forked from OSchip/llvm-project
New C++ PBQP solver. Currently about as fast (read _slow_) as the old C based solver, but I'll be working to improve that. The PBQP allocator has been updated to use the new solver.
llvm-svn: 78354
This commit is contained in:
parent
15a5fad94b
commit
88fae6f9c9
File diff suppressed because it is too large
Load Diff
|
@ -1,284 +0,0 @@
|
|||
//===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Developed by: Bernhard Scholz
|
||||
// The University of Sydney
|
||||
// http://www.it.usyd.edu.au/~scholz
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// TODO:
|
||||
//
|
||||
// * Default to null costs on vector initialisation?
|
||||
// * C++-ify the rest of the solver.
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQPSOLVER_H
|
||||
#define LLVM_CODEGEN_PBQPSOLVER_H
|
||||
|
||||
#include <cassert>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
//! \brief Floating point type to use in PBQP solver.
|
||||
typedef double PBQPNum;
|
||||
|
||||
//! \brief PBQP Vector class.
|
||||
class PBQPVector {
|
||||
public:
|
||||
|
||||
//! \brief Construct a PBQP vector of the given size.
|
||||
explicit PBQPVector(unsigned length) :
|
||||
length(length), data(new PBQPNum[length]) {
|
||||
std::fill(data, data + length, 0);
|
||||
}
|
||||
|
||||
//! \brief Copy construct a PBQP vector.
|
||||
PBQPVector(const PBQPVector &v) :
|
||||
length(v.length), data(new PBQPNum[length]) {
|
||||
std::copy(v.data, v.data + length, data);
|
||||
}
|
||||
|
||||
~PBQPVector() { delete[] data; }
|
||||
|
||||
//! \brief Assignment operator.
|
||||
PBQPVector& operator=(const PBQPVector &v) {
|
||||
delete[] data;
|
||||
length = v.length;
|
||||
data = new PBQPNum[length];
|
||||
std::copy(v.data, v.data + length, data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Return the length of the vector
|
||||
unsigned getLength() const throw () {
|
||||
return length;
|
||||
}
|
||||
|
||||
//! \brief Element access.
|
||||
PBQPNum& operator[](unsigned index) {
|
||||
assert(index < length && "PBQPVector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
|
||||
//! \brief Const element access.
|
||||
const PBQPNum& operator[](unsigned index) const {
|
||||
assert(index < length && "PBQPVector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
|
||||
//! \brief Add another vector to this one.
|
||||
PBQPVector& operator+=(const PBQPVector &v) {
|
||||
assert(length == v.length && "PBQPVector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Subtract another vector from this one.
|
||||
PBQPVector& operator-=(const PBQPVector &v) {
|
||||
assert(length == v.length && "PBQPVector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Returns the index of the minimum value in this vector
|
||||
unsigned minIndex() const {
|
||||
return std::min_element(data, data + length) - data;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned length;
|
||||
PBQPNum *data;
|
||||
};
|
||||
|
||||
|
||||
//! \brief PBQP Matrix class
|
||||
class PBQPMatrix {
|
||||
public:
|
||||
|
||||
//! \brief Construct a PBQP Matrix with the given dimensions.
|
||||
PBQPMatrix(unsigned rows, unsigned cols) :
|
||||
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
||||
std::fill(data, data + (rows * cols), 0);
|
||||
}
|
||||
|
||||
//! \brief Copy construct a PBQP matrix.
|
||||
PBQPMatrix(const PBQPMatrix &m) :
|
||||
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
}
|
||||
|
||||
~PBQPMatrix() { delete[] data; }
|
||||
|
||||
//! \brief Assignment operator.
|
||||
PBQPMatrix& operator=(const PBQPMatrix &m) {
|
||||
delete[] data;
|
||||
rows = m.rows; cols = m.cols;
|
||||
data = new PBQPNum[rows * cols];
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Return the number of rows in this matrix.
|
||||
unsigned getRows() const throw () { return rows; }
|
||||
|
||||
//! \brief Return the number of cols in this matrix.
|
||||
unsigned getCols() const throw () { return cols; }
|
||||
|
||||
//! \brief Matrix element access.
|
||||
PBQPNum* operator[](unsigned r) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
|
||||
//! \brief Matrix element access.
|
||||
const PBQPNum* operator[](unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
|
||||
//! \brief Returns the given row as a vector.
|
||||
PBQPVector getRowAsVector(unsigned r) const {
|
||||
PBQPVector v(cols);
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
v[c] = (*this)[r][c];
|
||||
return v;
|
||||
}
|
||||
|
||||
//! \brief Reset the matrix to the given value.
|
||||
PBQPMatrix& reset(PBQPNum val = 0) {
|
||||
std::fill(data, data + (rows * cols), val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Set a single row of this matrix to the given value.
|
||||
PBQPMatrix& setRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Set a single column of this matrix to the given value.
|
||||
PBQPMatrix& setCol(unsigned c, PBQPNum val) {
|
||||
assert(c < cols && "Column out of bounds.");
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] = val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Matrix transpose.
|
||||
PBQPMatrix transpose() const {
|
||||
PBQPMatrix m(cols, rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
m[c][r] = (*this)[r][c];
|
||||
return m;
|
||||
}
|
||||
|
||||
//! \brief Returns the diagonal of the matrix as a vector.
|
||||
//!
|
||||
//! Matrix must be square.
|
||||
PBQPVector diagonalize() const {
|
||||
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
|
||||
|
||||
PBQPVector v(rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
v[r] = (*this)[r][r];
|
||||
return v;
|
||||
}
|
||||
|
||||
//! \brief Add the given matrix to this one.
|
||||
PBQPMatrix& operator+=(const PBQPMatrix &m) {
|
||||
assert(rows == m.rows && cols == m.cols &&
|
||||
"Matrix dimensions mismatch.");
|
||||
std::transform(data, data + (rows * cols), m.data, data,
|
||||
std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Returns the minimum of the given row
|
||||
PBQPNum getRowMin(unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
|
||||
}
|
||||
|
||||
//! \brief Returns the minimum of the given column
|
||||
PBQPNum getColMin(unsigned c) const {
|
||||
PBQPNum minElem = (*this)[0][c];
|
||||
for (unsigned r = 1; r < rows; ++r)
|
||||
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
|
||||
return minElem;
|
||||
}
|
||||
|
||||
//! \brief Subtracts the given scalar from the elements of the given row.
|
||||
PBQPMatrix& subFromRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
std::transform(data + (r * cols), data + ((r + 1) * cols),
|
||||
data + (r * cols),
|
||||
std::bind2nd(std::minus<PBQPNum>(), val));
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Subtracts the given scalar from the elements of the given column.
|
||||
PBQPMatrix& subFromCol(unsigned c, PBQPNum val) {
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] -= val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! \brief Returns true if this is a zero matrix.
|
||||
bool isZero() const {
|
||||
return find_if(data, data + (rows * cols),
|
||||
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
|
||||
data + (rows * cols);
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned rows, cols;
|
||||
PBQPNum *data;
|
||||
};
|
||||
|
||||
#define EPS (1E-8)
|
||||
|
||||
#ifndef PBQP_TYPE
|
||||
#define PBQP_TYPE
|
||||
struct pbqp;
|
||||
typedef struct pbqp pbqp;
|
||||
#endif
|
||||
|
||||
/*****************
|
||||
* PBQP routines *
|
||||
*****************/
|
||||
|
||||
/* allocate pbqp problem */
|
||||
pbqp *alloc_pbqp(int num);
|
||||
|
||||
/* add node costs */
|
||||
void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs);
|
||||
|
||||
/* add edge mat */
|
||||
void add_pbqp_edgecosts(pbqp *this_,int u,int v,PBQPMatrix *costs);
|
||||
|
||||
/* solve PBQP problem */
|
||||
void solve_pbqp(pbqp *this_);
|
||||
|
||||
/* get solution of a node */
|
||||
int get_pbqp_solution(pbqp *this_,int u);
|
||||
|
||||
/* alloc PBQP */
|
||||
pbqp *alloc_pbqp(int num);
|
||||
|
||||
/* free PBQP */
|
||||
void free_pbqp(pbqp *this_);
|
||||
|
||||
/* is optimal */
|
||||
bool is_pbqp_optimal(pbqp *this_);
|
||||
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,170 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
|
||||
#define LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
|
||||
|
||||
#include "GraphBase.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
|
||||
template <typename NodeData, typename EdgeData> class AnnotatedEdge;
|
||||
|
||||
template <typename NodeData, typename EdgeData>
|
||||
class AnnotatedNode : public NodeBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> > {
|
||||
private:
|
||||
|
||||
NodeData nodeData;
|
||||
|
||||
public:
|
||||
|
||||
AnnotatedNode(const Vector &costs, const NodeData &nodeData) :
|
||||
NodeBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> >(costs),
|
||||
nodeData(nodeData) {}
|
||||
|
||||
NodeData& getNodeData() { return nodeData; }
|
||||
const NodeData& getNodeData() const { return nodeData; }
|
||||
|
||||
};
|
||||
|
||||
template <typename NodeData, typename EdgeData>
|
||||
class AnnotatedEdge : public EdgeBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> > {
|
||||
private:
|
||||
|
||||
typedef typename GraphBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> >::NodeIterator
|
||||
NodeIterator;
|
||||
|
||||
EdgeData edgeData;
|
||||
|
||||
public:
|
||||
|
||||
|
||||
AnnotatedEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
|
||||
const Matrix &costs, const EdgeData &edgeData) :
|
||||
EdgeBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> >(node1Itr, node2Itr, costs),
|
||||
edgeData(edgeData) {}
|
||||
|
||||
EdgeData& getEdgeData() { return edgeData; }
|
||||
const EdgeData& getEdgeData() const { return edgeData; }
|
||||
|
||||
};
|
||||
|
||||
template <typename NodeData, typename EdgeData>
|
||||
class AnnotatedGraph : public GraphBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> > {
|
||||
private:
|
||||
|
||||
typedef GraphBase<AnnotatedNode<NodeData, EdgeData>,
|
||||
AnnotatedEdge<NodeData, EdgeData> > PGraph;
|
||||
|
||||
typedef AnnotatedNode<NodeData, EdgeData> NodeEntry;
|
||||
