (!(b<=a)) WARN;
if (b!=a) WARN;
if (b>a) WARN;
if (b<a) WARN;
}
void testSelfOperations (int a) {
if ((a|a) != a) WARN;
if ((a&a) != a) WARN;
if ((a^a) != 0) WARN;
if ((a-a) != 0) WARN;
}
void testIdempotent (int a) {
if ((a*1) != a) WARN;
if ((a/1) != a) WARN;
if ((a+0) != a) WARN;
if ((a-0) != a) WARN;
if ((a<<0) != a) WARN;
if ((a>>0) != a) WARN;
if ((a^0) != a) WARN;
if ((a&(~0)) != a) WARN;
if ((a|0) != a) WARN;
}
void testReductionToConstant (int a) {
if ((a*0) != 0) WARN;
if ((a&0) != 0) WARN;
if ((a|(~0)) != (~0)) WARN;
}
void testSymmetricIntSymOperations (int a) {
if ((2+a) != (a+2)) WARN;
if ((2*a) != (a*2)) WARN;
if ((2&a) != (a&2)) WARN;
if ((2^a) != (a^2)) WARN;
if ((2|a) != (a|2)) WARN;
}
void testAsymmetricIntSymOperations (int a) {
if (((~0) >> a) != (~0)) WARN;
if ((0 >> a) != 0) WARN;
if ((0 << a) != 0) WARN;
// Unsigned right shift shifts in zeroes.
if ((((unsigned)(~0)) >> ((unsigned) a)) != ((unsigned)(~0)))
WARN; // expected-warning{{}}
}