typedef AnnotatedEdge<NodeData, EdgeData> EdgeEntry;
|
||||
|
||||
|
||||
void copyFrom(const AnnotatedGraph &other) {
|
||||
if (!other.areNodeIDsValid()) {
|
||||
other.assignNodeIDs();
|
||||
}
|
||||
std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
|
||||
|
||||
for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
|
||||
}
|
||||
|
||||
for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
|
||||
unsigned node1ID = other.getNodeID(other.getEdgeNode1(eItr)),
|
||||
node2ID = other.getNodeID(other.getEdgeNode2(eItr));
|
||||
|
||||
addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
|
||||
other.getEdgeCosts(eItr), other.getEdgeData(eItr));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
typedef typename PGraph::NodeIterator NodeIterator;
|
||||
typedef typename PGraph::ConstNodeIterator ConstNodeIterator;
|
||||
typedef typename PGraph::EdgeIterator EdgeIterator;
|
||||
typedef typename PGraph::ConstEdgeIterator ConstEdgeIterator;
|
||||
|
||||
AnnotatedGraph() {}
|
||||
|
||||
AnnotatedGraph(const AnnotatedGraph &other) {
|
||||
copyFrom(other);
|
||||
}
|
||||
|
||||
AnnotatedGraph& operator=(const AnnotatedGraph &other) {
|
||||
PGraph::clear();
|
||||
copyFrom(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
NodeIterator addNode(const Vector &costs, const NodeData &data) {
|
||||
return PGraph::addConstructedNode(NodeEntry(costs, data));
|
||||
}
|
||||
|
||||
EdgeIterator addEdge(const NodeIterator &node1Itr,
|
||||
const NodeIterator &node2Itr,
|
||||
const Matrix &costs, const EdgeData &data) {
|
||||
return PGraph::addConstructedEdge(EdgeEntry(node1Itr, node2Itr,
|
||||
costs, data));
|
||||
}
|
||||
|
||||
NodeData& getNodeData(const NodeIterator &nodeItr) {
|
||||
return getNodeEntry(nodeItr).getNodeData();
|
||||
}
|
||||
|
||||
const NodeData& getNodeData(const NodeIterator &nodeItr) const {
|
||||
return getNodeEntry(nodeItr).getNodeData();
|
||||
}
|
||||
|
||||
EdgeData& getEdgeData(const EdgeIterator &edgeItr) {
|
||||
return getEdgeEntry(edgeItr).getEdgeData();
|
||||
}
|
||||
|
||||
const EdgeEntry& getEdgeData(const EdgeIterator &edgeItr) const {
|
||||
return getEdgeEntry(edgeItr).getEdgeData();
|
||||
}
|
||||
|
||||
SimpleGraph toSimpleGraph() const {
|
||||
SimpleGraph g;
|
||||
|
||||
if (!PGraph::areNodeIDsValid()) {
|
||||
PGraph::assignNodeIDs();
|
||||
}
|
||||
std::vector<SimpleGraph::NodeIterator> newNodeItrs(PGraph::getNumNodes());
|
||||
|
||||
for (ConstNodeIterator nItr = PGraph::nodesBegin(),
|
||||
nEnd = PGraph::nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
|
||||
newNodeItrs[getNodeID(nItr)] = g.addNode(getNodeCosts(nItr));
|
||||
}
|
||||
|
||||
for (ConstEdgeIterator
|
||||
eItr = PGraph::edgesBegin(), eEnd = PGraph::edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
|
||||
unsigned node1ID = getNodeID(getEdgeNode1(eItr)),
|
||||
node2ID = getNodeID(getEdgeNode2(eItr));
|
||||
|
||||
g.addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
|
||||
getEdgeCosts(eItr));
|
||||
}
|
||||
|
||||
return g;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
|
|
@ -0,0 +1,93 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
|
||||
#define LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
|
||||
|
||||
#include "Solver.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
class ExhaustiveSolverImpl {
|
||||
private:
|
||||
|
||||
const SimpleGraph &g;
|
||||
|
||||
PBQPNum getSolutionCost(const Solution &solution) const {
|
||||
PBQPNum cost = 0.0;
|
||||
|
||||
for (SimpleGraph::ConstNodeIterator
|
||||
nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
unsigned nodeId = g.getNodeID(nodeItr);
|
||||
|
||||
cost += g.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
|
||||
}
|
||||
|
||||
for (SimpleGraph::ConstEdgeIterator
|
||||
edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
SimpleGraph::ConstNodeIterator n1 = g.getEdgeNode1Itr(edgeItr),
|
||||
n2 = g.getEdgeNode2Itr(edgeItr);
|
||||
unsigned sol1 = solution.getSelection(g.getNodeID(n1)),
|
||||
sol2 = solution.getSelection(g.getNodeID(n2));
|
||||
|
||||
cost += g.getEdgeCosts(edgeItr)[sol1][sol2];
|
||||
}
|
||||
|
||||
return cost;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
ExhaustiveSolverImpl(const SimpleGraph &g) : g(g) {}
|
||||
|
||||
Solution solve() const {
|
||||
Solution current(g.getNumNodes(), true), optimal(current);
|
||||
|
||||
PBQPNum bestCost = std::numeric_limits<PBQPNum>::infinity();
|
||||
bool finished = false;
|
||||
|
||||
while (!finished) {
|
||||
PBQPNum currentCost = getSolutionCost(current);
|
||||
|
||||
if (currentCost < bestCost) {
|
||||
optimal = current;
|
||||
bestCost = currentCost;
|
||||
}
|
||||
|
||||
// assume we're done.
|
||||
finished = true;
|
||||
|
||||
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
|
||||
if (current.getSelection(i) ==
|
||||
(g.getNodeCosts(g.getNodeItr(i)).getLength() - 1)) {
|
||||
current.setSelection(i, 0);
|
||||
}
|
||||
else {
|
||||
current.setSelection(i, current.getSelection(i) + 1);
|
||||
finished = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
optimal.setSolutionCost(bestCost);
|
||||
|
||||
return optimal;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class ExhaustiveSolver : public Solver {
|
||||
public:
|
||||
~ExhaustiveSolver() {}
|
||||
Solution solve(const SimpleGraph &g) const {
|
||||
ExhaustiveSolverImpl solver(g);
|
||||
return solver.solve();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODGEN_PBQP_EXHAUSTIVESOLVER_HPP
|
|
@ -0,0 +1,570 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_GRAPHBASE_H
|
||||
#define LLVM_CODEGEN_PBQP_GRAPHBASE_H
|
||||
|
||||
#include "PBQPMath.h"
|
||||
|
||||
#include <list>
|
||||
#include <vector>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
// UGLY, but I'm not sure there's a good way around this: We need to be able to
|
||||
// look up a Node's "adjacent edge list" structure type before the Node type is
|
||||
// fully constructed. We can enable this by pushing the choice of data type
|
||||
// out into this traits class.
|
||||
template <typename Graph>
|
||||
class NodeBaseTraits {
|
||||
public:
|
||||
typedef std::list<typename Graph::EdgeIterator> AdjEdgeList;
|
||||
typedef typename AdjEdgeList::iterator AdjEdgeIterator;
|
||||
typedef typename AdjEdgeList::const_iterator ConstAdjEdgeIterator;
|
||||
};
|
||||
|
||||
/// \brief Base for concrete graph classes. Provides a basic set of graph
|
||||
/// operations which are useful for PBQP solvers.
|
||||
template <typename NodeEntry, typename EdgeEntry>
|
||||
class GraphBase {
|
||||
private:
|
||||
|
||||
typedef GraphBase<NodeEntry, EdgeEntry> ThisGraphT;
|
||||
|
||||
typedef std::list<NodeEntry> NodeList;
|
||||
typedef std::list<EdgeEntry> EdgeList;
|
||||
|
||||
NodeList nodeList;
|
||||
unsigned nodeListSize;
|
||||
|
||||
EdgeList edgeList;
|
||||
unsigned edgeListSize;
|
||||
|
||||
GraphBase(const ThisGraphT &other) { abort(); }
|
||||
void operator=(const ThisGraphT &other) { abort(); }
|
||||
|
||||
public:
|
||||
|
||||
/// \brief Iterates over the nodes of a graph.
|
||||
typedef typename NodeList::iterator NodeIterator;
|
||||
/// \brief Iterates over the nodes of a const graph.
|
||||
typedef typename NodeList::const_iterator ConstNodeIterator;
|
||||
/// \brief Iterates over the edges of a graph.
|
||||
typedef typename EdgeList::iterator EdgeIterator;
|
||||
/// \brief Iterates over the edges of a const graph.
|
||||
typedef typename EdgeList::const_iterator ConstEdgeIterator;
|
||||
|
||||
/// \brief Iterates over the edges attached to a node.
|
||||
typedef typename NodeBaseTraits<ThisGraphT>::AdjEdgeIterator
|
||||
AdjEdgeIterator;
|
||||
|
||||
/// \brief Iterates over the edges attached to a node in a const graph.
|
||||
typedef typename NodeBaseTraits<ThisGraphT>::ConstAdjEdgeIterator
|
||||
ConstAdjEdgeIterator;
|
||||
|
||||
private:
|
||||
|
||||
typedef std::vector<NodeIterator> IDToNodeMap;
|
||||
|
||||
IDToNodeMap idToNodeMap;
|
||||
bool nodeIDsValid;
|
||||
|
||||
void invalidateNodeIDs() {
|
||||
if (nodeIDsValid) {
|
||||
idToNodeMap.clear();
|
||||
nodeIDsValid = false;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ItrT>
|
||||
bool iteratorInRange(ItrT itr, const ItrT &begin, const ItrT &end) {
|
||||
for (ItrT t = begin; t != end; ++t) {
|
||||
if (itr == t)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
GraphBase() : nodeListSize(0), edgeListSize(0), nodeIDsValid(false) {}
|
||||
|
||||
NodeEntry& getNodeEntry(const NodeIterator &nodeItr) { return *nodeItr; }
|
||||
const NodeEntry& getNodeEntry(const ConstNodeIterator &nodeItr) const {
|
||||
return *nodeItr;
|
||||
}
|
||||
|
||||
EdgeEntry& getEdgeEntry(const EdgeIterator &edgeItr) { return *edgeItr; }
|
||||
const EdgeEntry& getEdgeEntry(const ConstEdgeIterator &edgeItr) const {
|
||||
return *edgeItr;
|
||||
}
|
||||
|
||||
NodeIterator addConstructedNode(const NodeEntry &nodeEntry) {
|
||||
++nodeListSize;
|
||||
|
||||
invalidateNodeIDs();
|
||||
|
||||
NodeIterator newNodeItr = nodeList.insert(nodeList.end(), nodeEntry);
|
||||
|
||||
return newNodeItr;
|
||||
}
|
||||
|
||||
EdgeIterator addConstructedEdge(const EdgeEntry &edgeEntry) {
|
||||
|
||||
assert((findEdge(edgeEntry.getNode1Itr(), edgeEntry.getNode2Itr())
|
||||
== edgeList.end()) && "Attempt to add duplicate edge.");
|
||||
|
||||
++edgeListSize;
|
||||
|
||||
// Add the edge to the graph.
|
||||
EdgeIterator edgeItr = edgeList.insert(edgeList.end(), edgeEntry);
|
||||
|
||||
// Get a reference to the version in the graph.
|
||||
EdgeEntry &newEdgeEntry = getEdgeEntry(edgeItr);
|
||||
|
||||
// Node entries:
|
||||
NodeEntry &node1Entry = getNodeEntry(newEdgeEntry.getNode1Itr()),
|
||||
&node2Entry = getNodeEntry(newEdgeEntry.getNode2Itr());
|
||||
|
||||
unsigned n1Len = node1Entry.getCosts().getLength(),
|
||||
n2Len = node2Entry.getCosts().getLength(),
|
||||
mRows = newEdgeEntry.getCosts().getRows(),
|
||||
mCols = newEdgeEntry.getCosts().getCols();
|
||||
|
||||
// Sanity check on matrix dimensions.
|
||||
assert((n1Len == mRows) && (n2Len == mCols) &&
|
||||
"Matrix dimensions do not match cost vector dimensions.");
|
||||
|
||||
// Create links between nodes and edges.
|
||||
newEdgeEntry.setNode1ThisEdgeItr(
|
||||
node1Entry.addAdjEdge(edgeItr));
|
||||
newEdgeEntry.setNode2ThisEdgeItr(
|
||||
node2Entry.addAdjEdge(edgeItr));
|
||||
|
||||
return edgeItr;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// \brief Returns the number of nodes in this graph.
|
||||
unsigned getNumNodes() const { return nodeListSize; }
|
||||
|
||||
/// \brief Returns the number of edges in this graph.
|
||||
unsigned getNumEdges() const { return edgeListSize; }
|
||||
|
||||
/// \brief Return the cost vector for the given node.
|
||||
Vector& getNodeCosts(const NodeIterator &nodeItr) {
|
||||
return getNodeEntry(nodeItr).getCosts();
|
||||
}
|
||||
|
||||
/// \brief Return the cost vector for the give node.
|
||||
const Vector& getNodeCosts(const ConstNodeIterator &nodeItr) const {
|
||||
return getNodeEntry(nodeItr).getCosts();
|
||||
}
|
||||
|
||||
/// \brief Return the degree of the given node.
|
||||
unsigned getNodeDegree(const NodeIterator &nodeItr) const {
|
||||
return getNodeEntry(nodeItr).getDegree();
|
||||
}
|
||||
|
||||
/// \brief Assigns sequential IDs to the nodes, starting at 0, which
|
||||
/// remain valid until the next addition or removal of a node.
|
||||
void assignNodeIDs() {
|
||||
unsigned curID = 0;
|
||||
idToNodeMap.resize(getNumNodes());
|
||||
for (NodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr, ++curID) {
|
||||
getNodeEntry(nodeItr).setID(curID);
|
||||
idToNodeMap[curID] = nodeItr;
|
||||
}
|
||||
nodeIDsValid = true;
|
||||
}
|
||||
|
||||
/// \brief Assigns sequential IDs to the nodes using the ordering of the
|
||||
/// given vector.
|
||||
void assignNodeIDs(const std::vector<NodeIterator> &nodeOrdering) {
|
||||
assert((getNumNodes() == nodeOrdering.size()) &&
|
||||
"Wrong number of nodes in node ordering.");
|
||||
idToNodeMap = nodeOrdering;
|
||||
for (unsigned nodeID = 0; nodeID < idToNodeMap.size(); ++nodeID) {
|
||||
getNodeEntry(idToNodeMap[nodeID]).setID(nodeID);
|
||||
}
|
||||
nodeIDsValid = true;
|
||||
}
|
||||
|
||||
/// \brief Returns true if valid node IDs are assigned, false otherwise.
|
||||
bool areNodeIDsValid() const { return nodeIDsValid; }
|
||||
|
||||
/// \brief Return the numeric ID of the given node.
|
||||
///
|
||||
/// Calls to this method will result in an assertion failure if there have
|
||||
/// been any node additions or removals since the last call to
|
||||
/// assignNodeIDs().
|
||||
unsigned getNodeID(const ConstNodeIterator &nodeItr) const {
|
||||
assert(nodeIDsValid && "Attempt to retrieve invalid ID.");
|
||||
return getNodeEntry(nodeItr).getID();
|
||||
}
|
||||
|
||||
/// \brief Returns the iterator associated with the given node ID.
|
||||
NodeIterator getNodeItr(unsigned nodeID) {
|
||||
assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
|
||||
return idToNodeMap[nodeID];
|
||||
}
|
||||
|
||||
/// \brief Returns the iterator associated with the given node ID.
|
||||
ConstNodeIterator getNodeItr(unsigned nodeID) const {
|
||||
assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
|
||||
return idToNodeMap[nodeID];
|
||||
}
|
||||
|
||||
/// \brief Removes the given node (and all attached edges) from the graph.
|
||||
void removeNode(const NodeIterator &nodeItr) {
|
||||
assert(iteratorInRange(nodeItr, nodeList.begin(), nodeList.end()) &&
|
||||
"Iterator does not belong to this graph!");
|
||||
|
||||
invalidateNodeIDs();
|
||||
|
||||
NodeEntry &nodeEntry = getNodeEntry(nodeItr);
|
||||
|
||||
// We need to copy this out because it will be destroyed as the edges are
|
||||
// removed.
|
||||
typedef std::vector<EdgeIterator> AdjEdgeList;
|
||||
typedef typename AdjEdgeList::iterator AdjEdgeListItr;
|
||||
|
||||
AdjEdgeList adjEdges;
|
||||
adjEdges.reserve(nodeEntry.getDegree());
|
||||
std::copy(nodeEntry.adjEdgesBegin(), nodeEntry.adjEdgesEnd(),
|
||||
std::back_inserter(adjEdges));
|
||||
|
||||
// Iterate over the copied out edges and remove them from the graph.
|
||||
for (AdjEdgeListItr itr = adjEdges.begin(), end = adjEdges.end();
|
||||
itr != end; ++itr) {
|
||||
removeEdge(*itr);
|
||||
}
|
||||
|
||||
// Erase the node from the nodelist.
|
||||
nodeList.erase(nodeItr);
|
||||
--nodeListSize;
|
||||
}
|
||||
|
||||
NodeIterator nodesBegin() { return nodeList.begin(); }
|
||||
ConstNodeIterator nodesBegin() const { return nodeList.begin(); }
|
||||
NodeIterator nodesEnd() { return nodeList.end(); }
|
||||
ConstNodeIterator nodesEnd() const { return nodeList.end(); }
|
||||
|
||||
AdjEdgeIterator adjEdgesBegin(const NodeIterator &nodeItr) {
|
||||
return getNodeEntry(nodeItr).adjEdgesBegin();
|
||||
}
|
||||
|
||||
ConstAdjEdgeIterator adjEdgesBegin(const ConstNodeIterator &nodeItr) const {
|
||||
return getNodeEntry(nodeItr).adjEdgesBegin();
|
||||
}
|
||||
|
||||
AdjEdgeIterator adjEdgesEnd(const NodeIterator &nodeItr) {
|
||||
return getNodeEntry(nodeItr).adjEdgesEnd();
|
||||
}
|
||||
|
||||
ConstAdjEdgeIterator adjEdgesEnd(const ConstNodeIterator &nodeItr) const {
|
||||
getNodeEntry(nodeItr).adjEdgesEnd();
|
||||
}
|
||||
|
||||
EdgeIterator findEdge(const NodeIterator &node1Itr,
|
||||
const NodeIterator &node2Itr) {
|
||||
|
||||
for (AdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
|
||||
adjEdgeEnd = adjEdgesEnd(node1Itr);
|
||||
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
|
||||
if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
|
||||
(getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
|
||||
return *adjEdgeItr;
|
||||
}
|
||||
}
|
||||
|
||||
return edgeList.end();
|
||||
}
|
||||
|
||||
ConstEdgeIterator findEdge(const ConstNodeIterator &node1Itr,
|
||||
const ConstNodeIterator &node2Itr) const {
|
||||
|
||||
for (ConstAdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
|
||||
adjEdgeEnd = adjEdgesEnd(node1Itr);
|
||||
adjEdgeItr != adjEdgesEnd; ++adjEdgeItr) {
|
||||
if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
|
||||
(getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
|
||||
return *adjEdgeItr;
|
||||
}
|
||||
}
|
||||
|
||||
return edgeList.end();
|
||||
}
|
||||
|
||||
Matrix& getEdgeCosts(const EdgeIterator &edgeItr) {
|
||||
return getEdgeEntry(edgeItr).getCosts();
|
||||
}
|
||||
|
||||
const Matrix& getEdgeCosts(const ConstEdgeIterator &edgeItr) const {
|
||||
return getEdgeEntry(edgeItr).getCosts();
|
||||
}
|
||||
|
||||
NodeIterator getEdgeNode1Itr(const EdgeIterator &edgeItr) {
|
||||
return getEdgeEntry(edgeItr).getNode1Itr();
|
||||
}
|
||||
|
||||
ConstNodeIterator getEdgeNode1Itr(const ConstEdgeIterator &edgeItr) const {
|
||||
return getEdgeEntry(edgeItr).getNode1Itr();
|
||||
}
|
||||
|
||||
NodeIterator getEdgeNode2Itr(const EdgeIterator &edgeItr) {
|
||||
return getEdgeEntry(edgeItr).getNode2Itr();
|
||||
}
|
||||
|
||||
ConstNodeIterator getEdgeNode2Itr(const ConstEdgeIterator &edgeItr) const {
|
||||
return getEdgeEntry(edgeItr).getNode2Itr();
|
||||
}
|
||||
|
||||
NodeIterator getEdgeOtherNode(const EdgeIterator &edgeItr,
|
||||
const NodeIterator &nodeItr) {
|
||||
|
||||
EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
|
||||
if (nodeItr == edgeEntry.getNode1Itr()) {
|
||||
return edgeEntry.getNode2Itr();
|
||||
}
|
||||
//else
|
||||
return edgeEntry.getNode1Itr();
|
||||
}
|
||||
|
||||
ConstNodeIterator getEdgeOtherNode(const ConstEdgeIterator &edgeItr,
|
||||
const ConstNodeIterator &nodeItr) const {
|
||||
|
||||
const EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
|
||||
if (nodeItr == edgeEntry.getNode1Itr()) {
|
||||
return edgeEntry.getNode2Itr();
|
||||
}
|
||||
//else
|
||||
return edgeEntry.getNode1Itr();
|
||||
}
|
||||
|
||||
void removeEdge(const EdgeIterator &edgeItr) {
|
||||
assert(iteratorInRange(edgeItr, edgeList.begin(), edgeList.end()) &&
|
||||
"Iterator does not belong to this graph!");
|
||||
|
||||
--edgeListSize;
|
||||
|
||||
// Get the edge entry.
|
||||
EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
|
||||
|
||||
// Get the nodes entry.
|
||||
NodeEntry &node1Entry(getNodeEntry(edgeEntry.getNode1Itr())),
|
||||
&node2Entry(getNodeEntry(edgeEntry.getNode2Itr()));
|
||||
|
||||
// Disconnect the edge from the nodes.
|
||||
node1Entry.removeAdjEdge(edgeEntry.getNode1ThisEdgeItr());
|
||||
node2Entry.removeAdjEdge(edgeEntry.getNode2ThisEdgeItr());
|
||||
|
||||
// Remove the edge from the graph.
|
||||
edgeList.erase(edgeItr);
|
||||
}
|
||||
|
||||
EdgeIterator edgesBegin() { return edgeList.begin(); }
|
||||
ConstEdgeIterator edgesBegin() const { return edgeList.begin(); }
|
||||
EdgeIterator edgesEnd() { return edgeList.end(); }
|
||||
ConstEdgeIterator edgesEnd() const { return edgeList.end(); }
|
||||
|
||||
void clear() {
|
||||
nodeList.clear();
|
||||
nodeListSize = 0;
|
||||
edgeList.clear();
|
||||
edgeListSize = 0;
|
||||
idToNodeMap.clear();
|
||||
}
|
||||
|
||||
template <typename OStream>
|
||||
void printDot(OStream &os) const {
|
||||
|
||||
assert(areNodeIDsValid() &&
|
||||
"Cannot print a .dot of a graph unless IDs have been assigned.");
|
||||
|
||||
os << "graph {\n";
|
||||
|
||||
for (ConstNodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
os << " node" << getNodeID(nodeItr) << " [ label=\""
|
||||
<< getNodeID(nodeItr) << ": " << getNodeCosts(nodeItr) << "\" ]\n";
|
||||
}
|
||||
|
||||
os << " edge [ len=" << getNumNodes() << " ]\n";
|
||||
|
||||
for (ConstEdgeIterator edgeItr = edgesBegin(), edgeEnd = edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
os << " node" << getNodeID(getEdgeNode1Itr(edgeItr))
|
||||
<< " -- node" << getNodeID(getEdgeNode2Itr(edgeItr))
|
||||
<< " [ label=\"";
|
||||
|
||||
const Matrix &edgeCosts = getEdgeCosts(edgeItr);
|
||||
|
||||
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
|
||||
os << edgeCosts.getRowAsVector(i) << "\\n";
|
||||
}
|
||||
|
||||
os << "\" ]\n";
|
||||
}
|
||||
|
||||
os << "}\n";
|
||||
}
|
||||
|
||||
template <typename OStream>
|
||||
void printDot(OStream &os) {
|
||||
if (!areNodeIDsValid()) {
|
||||
assignNodeIDs();
|
||||
}
|
||||
|
||||
const_cast<const ThisGraphT*>(this)->printDot(os);
|
||||
}
|
||||
|
||||
template <typename OStream>
|
||||
void dumpTo(OStream &os) const {
|
||||
typedef ConstNodeIterator ConstNodeID;
|
||||
|
||||
assert(areNodeIDsValid() &&
|
||||
"Cannot dump a graph unless IDs have been assigned.");
|
||||
|
||||
for (ConstNodeIterator nItr = nodesBegin(), nEnd = nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
os << getNodeID(nItr) << "\n";
|
||||
}
|
||||
|
||||
unsigned edgeNumber = 1;
|
||||
for (ConstEdgeIterator eItr = edgesBegin(), eEnd = edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
|
||||
os << edgeNumber++ << ": { "
|
||||
<< getNodeID(getEdgeNode1Itr(eItr)) << ", "
|
||||
<< getNodeID(getEdgeNode2Itr(eItr)) << " }\n";
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename OStream>
|
||||
void dumpTo(OStream &os) {
|
||||
if (!areNodeIDsValid()) {
|
||||
assignNodeIDs();
|
||||
}
|
||||
|
||||
const_cast<const ThisGraphT*>(this)->dumpTo(os);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/// \brief Provides a base from which to derive nodes for GraphBase.
|
||||
template <typename NodeImpl, typename EdgeImpl>
|
||||
class NodeBase {
|
||||
private:
|
||||
|
||||
typedef GraphBase<NodeImpl, EdgeImpl> GraphBaseT;
|
||||
typedef NodeBaseTraits<GraphBaseT> ThisNodeBaseTraits;
|
||||
|
||||
public:
|
||||
typedef typename GraphBaseT::EdgeIterator EdgeIterator;
|
||||
|
||||
private:
|
||||
typedef typename ThisNodeBaseTraits::AdjEdgeList AdjEdgeList;
|
||||
|
||||
unsigned degree, id;
|
||||
Vector costs;
|
||||
AdjEdgeList adjEdges;
|
||||
|
||||
void operator=(const NodeBase& other) {
|
||||
assert(false && "Can't assign NodeEntrys.");
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
typedef typename ThisNodeBaseTraits::AdjEdgeIterator AdjEdgeIterator;
|
||||
typedef typename ThisNodeBaseTraits::ConstAdjEdgeIterator
|
||||
ConstAdjEdgeIterator;
|
||||
|
||||
NodeBase(const Vector &costs) : degree(0), costs(costs) {
|
||||
assert((costs.getLength() > 0) && "Can't have zero-length cost vector.");
|
||||
}
|
||||
|
||||
Vector& getCosts() { return costs; }
|
||||
const Vector& getCosts() const { return costs; }
|
||||
|
||||
unsigned getDegree() const { return degree; }
|
||||
|
||||
void setID(unsigned id) { this->id = id; }
|
||||
unsigned getID() const { return id; }
|
||||
|
||||
AdjEdgeIterator addAdjEdge(const EdgeIterator &edgeItr) {
|
||||
++degree;
|
||||
return adjEdges.insert(adjEdges.end(), edgeItr);
|
||||
}
|
||||
|
||||
void removeAdjEdge(const AdjEdgeIterator &adjEdgeItr) {
|
||||
--degree;
|
||||
adjEdges.erase(adjEdgeItr);
|
||||
}
|
||||
|
||||
AdjEdgeIterator adjEdgesBegin() { return adjEdges.begin(); }
|
||||
ConstAdjEdgeIterator adjEdgesBegin() const { return adjEdges.begin(); }
|
||||
AdjEdgeIterator adjEdgesEnd() { return adjEdges.end(); }
|
||||
ConstAdjEdgeIterator adjEdgesEnd() const { return adjEdges.end(); }
|
||||
|
||||
};
|
||||
|
||||
template <typename NodeImpl, typename EdgeImpl>
|
||||
class EdgeBase {
|
||||
public:
|
||||
typedef typename GraphBase<NodeImpl, EdgeImpl>::NodeIterator NodeIterator;
|
||||
typedef typename GraphBase<NodeImpl, EdgeImpl>::EdgeIterator EdgeIterator;
|
||||
|
||||
typedef typename NodeImpl::AdjEdgeIterator NodeAdjEdgeIterator;
|
||||
|
||||
private:
|
||||
|
||||
NodeIterator node1Itr, node2Itr;
|
||||
NodeAdjEdgeIterator node1ThisEdgeItr, node2ThisEdgeItr;
|
||||
Matrix costs;
|
||||
|
||||
void operator=(const EdgeBase &other) {
|
||||
assert(false && "Can't assign EdgeEntrys.");
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
EdgeBase(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
|
||||
const Matrix &costs) :
|
||||
node1Itr(node1Itr), node2Itr(node2Itr), costs(costs) {
|
||||
|
||||
assert((costs.getRows() > 0) && (costs.getCols() > 0) &&
|
||||
"Can't have zero-dimensioned cost matrices");
|
||||
}
|
||||
|
||||
Matrix& getCosts() { return costs; }
|
||||
const Matrix& getCosts() const { return costs; }
|
||||
|
||||
const NodeIterator& getNode1Itr() const { return node1Itr; }
|
||||
const NodeIterator& getNode2Itr() const { return node2Itr; }
|
||||
|
||||
void setNode1ThisEdgeItr(const NodeAdjEdgeIterator &node1ThisEdgeItr) {
|
||||
this->node1ThisEdgeItr = node1ThisEdgeItr;
|
||||
}
|
||||
|
||||
const NodeAdjEdgeIterator& getNode1ThisEdgeItr() const {
|
||||
return node1ThisEdgeItr;
|
||||
}
|
||||
|
||||
void setNode2ThisEdgeItr(const NodeAdjEdgeIterator &node2ThisEdgeItr) {
|
||||
this->node2ThisEdgeItr = node2ThisEdgeItr;
|
||||
}
|
||||
|
||||
const NodeAdjEdgeIterator& getNode2ThisEdgeItr() const {
|
||||
return node2ThisEdgeItr;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_GRAPHBASE_HPP
|
|
@ -0,0 +1,195 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
|
||||
#define LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
|
||||
|
||||
#include "PBQPMath.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
unsigned randRange(unsigned min, unsigned max) {
|
||||
return min + (rand() % (max - min + 1));
|
||||
}
|
||||
|
||||
class BasicNodeCostsGenerator {
|
||||
private:
|
||||
|
||||
unsigned maxDegree, minCost, maxCost;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
BasicNodeCostsGenerator(unsigned maxDegree, unsigned minCost,
|
||||
unsigned maxCost) :
|
||||
maxDegree(maxDegree), minCost(minCost), maxCost(maxCost) { }
|
||||
|
||||
Vector operator()() const {
|
||||
Vector v(randRange(1, maxDegree));
|
||||
for (unsigned i = 0; i < v.getLength(); ++i) {
|
||||
v[i] = randRange(minCost, maxCost);
|
||||
}
|
||||
return v;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
class FixedDegreeSpillCostGenerator {
|
||||
private:
|
||||
|
||||
unsigned degree, spillCostMin, spillCostMax;
|
||||
|
||||
public:
|
||||
|
||||
FixedDegreeSpillCostGenerator(unsigned degree, unsigned spillCostMin,
|
||||
unsigned spillCostMax) :
|
||||
degree(degree), spillCostMin(spillCostMin), spillCostMax(spillCostMax) { }
|
||||
|
||||
Vector operator()() const {
|
||||
Vector v(degree, 0);
|
||||
v[0] = randRange(spillCostMin, spillCostMax);
|
||||
return v;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class BasicEdgeCostsGenerator {
|
||||
private:
|
||||
|
||||
unsigned minCost, maxCost;
|
||||
|
||||
public:
|
||||
|
||||
BasicEdgeCostsGenerator(unsigned minCost, unsigned maxCost) :
|
||||
minCost(minCost), maxCost(maxCost) {}
|
||||
|
||||
Matrix operator()(const SimpleGraph &g,
|
||||
const SimpleGraph::ConstNodeIterator &n1,
|
||||
const SimpleGraph::ConstNodeIterator &n2) const {
|
||||
|
||||
Matrix m(g.getNodeCosts(n1).getLength(),
|
||||
g.getNodeCosts(n2).getLength());
|
||||
|
||||
for (unsigned i = 0; i < m.getRows(); ++i) {
|
||||
for (unsigned j = 0; j < m.getCols(); ++j) {
|
||||
m[i][j] = randRange(minCost, maxCost);
|
||||
}
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class InterferenceCostsGenerator {
|
||||
public:
|
||||
|
||||
Matrix operator()(const SimpleGraph &g,
|
||||
const SimpleGraph::ConstNodeIterator &n1,
|
||||
const SimpleGraph::ConstNodeIterator &n2) const {
|
||||
|
||||
unsigned len = g.getNodeCosts(n1).getLength();
|
||||
|
||||
assert(len == g.getNodeCosts(n2).getLength());
|
||||
|
||||
Matrix m(len, len);
|
||||
|
||||
m[0][0] = 0;
|
||||
for (unsigned i = 1; i < len; ++i) {
|
||||
m[i][i] = std::numeric_limits<PBQPNum>::infinity();
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
};
|
||||
|
||||
class RingEdgeGenerator {
|
||||
public:
|
||||
|
||||
template <typename EdgeCostsGenerator>
|
||||
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
|
||||
|
||||
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
|
||||
|
||||
if (g.getNumNodes() < 2)
|
||||
return;
|
||||
|
||||
if (g.getNumNodes() == 2) {
|
||||
SimpleGraph::NodeIterator n1 = g.getNodeItr(0),
|
||||
n2 = g.getNodeItr(1);
|
||||
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
|
||||
return;
|
||||
}
|
||||
|
||||
// Else |V| > 2:
|
||||
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
|
||||
SimpleGraph::NodeIterator
|
||||
n1 = g.getNodeItr(i),
|
||||
n2 = g.getNodeItr((i + 1) % g.getNumNodes());
|
||||
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class FullyConnectedEdgeGenerator {
|
||||
public:
|
||||
|
||||
template <typename EdgeCostsGenerator>
|
||||
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
|
||||
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
|
||||
|
||||
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
|
||||
for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
|
||||
SimpleGraph::NodeIterator
|
||||
n1 = g.getNodeItr(i),
|
||||
n2 = g.getNodeItr(j);
|
||||
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class RandomEdgeGenerator {
|
||||
public:
|
||||
|
||||
template <typename EdgeCostsGenerator>
|
||||
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
|
||||
|
||||
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
|
||||
|
||||
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
|
||||
for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
|
||||
if (rand() % 2 == 0) {
|
||||
SimpleGraph::NodeIterator
|
||||
n1 = g.getNodeItr(i),
|
||||
n2 = g.getNodeItr(j);
|
||||
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <typename NodeCostsGenerator,
|
||||
typename EdgesGenerator,
|
||||
typename EdgeCostsGenerator>
|
||||
SimpleGraph createRandomGraph(unsigned numNodes,
|
||||
NodeCostsGenerator nodeCostsGen,
|
||||
EdgesGenerator edgeGen,
|
||||
EdgeCostsGenerator edgeCostsGen) {
|
||||
|
||||
SimpleGraph g;
|
||||
for (unsigned n = 0; n < numNodes; ++n) {
|
||||
g.addNode(nodeCostsGen());
|
||||
}
|
||||
|
||||
g.assignNodeIDs();
|
||||
|
||||
edgeGen(g, edgeCostsGen);
|
||||
|
||||
return g;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
|
|
@ -0,0 +1,799 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
||||
#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
||||
|
||||
#include "Solver.h"
|
||||
#include "AnnotatedGraph.h"
|
||||
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// \brief Important types for the HeuristicSolverImpl.
|
||||
///
|
||||
/// Declared seperately to allow access to heuristic classes before the solver
|
||||
/// is fully constructed.
|
||||
template <typename HeuristicNodeData, typename HeuristicEdgeData>
|
||||
class HSITypes {
|
||||
public:
|
||||
|
||||
class NodeData;
|
||||
class EdgeData;
|
||||
|
||||
typedef AnnotatedGraph<NodeData, EdgeData> SolverGraph;
|
||||
typedef typename SolverGraph::NodeIterator GraphNodeIterator;
|
||||
typedef typename SolverGraph::EdgeIterator GraphEdgeIterator;
|
||||
typedef typename SolverGraph::AdjEdgeIterator GraphAdjEdgeIterator;
|
||||
|
||||
typedef std::list<GraphNodeIterator> NodeList;
|
||||
typedef typename NodeList::iterator NodeListIterator;
|
||||
|
||||
typedef std::vector<GraphNodeIterator> NodeStack;
|
||||
typedef typename NodeStack::iterator NodeStackIterator;
|
||||
|
||||
class NodeData {
|
||||
friend class EdgeData;
|
||||
|
||||
private:
|
||||
|
||||
typedef std::list<GraphEdgeIterator> LinksList;
|
||||
|
||||
unsigned numLinks;
|
||||
LinksList links, solvedLinks;
|
||||
NodeListIterator bucketItr;
|
||||
HeuristicNodeData heuristicData;
|
||||
|
||||
public:
|
||||
|
||||
typedef typename LinksList::iterator AdjLinkIterator;
|
||||
|
||||
private:
|
||||
|
||||
AdjLinkIterator addLink(const GraphEdgeIterator &edgeItr) {
|
||||
++numLinks;
|
||||
return links.insert(links.end(), edgeItr);
|
||||
}
|
||||
|
||||
void delLink(const AdjLinkIterator &adjLinkItr) {
|
||||
--numLinks;
|
||||
links.erase(adjLinkItr);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
NodeData() : numLinks(0) {}
|
||||
|
||||
unsigned getLinkDegree() const { return numLinks; }
|
||||
|
||||
HeuristicNodeData& getHeuristicData() { return heuristicData; }
|
||||
const HeuristicNodeData& getHeuristicData() const {
|
||||
return heuristicData;
|
||||
}
|
||||
|
||||
void setBucketItr(const NodeListIterator &bucketItr) {
|
||||
this->bucketItr = bucketItr;
|
||||
}
|
||||
|
||||
const NodeListIterator& getBucketItr() const {
|
||||
return bucketItr;
|
||||
}
|
||||
|
||||
AdjLinkIterator adjLinksBegin() {
|
||||
return links.begin();
|
||||
}
|
||||
|
||||
AdjLinkIterator adjLinksEnd() {
|
||||
return links.end();
|
||||
}
|
||||
|
||||
void addSolvedLink(const GraphEdgeIterator &solvedLinkItr) {
|
||||
solvedLinks.push_back(solvedLinkItr);
|
||||
}
|
||||
|
||||
AdjLinkIterator solvedLinksBegin() {
|
||||
return solvedLinks.begin();
|
||||
}
|
||||
|
||||
AdjLinkIterator solvedLinksEnd() {
|
||||
return solvedLinks.end();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class EdgeData {
|
||||
private:
|
||||
|
||||
SolverGraph &g;
|
||||
GraphNodeIterator node1Itr, node2Itr;
|
||||
HeuristicEdgeData heuristicData;
|
||||
typename NodeData::AdjLinkIterator node1ThisEdgeItr, node2ThisEdgeItr;
|
||||
|
||||
public:
|
||||
|
||||
EdgeData(SolverGraph &g) : g(g) {}
|
||||
|
||||
HeuristicEdgeData& getHeuristicData() { return heuristicData; }
|
||||
const HeuristicEdgeData& getHeuristicData() const {
|
||||
return heuristicData;
|
||||
}
|
||||
|
||||
void setup(const GraphEdgeIterator &thisEdgeItr) {
|
||||
node1Itr = g.getEdgeNode1Itr(thisEdgeItr);
|
||||
node2Itr = g.getEdgeNode2Itr(thisEdgeItr);
|
||||
|
||||
node1ThisEdgeItr = g.getNodeData(node1Itr).addLink(thisEdgeItr);
|
||||
node2ThisEdgeItr = g.getNodeData(node2Itr).addLink(thisEdgeItr);
|
||||
}
|
||||
|
||||
void unlink() {
|
||||
g.getNodeData(node1Itr).delLink(node1ThisEdgeItr);
|
||||
g.getNodeData(node2Itr).delLink(node2ThisEdgeItr);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
template <typename Heuristic>
|
||||
class HeuristicSolverImpl {
|
||||
public:
|
||||
// Typedefs to make life easier:
|
||||
typedef HSITypes<typename Heuristic::NodeData,
|
||||
typename Heuristic::EdgeData> HSIT;
|
||||
typedef typename HSIT::SolverGraph SolverGraph;
|
||||
typedef typename HSIT::NodeData NodeData;
|
||||
typedef typename HSIT::EdgeData EdgeData;
|
||||
typedef typename HSIT::GraphNodeIterator GraphNodeIterator;
|
||||
typedef typename HSIT::GraphEdgeIterator GraphEdgeIterator;
|
||||
typedef typename HSIT::GraphAdjEdgeIterator GraphAdjEdgeIterator;
|
||||
|
||||
typedef typename HSIT::NodeList NodeList;
|
||||
typedef typename HSIT::NodeListIterator NodeListIterator;
|
||||
|
||||
typedef std::vector<GraphNodeIterator> NodeStack;
|
||||
typedef typename NodeStack::iterator NodeStackIterator;
|
||||
|
||||
/*!
|
||||
* \brief Constructor, which performs all the actual solver work.
|
||||
*/
|
||||
HeuristicSolverImpl(const SimpleGraph &orig) :
|
||||
solution(orig.getNumNodes(), true)
|
||||
{
|
||||
copyGraph(orig);
|
||||
simplify();
|
||||
setup();
|
||||
computeSolution();
|
||||
computeSolutionCost(orig);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the graph for this solver.
|
||||
*/
|
||||
SolverGraph& getGraph() { return g; }
|
||||
|
||||
/*!
|
||||
* \brief Return the solution found by this solver.
|
||||
*/
|
||||
const Solution& getSolution() const { return solution; }
|
||||
|
||||
private:
|
||||
|
||||
/*!
|
||||
* \brief Add the given node to the appropriate bucket for its link
|
||||
* degree.
|
||||
*/
|
||||
void addToBucket(const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g.getNodeData(nodeItr);
|
||||
|
||||
switch (nodeData.getLinkDegree()) {
|
||||
case 0: nodeData.setBucketItr(
|
||||
r0Bucket.insert(r0Bucket.end(), nodeItr));
|
||||
break;
|
||||
case 1: nodeData.setBucketItr(
|
||||
r1Bucket.insert(r1Bucket.end(), nodeItr));
|
||||
break;
|
||||
case 2: nodeData.setBucketItr(
|
||||
r2Bucket.insert(r2Bucket.end(), nodeItr));
|
||||
break;
|
||||
default: heuristic.addToRNBucket(nodeItr);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Remove the given node from the appropriate bucket for its link
|
||||
* degree.
|
||||
*/
|
||||
void removeFromBucket(const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g.getNodeData(nodeItr);
|
||||
|
||||
switch (nodeData.getLinkDegree()) {
|
||||
case 0: r0Bucket.erase(nodeData.getBucketItr()); break;
|
||||
case 1: r1Bucket.erase(nodeData.getBucketItr()); break;
|
||||
case 2: r2Bucket.erase(nodeData.getBucketItr()); break;
|
||||
default: heuristic.removeFromRNBucket(nodeItr); break;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/*!
|
||||
* \brief Add a link.
|
||||
*/
|
||||
void addLink(const GraphEdgeIterator &edgeItr) {
|
||||
g.getEdgeData(edgeItr).setup(edgeItr);
|
||||
|
||||
if ((g.getNodeData(g.getEdgeNode1Itr(edgeItr)).getLinkDegree() > 2) ||
|
||||
(g.getNodeData(g.getEdgeNode2Itr(edgeItr)).getLinkDegree() > 2)) {
|
||||
heuristic.handleAddLink(edgeItr);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Remove link, update info for node.
|
||||
*
|
||||
* Only updates information for the given node, since usually the other
|
||||
* is about to be removed.
|
||||
*/
|
||||
void removeLink(const GraphEdgeIterator &edgeItr,
|
||||
const GraphNodeIterator &nodeItr) {
|
||||
|
||||
if (g.getNodeData(nodeItr).getLinkDegree() > 2) {
|
||||
heuristic.handleRemoveLink(edgeItr, nodeItr);
|
||||
}
|
||||
g.getEdgeData(edgeItr).unlink();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Remove link, update info for both nodes. Useful for R2 only.
|
||||
*/
|
||||
void removeLinkR2(const GraphEdgeIterator &edgeItr) {
|
||||
GraphNodeIterator node1Itr = g.getEdgeNode1Itr(edgeItr);
|
||||
|
||||
if (g.getNodeData(node1Itr).getLinkDegree() > 2) {
|
||||
heuristic.handleRemoveLink(edgeItr, node1Itr);
|
||||
}
|
||||
removeLink(edgeItr, g.getEdgeNode2Itr(edgeItr));
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Removes all links connected to the given node.
|
||||
*/
|
||||
void unlinkNode(const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g.getNodeData(nodeItr);
|
||||
|
||||
typedef std::vector<GraphEdgeIterator> TempEdgeList;
|
||||
|
||||
TempEdgeList edgesToUnlink;
|
||||
edgesToUnlink.reserve(nodeData.getLinkDegree());
|
||||
|
||||
// Copy adj edges into a temp vector. We want to destroy them during
|
||||
// the unlink, and we can't do that while we're iterating over them.
|
||||
std::copy(nodeData.adjLinksBegin(), nodeData.adjLinksEnd(),
|
||||
std::back_inserter(edgesToUnlink));
|
||||
|
||||
for (typename TempEdgeList::iterator
|
||||
edgeItr = edgesToUnlink.begin(), edgeEnd = edgesToUnlink.end();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
GraphNodeIterator otherNode = g.getEdgeOtherNode(*edgeItr, nodeItr);
|
||||
|
||||
removeFromBucket(otherNode);
|
||||
removeLink(*edgeItr, otherNode);
|
||||
addToBucket(otherNode);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Push the given node onto the stack to be solved with
|
||||
* backpropagation.
|
||||
*/
|
||||
void pushStack(const GraphNodeIterator &nodeItr) {
|
||||
stack.push_back(nodeItr);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set the solution of the given node.
|
||||
*/
|
||||
void setSolution(const GraphNodeIterator &nodeItr, unsigned solIndex) {
|
||||
solution.setSelection(g.getNodeID(nodeItr), solIndex);
|
||||
|
||||
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
|
||||
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
|
||||
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
|
||||
GraphEdgeIterator edgeItr(*adjEdgeItr);
|
||||
GraphNodeIterator adjNodeItr(g.getEdgeOtherNode(edgeItr, nodeItr));
|
||||
g.getNodeData(adjNodeItr).addSolvedLink(edgeItr);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
SolverGraph g;
|
||||
Heuristic heuristic;
|
||||
Solution solution;
|
||||
|
||||
NodeList r0Bucket,
|
||||
r1Bucket,
|
||||
r2Bucket;
|
||||
|
||||
NodeStack stack;
|
||||
|
||||
// Copy the SimpleGraph into an annotated graph which we can use for reduction.
|
||||
void copyGraph(const SimpleGraph &orig) {
|
||||
|
||||
assert((g.getNumEdges() == 0) && (g.getNumNodes() == 0) &&
|
||||
"Graph should be empty prior to solver setup.");
|
||||
|
||||
assert(orig.areNodeIDsValid() &&
|
||||
"Cannot copy from a graph with invalid node IDs.");
|
||||
|
||||
std::vector<GraphNodeIterator> newNodeItrs;
|
||||
|
||||
for (unsigned nodeID = 0; nodeID < orig.getNumNodes(); ++nodeID) {
|
||||
newNodeItrs.push_back(
|
||||
g.addNode(orig.getNodeCosts(orig.getNodeItr(nodeID)), NodeData()));
|
||||
}
|
||||
|
||||
for (SimpleGraph::ConstEdgeIterator
|
||||
origEdgeItr = orig.edgesBegin(), origEdgeEnd = orig.edgesEnd();
|
||||
origEdgeItr != origEdgeEnd; ++origEdgeItr) {
|
||||
|
||||
unsigned id1 = orig.getNodeID(orig.getEdgeNode1Itr(origEdgeItr)),
|
||||
id2 = orig.getNodeID(orig.getEdgeNode2Itr(origEdgeItr));
|
||||
|
||||
g.addEdge(newNodeItrs[id1], newNodeItrs[id2],
|
||||
orig.getEdgeCosts(origEdgeItr), EdgeData(g));
|
||||
}
|
||||
|
||||
// Assign IDs to the new nodes using the ordering from the old graph,
|
||||
// this will lead to nodes in the new graph getting the same ID as the
|
||||
// corresponding node in the old graph.
|
||||
g.assignNodeIDs(newNodeItrs);
|
||||
}
|
||||
|
||||
// Simplify the annotated graph by eliminating independent edges and trivial
|
||||
// nodes.
|
||||
void simplify() {
|
||||
disconnectTrivialNodes();
|
||||
eliminateIndependentEdges();
|
||||
}
|
||||
|
||||
// Eliminate trivial nodes.
|
||||
void disconnectTrivialNodes() {
|
||||
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
if (g.getNodeCosts(nodeItr).getLength() == 1) {
|
||||
|
||||
std::vector<GraphEdgeIterator> edgesToRemove;
|
||||
|
||||
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
|
||||
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
|
||||
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
|
||||
|
||||
GraphEdgeIterator edgeItr = *adjEdgeItr;
|
||||
|
||||
if (g.getEdgeNode1Itr(edgeItr) == nodeItr) {
|
||||
GraphNodeIterator otherNodeItr = g.getEdgeNode2Itr(edgeItr);
|
||||
g.getNodeCosts(otherNodeItr) +=
|
||||
g.getEdgeCosts(edgeItr).getRowAsVector(0);
|
||||
}
|
||||
else {
|
||||
GraphNodeIterator otherNodeItr = g.getEdgeNode1Itr(edgeItr);
|
||||
g.getNodeCosts(otherNodeItr) +=
|
||||
g.getEdgeCosts(edgeItr).getColAsVector(0);
|
||||
}
|
||||
|
||||
edgesToRemove.push_back(edgeItr);
|
||||
}
|
||||
|
||||
while (!edgesToRemove.empty()) {
|
||||
g.removeEdge(edgesToRemove.back());
|
||||
edgesToRemove.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void eliminateIndependentEdges() {
|
||||
std::vector<GraphEdgeIterator> edgesToProcess;
|
||||
|
||||
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
edgesToProcess.push_back(edgeItr);
|
||||
}
|
||||
|
||||
while (!edgesToProcess.empty()) {
|
||||
tryToEliminateEdge(edgesToProcess.back());
|
||||
edgesToProcess.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
void tryToEliminateEdge(const GraphEdgeIterator &edgeItr) {
|
||||
if (tryNormaliseEdgeMatrix(edgeItr)) {
|
||||
g.removeEdge(edgeItr);
|
||||
}
|
||||
}
|
||||
|
||||
bool tryNormaliseEdgeMatrix(const GraphEdgeIterator &edgeItr) {
|
||||
|
||||
Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
|
||||
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1Itr(edgeItr)),
|
||||
&vCosts = g.getNodeCosts(g.getEdgeNode2Itr(edgeItr));
|
||||
|
||||
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
|
||||
PBQPNum rowMin = edgeCosts.getRowMin(r);
|
||||
uCosts[r] += rowMin;
|
||||
if (rowMin != std::numeric_limits<PBQPNum>::infinity()) {
|
||||
edgeCosts.subFromRow(r, rowMin);
|
||||
}
|
||||
else {
|
||||
edgeCosts.setRow(r, 0);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
|
||||
PBQPNum colMin = edgeCosts.getColMin(c);
|
||||
vCosts[c] += colMin;
|
||||
if (colMin != std::numeric_limits<PBQPNum>::infinity()) {
|
||||
edgeCosts.subFromCol(c, colMin);
|
||||
}
|
||||
else {
|
||||
edgeCosts.setCol(c, 0);
|
||||
}
|
||||
}
|
||||
|
||||
return edgeCosts.isZero();
|
||||
}
|
||||
|
||||
void setup() {
|
||||
setupLinks();
|
||||
heuristic.initialise(*this);
|
||||
setupBuckets();
|
||||
}
|
||||
|
||||
void setupLinks() {
|
||||
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
g.getEdgeData(edgeItr).setup(edgeItr);
|
||||
}
|
||||
}
|
||||
|
||||
void setupBuckets() {
|
||||
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
addToBucket(nodeItr);
|
||||
}
|
||||
}
|
||||
|
||||
void computeSolution() {
|
||||
assert(g.areNodeIDsValid() &&
|
||||
"Nodes cannot be added/removed during reduction.");
|
||||
|
||||
reduce();
|
||||
computeTrivialSolutions();
|
||||
backpropagate();
|
||||
}
|
||||
|
||||
void printNode(const GraphNodeIterator &nodeItr) {
|
||||
|
||||
std::cerr << "Node " << g.getNodeID(nodeItr) << " (" << &*nodeItr << "):\n"
|
||||
<< " costs = " << g.getNodeCosts(nodeItr) << "\n"
|
||||
<< " link degree = " << g.getNodeData(nodeItr).getLinkDegree() << "\n"
|
||||
<< " links = [ ";
|
||||
|
||||
for (typename HSIT::NodeData::AdjLinkIterator
|
||||
aeItr = g.getNodeData(nodeItr).adjLinksBegin(),
|
||||
aeEnd = g.getNodeData(nodeItr).adjLinksEnd();
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
std::cerr << "(" << g.getNodeID(g.getEdgeNode1Itr(*aeItr))
|
||||
<< ", " << g.getNodeID(g.getEdgeNode2Itr(*aeItr))
|
||||
<< ") ";
|
||||
}
|
||||
std::cout << "]\n";
|
||||
}
|
||||
|
||||
void dumpState() {
|
||||
|
||||
std::cerr << "\n";
|
||||
|
||||
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
printNode(nodeItr);
|
||||
}
|
||||
|
||||
NodeList* buckets[] = { &r0Bucket, &r1Bucket, &r2Bucket };
|
||||
|
||||
for (unsigned b = 0; b < 3; ++b) {
|
||||
NodeList &bucket = *buckets[b];
|
||||
|
||||
std::cerr << "Bucket " << b << ": [ ";
|
||||
|
||||
for (NodeListIterator nItr = bucket.begin(), nEnd = bucket.end();
|
||||
nItr != nEnd; ++nItr) {
|
||||
std::cerr << g.getNodeID(*nItr) << " ";
|
||||
}
|
||||
|
||||
std::cerr << "]\n";
|
||||
}
|
||||
|
||||
std::cerr << "Stack: [ ";
|
||||
for (NodeStackIterator nsItr = stack.begin(), nsEnd = stack.end();
|
||||
nsItr != nsEnd; ++nsItr) {
|
||||
std::cerr << g.getNodeID(*nsItr) << " ";
|
||||
}
|
||||
std::cerr << "]\n";
|
||||
}
|
||||
|
||||
void reduce() {
|
||||
bool reductionFinished = r1Bucket.empty() && r2Bucket.empty() &&
|
||||
heuristic.rNBucketEmpty();
|
||||
|
||||
while (!reductionFinished) {
|
||||
|
||||
if (!r1Bucket.empty()) {
|
||||
processR1();
|
||||
}
|
||||
else if (!r2Bucket.empty()) {
|
||||
processR2();
|
||||
}
|
||||
else if (!heuristic.rNBucketEmpty()) {
|
||||
solution.setProvedOptimal(false);
|
||||
solution.incRNReductions();
|
||||
heuristic.processRN();
|
||||
}
|
||||
else reductionFinished = true;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
void processR1() {
|
||||
|
||||
// Remove the first node in the R0 bucket:
|
||||
GraphNodeIterator xNodeItr = r1Bucket.front();
|
||||
r1Bucket.pop_front();
|
||||
|
||||
solution.incR1Reductions();
|
||||
|
||||
//std::cerr << "Applying R1 to " << g.getNodeID(xNodeItr) << "\n";
|
||||
|
||||
assert((g.getNodeData(xNodeItr).getLinkDegree() == 1) &&
|
||||
"Node in R1 bucket has degree != 1");
|
||||
|
||||
GraphEdgeIterator edgeItr = *g.getNodeData(xNodeItr).adjLinksBegin();
|
||||
|
||||
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
|
||||
|
||||
const Vector &xCosts = g.getNodeCosts(xNodeItr);
|
||||
unsigned xLen = xCosts.getLength();
|
||||
|
||||
// Duplicate a little code to avoid transposing matrices:
|
||||
if (xNodeItr == g.getEdgeNode1Itr(edgeItr)) {
|
||||
GraphNodeIterator yNodeItr = g.getEdgeNode2Itr(edgeItr);
|
||||
Vector &yCosts = g.getNodeCosts(yNodeItr);
|
||||
unsigned yLen = yCosts.getLength();
|
||||
|
||||
for (unsigned j = 0; j < yLen; ++j) {
|
||||
PBQPNum min = edgeCosts[0][j] + xCosts[0];
|
||||
for (unsigned i = 1; i < xLen; ++i) {
|
||||
PBQPNum c = edgeCosts[i][j] + xCosts[i];
|
||||
if (c < min)
|
||||
min = c;
|
||||
}
|
||||
yCosts[j] += min;
|
||||
}
|
||||
}
|
||||
else {
|
||||
GraphNodeIterator yNodeItr = g.getEdgeNode1Itr(edgeItr);
|
||||
Vector &yCosts = g.getNodeCosts(yNodeItr);
|
||||
unsigned yLen = yCosts.getLength();
|
||||
|
||||
for (unsigned i = 0; i < yLen; ++i) {
|
||||
PBQPNum min = edgeCosts[i][0] + xCosts[0];
|
||||
|
||||
for (unsigned j = 1; j < xLen; ++j) {
|
||||
PBQPNum c = edgeCosts[i][j] + xCosts[j];
|
||||
if (c < min)
|
||||
min = c;
|
||||
}
|
||||
yCosts[i] += min;
|
||||
}
|
||||
}
|
||||
|
||||
unlinkNode(xNodeItr);
|
||||
pushStack(xNodeItr);
|
||||
}
|
||||
|
||||
void processR2() {
|
||||
|
||||
GraphNodeIterator xNodeItr = r2Bucket.front();
|
||||
r2Bucket.pop_front();
|
||||
|
||||
solution.incR2Reductions();
|
||||
|
||||
// Unlink is unsafe here. At some point it may optimistically more a node
|
||||
// to a lower-degree list when its degree will later rise, or vice versa,
|
||||
// violating the assumption that node degrees monotonically decrease
|
||||
// during the reduction phase. Instead we'll bucket shuffle manually.
|
||||
pushStack(xNodeItr);
|
||||
|
||||
assert((g.getNodeData(xNodeItr).getLinkDegree() == 2) &&
|
||||
"Node in R2 bucket has degree != 2");
|
||||
|
||||
const Vector &xCosts = g.getNodeCosts(xNodeItr);
|
||||
|
||||
typename NodeData::AdjLinkIterator tempItr =
|
||||
g.getNodeData(xNodeItr).adjLinksBegin();
|
||||
|
||||
GraphEdgeIterator yxEdgeItr = *tempItr,
|
||||
zxEdgeItr = *(++tempItr);
|
||||
|
||||
GraphNodeIterator yNodeItr = g.getEdgeOtherNode(yxEdgeItr, xNodeItr),
|
||||
zNodeItr = g.getEdgeOtherNode(zxEdgeItr, xNodeItr);
|
||||
|
||||
removeFromBucket(yNodeItr);
|
||||
removeFromBucket(zNodeItr);
|
||||
|
||||
removeLink(yxEdgeItr, yNodeItr);
|
||||
removeLink(zxEdgeItr, zNodeItr);
|
||||
|
||||
// Graph some of the costs:
|
||||
bool flipEdge1 = (g.getEdgeNode1Itr(yxEdgeItr) == xNodeItr),
|
||||
flipEdge2 = (g.getEdgeNode1Itr(zxEdgeItr) == xNodeItr);
|
||||
|
||||
const Matrix *yxCosts = flipEdge1 ?
|
||||
new Matrix(g.getEdgeCosts(yxEdgeItr).transpose()) :
|
||||
&g.getEdgeCosts(yxEdgeItr),
|
||||
*zxCosts = flipEdge2 ?
|
||||
new Matrix(g.getEdgeCosts(zxEdgeItr).transpose()) :
|
||||
&g.getEdgeCosts(zxEdgeItr);
|
||||
|
||||
unsigned xLen = xCosts.getLength(),
|
||||
yLen = yxCosts->getRows(),
|
||||
zLen = zxCosts->getRows();
|
||||
|
||||
// Compute delta:
|
||||
Matrix delta(yLen, zLen);
|
||||
|
||||
for (unsigned i = 0; i < yLen; ++i) {
|
||||
for (unsigned j = 0; j < zLen; ++j) {
|
||||
PBQPNum min = (*yxCosts)[i][0] + (*zxCosts)[j][0] + xCosts[0];
|
||||
for (unsigned k = 1; k < xLen; ++k) {
|
||||
PBQPNum c = (*yxCosts)[i][k] + (*zxCosts)[j][k] + xCosts[k];
|
||||
if (c < min) {
|
||||
min = c;
|
||||
}
|
||||
}
|
||||
delta[i][j] = min;
|
||||
}
|
||||
}
|
||||
|
||||
if (flipEdge1)
|
||||
delete yxCosts;
|
||||
|
||||
if (flipEdge2)
|
||||
delete zxCosts;
|
||||
|
||||
// Deal with the potentially induced yz edge.
|
||||
GraphEdgeIterator yzEdgeItr = g.findEdge(yNodeItr, zNodeItr);
|
||||
if (yzEdgeItr == g.edgesEnd()) {
|
||||
yzEdgeItr = g.addEdge(yNodeItr, zNodeItr, delta, EdgeData(g));
|
||||
}
|
||||
else {
|
||||
// There was an edge, but we're going to screw with it. Delete the old
|
||||
// link, update the costs. We'll re-link it later.
|
||||
removeLinkR2(yzEdgeItr);
|
||||
g.getEdgeCosts(yzEdgeItr) +=
|
||||
(yNodeItr == g.getEdgeNode1Itr(yzEdgeItr)) ?
|
||||
delta : delta.transpose();
|
||||
}
|
||||
|
||||
bool nullCostEdge = tryNormaliseEdgeMatrix(yzEdgeItr);
|
||||
|
||||
// Nulled the edge, remove it entirely.
|
||||
if (nullCostEdge) {
|
||||
g.removeEdge(yzEdgeItr);
|
||||
}
|
||||
else {
|
||||
// Edge remains - re-link it.
|
||||
addLink(yzEdgeItr);
|
||||
}
|
||||
|
||||
addToBucket(yNodeItr);
|
||||
addToBucket(zNodeItr);
|
||||
}
|
||||
|
||||
void computeTrivialSolutions() {
|
||||
|
||||
for (NodeListIterator r0Itr = r0Bucket.begin(), r0End = r0Bucket.end();
|
||||
r0Itr != r0End; ++r0Itr) {
|
||||
GraphNodeIterator nodeItr = *r0Itr;
|
||||
|
||||
solution.incR0Reductions();
|
||||
setSolution(nodeItr, g.getNodeCosts(nodeItr).minIndex());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void backpropagate() {
|
||||
while (!stack.empty()) {
|
||||
computeSolution(stack.back());
|
||||
stack.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
void computeSolution(const GraphNodeIterator &nodeItr) {
|
||||
|
||||
NodeData &nodeData = g.getNodeData(nodeItr);
|
||||
|
||||
Vector v(g.getNodeCosts(nodeItr));
|
||||
|
||||
// Solve based on existing links.
|
||||
for (typename NodeData::AdjLinkIterator
|
||||
solvedLinkItr = nodeData.solvedLinksBegin(),
|
||||
solvedLinkEnd = nodeData.solvedLinksEnd();
|
||||
solvedLinkItr != solvedLinkEnd; ++solvedLinkItr) {
|
||||
|
||||
GraphEdgeIterator solvedEdgeItr(*solvedLinkItr);
|
||||
Matrix &edgeCosts = g.getEdgeCosts(solvedEdgeItr);
|
||||
|
||||
if (nodeItr == g.getEdgeNode1Itr(solvedEdgeItr)) {
|
||||
GraphNodeIterator adjNode(g.getEdgeNode2Itr(solvedEdgeItr));
|
||||
unsigned adjSolution =
|
||||
solution.getSelection(g.getNodeID(adjNode));
|
||||
v += edgeCosts.getColAsVector(adjSolution);
|
||||
}
|
||||
else {
|
||||
GraphNodeIterator adjNode(g.getEdgeNode1Itr(solvedEdgeItr));
|
||||
unsigned adjSolution =
|
||||
solution.getSelection(g.getNodeID(adjNode));
|
||||
v += edgeCosts.getRowAsVector(adjSolution);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
setSolution(nodeItr, v.minIndex());
|
||||
}
|
||||
|
||||
void computeSolutionCost(const SimpleGraph &orig) {
|
||||
PBQPNum cost = 0.0;
|
||||
|
||||
for (SimpleGraph::ConstNodeIterator
|
||||
nodeItr = orig.nodesBegin(), nodeEnd = orig.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
unsigned nodeId = orig.getNodeID(nodeItr);
|
||||
|
||||
cost += orig.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
|
||||
}
|
||||
|
||||
for (SimpleGraph::ConstEdgeIterator
|
||||
edgeItr = orig.edgesBegin(), edgeEnd = orig.edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
SimpleGraph::ConstNodeIterator n1 = orig.getEdgeNode1Itr(edgeItr),
|
||||
n2 = orig.getEdgeNode2Itr(edgeItr);
|
||||
unsigned sol1 = solution.getSelection(orig.getNodeID(n1)),
|
||||
sol2 = solution.getSelection(orig.getNodeID(n2));
|
||||
|
||||
cost += orig.getEdgeCosts(edgeItr)[sol1][sol2];
|
||||
}
|
||||
|
||||
solution.setSolutionCost(cost);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <typename Heuristic>
|
||||
class HeuristicSolver : public Solver {
|
||||
public:
|
||||
Solution solve(const SimpleGraph &g) const {
|
||||
HeuristicSolverImpl<Heuristic> solverImpl(g);
|
||||
return solverImpl.getSolution();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
|
@ -0,0 +1,385 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
||||
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
||||
|
||||
#include "../HeuristicSolver.h"
|
||||
|
||||
#include <set>
|
||||
|
||||
namespace PBQP {
|
||||
namespace Heuristics {
|
||||
|
||||
class Briggs {
|
||||
public:
|
||||
|
||||
class NodeData;
|
||||
class EdgeData;
|
||||
|
||||
private:
|
||||
|
||||
typedef HeuristicSolverImpl<Briggs> Solver;
|
||||
typedef HSITypes<NodeData, EdgeData> HSIT;
|
||||
typedef HSIT::SolverGraph SolverGraph;
|
||||
typedef HSIT::GraphNodeIterator GraphNodeIterator;
|
||||
typedef HSIT::GraphEdgeIterator GraphEdgeIterator;
|
||||
|
||||
class LinkDegreeComparator {
|
||||
public:
|
||||
LinkDegreeComparator() : g(0) {}
|
||||
LinkDegreeComparator(SolverGraph *g) : g(g) {}
|
||||
|
||||
bool operator()(const GraphNodeIterator &node1Itr,
|
||||
const GraphNodeIterator &node2Itr) const {
|
||||
assert((g != 0) && "Graph object not set, cannot access node data.");
|
||||
unsigned n1Degree = g->getNodeData(node1Itr).getLinkDegree(),
|
||||
n2Degree = g->getNodeData(node2Itr).getLinkDegree();
|
||||
if (n1Degree > n2Degree) {
|
||||
return true;
|
||||
}
|
||||
else if (n1Degree < n2Degree) {
|
||||
return false;
|
||||
}
|
||||
// else they're "equal" by degree, differentiate based on ID.
|
||||
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
|
||||
}
|
||||
|
||||
private:
|
||||
SolverGraph *g;
|
||||
};
|
||||
|
||||
class SpillPriorityComparator {
|
||||
public:
|
||||
SpillPriorityComparator() : g(0) {}
|
||||
SpillPriorityComparator(SolverGraph *g) : g(g) {}
|
||||
|
||||
bool operator()(const GraphNodeIterator &node1Itr,
|
||||
const GraphNodeIterator &node2Itr) const {
|
||||
assert((g != 0) && "Graph object not set, cannot access node data.");
|
||||
PBQPNum cost1 =
|
||||
g->getNodeCosts(node1Itr)[0] /
|
||||
g->getNodeData(node1Itr).getLinkDegree(),
|
||||
cost2 =
|
||||
g->getNodeCosts(node2Itr)[0] /
|
||||
g->getNodeData(node2Itr).getLinkDegree();
|
||||
|
||||
if (cost1 < cost2) {
|
||||
return true;
|
||||
}
|
||||
else if (cost1 > cost2) {
|
||||
return false;
|
||||
}
|
||||
// else they'er "equal" again, differentiate based on address again.
|
||||
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
|
||||
}
|
||||
|
||||
private:
|
||||
SolverGraph *g;
|
||||
};
|
||||
|
||||
typedef std::set<GraphNodeIterator, LinkDegreeComparator>
|
||||
RNAllocableNodeList;
|
||||
typedef RNAllocableNodeList::iterator RNAllocableNodeListIterator;
|
||||
|
||||
typedef std::set<GraphNodeIterator, SpillPriorityComparator>
|
||||
RNUnallocableNodeList;
|
||||
typedef RNUnallocableNodeList::iterator RNUnallocableNodeListIterator;
|
||||
|
||||
public:
|
||||
|
||||
class NodeData {
|
||||
private:
|
||||
RNAllocableNodeListIterator rNAllocableNodeListItr;
|
||||
RNUnallocableNodeListIterator rNUnallocableNodeListItr;
|
||||
unsigned numRegOptions, numDenied, numSafe;
|
||||
std::vector<unsigned> unsafeDegrees;
|
||||
bool allocable;
|
||||
|
||||
void addRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
|
||||
const GraphEdgeIterator &edgeItr, bool add) {
|
||||
|
||||
//assume we're adding...
|
||||
unsigned udTarget = 0, dir = 1;
|
||||
|
||||
if (!add) {
|
||||
udTarget = 1;
|
||||
dir = -1;
|
||||
}
|
||||
|
||||
EdgeData &linkEdgeData = g.getEdgeData(edgeItr).getHeuristicData();
|
||||
|
||||
EdgeData::ConstUnsafeIterator edgeUnsafeBegin, edgeUnsafeEnd;
|
||||
|
||||
if (nodeItr == g.getEdgeNode1Itr(edgeItr)) {
|
||||
numDenied += (dir * linkEdgeData.getWorstDegree());
|
||||
edgeUnsafeBegin = linkEdgeData.unsafeBegin();
|
||||
edgeUnsafeEnd = linkEdgeData.unsafeEnd();
|
||||
}
|
||||
else {
|
||||
numDenied += (dir * linkEdgeData.getReverseWorstDegree());
|
||||
edgeUnsafeBegin = linkEdgeData.reverseUnsafeBegin();
|
||||
edgeUnsafeEnd = linkEdgeData.reverseUnsafeEnd();
|
||||
}
|
||||
|
||||
assert((unsafeDegrees.size() ==
|
||||
static_cast<unsigned>(
|
||||
std::distance(edgeUnsafeBegin, edgeUnsafeEnd)))
|
||||
&& "Unsafe array size mismatch.");
|
||||
|
||||
std::vector<unsigned>::iterator unsafeDegreesItr =
|
||||
unsafeDegrees.begin();
|
||||
|
||||
for (EdgeData::ConstUnsafeIterator edgeUnsafeItr = edgeUnsafeBegin;
|
||||
edgeUnsafeItr != edgeUnsafeEnd;
|
||||
++edgeUnsafeItr, ++unsafeDegreesItr) {
|
||||
|
||||
if ((*edgeUnsafeItr == 1) && (*unsafeDegreesItr == udTarget)) {
|
||||
numSafe -= dir;
|
||||
}
|
||||
*unsafeDegreesItr += (dir * (*edgeUnsafeItr));
|
||||
}
|
||||
|
||||
allocable = (numDenied < numRegOptions) || (numSafe > 0);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
void setup(SolverGraph &g, const GraphNodeIterator &nodeItr) {
|
||||
|
||||
numRegOptions = g.getNodeCosts(nodeItr).getLength() - 1;
|
||||
|
||||
numSafe = numRegOptions; // Optimistic, correct below.
|
||||
numDenied = 0; // Also optimistic.
|
||||
unsafeDegrees.resize(numRegOptions, 0);
|
||||
|
||||
HSIT::NodeData &nodeData = g.getNodeData(nodeItr);
|
||||
|
||||
for (HSIT::NodeData::AdjLinkIterator
|
||||
adjLinkItr = nodeData.adjLinksBegin(),
|
||||
adjLinkEnd = nodeData.adjLinksEnd();
|
||||
adjLinkItr != adjLinkEnd; ++adjLinkItr) {
|
||||
|
||||
addRemoveLink(g, nodeItr, *adjLinkItr, true);
|
||||
}
|
||||
}
|
||||
|
||||
bool isAllocable() const { return allocable; }
|
||||
|
||||
void handleAddLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
|
||||
const GraphEdgeIterator &adjEdge) {
|
||||
addRemoveLink(g, nodeItr, adjEdge, true);
|
||||
}
|
||||
|
||||
void handleRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
|
||||
const GraphEdgeIterator &adjEdge) {
|
||||
addRemoveLink(g, nodeItr, adjEdge, false);
|
||||
}
|
||||
|
||||
void setRNAllocableNodeListItr(
|
||||
const RNAllocableNodeListIterator &rNAllocableNodeListItr) {
|
||||
|
||||
this->rNAllocableNodeListItr = rNAllocableNodeListItr;
|
||||
}
|
||||
|
||||
RNAllocableNodeListIterator getRNAllocableNodeListItr() const {
|
||||
return rNAllocableNodeListItr;
|
||||
}
|
||||
|
||||
void setRNUnallocableNodeListItr(
|
||||
const RNUnallocableNodeListIterator &rNUnallocableNodeListItr) {
|
||||
|
||||
this->rNUnallocableNodeListItr = rNUnallocableNodeListItr;
|
||||
}
|
||||
|
||||
RNUnallocableNodeListIterator getRNUnallocableNodeListItr() const {
|
||||
return rNUnallocableNodeListItr;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
class EdgeData {
|
||||
private:
|
||||
|
||||
typedef std::vector<unsigned> UnsafeArray;
|
||||
|
||||
unsigned worstDegree,
|
||||
reverseWorstDegree;
|
||||
UnsafeArray unsafe, reverseUnsafe;
|
||||
|
||||
public:
|
||||
|
||||
EdgeData() : worstDegree(0), reverseWorstDegree(0) {}
|
||||
|
||||
typedef UnsafeArray::const_iterator ConstUnsafeIterator;
|
||||
|
||||
void setup(SolverGraph &g, const GraphEdgeIterator &edgeItr) {
|
||||
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
|
||||
unsigned numRegs = edgeCosts.getRows() - 1,
|
||||
numReverseRegs = edgeCosts.getCols() - 1;
|
||||
|
||||
unsafe.resize(numRegs, 0);
|
||||
reverseUnsafe.resize(numReverseRegs, 0);
|
||||
|
||||
std::vector<unsigned> rowInfCounts(numRegs, 0),
|
||||
colInfCounts(numReverseRegs, 0);
|
||||
|
||||
for (unsigned i = 0; i < numRegs; ++i) {
|
||||
for (unsigned j = 0; j < numReverseRegs; ++j) {
|
||||
if (edgeCosts[i + 1][j + 1] ==
|
||||
std::numeric_limits<PBQPNum>::infinity()) {
|
||||
unsafe[i] = 1;
|
||||
reverseUnsafe[j] = 1;
|
||||
++rowInfCounts[i];
|
||||
++colInfCounts[j];
|
||||
|
||||
if (colInfCounts[j] > worstDegree) {
|
||||
worstDegree = colInfCounts[j];
|
||||
}
|
||||
|
||||
if (rowInfCounts[i] > reverseWorstDegree) {
|
||||
reverseWorstDegree = rowInfCounts[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned getWorstDegree() const { return worstDegree; }
|
||||
unsigned getReverseWorstDegree() const { return reverseWorstDegree; }
|
||||
ConstUnsafeIterator unsafeBegin() const { return unsafe.begin(); }
|
||||
ConstUnsafeIterator unsafeEnd() const { return unsafe.end(); }
|
||||
ConstUnsafeIterator reverseUnsafeBegin() const {
|
||||
return reverseUnsafe.begin();
|
||||
}
|
||||
ConstUnsafeIterator reverseUnsafeEnd() const {
|
||||
return reverseUnsafe.end();
|
||||
}
|
||||
};
|
||||
|
||||
void initialise(Solver &solver) {
|
||||
this->s = &solver;
|
||||
g = &s->getGraph();
|
||||
rNAllocableBucket = RNAllocableNodeList(LinkDegreeComparator(g));
|
||||
rNUnallocableBucket =
|
||||
RNUnallocableNodeList(SpillPriorityComparator(g));
|
||||
|
||||
for (GraphEdgeIterator
|
||||
edgeItr = g->edgesBegin(), edgeEnd = g->edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
|
||||
}
|
||||
|
||||
for (GraphNodeIterator
|
||||
nodeItr = g->nodesBegin(), nodeEnd = g->nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
g->getNodeData(nodeItr).getHeuristicData().setup(*g, nodeItr);
|
||||
}
|
||||
}
|
||||
|
||||
void addToRNBucket(const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
|
||||
|
||||
if (nodeData.isAllocable()) {
|
||||
nodeData.setRNAllocableNodeListItr(
|
||||
rNAllocableBucket.insert(rNAllocableBucket.begin(), nodeItr));
|
||||
}
|
||||
else {
|
||||
nodeData.setRNUnallocableNodeListItr(
|
||||
rNUnallocableBucket.insert(rNUnallocableBucket.begin(), nodeItr));
|
||||
}
|
||||
}
|
||||
|
||||
void removeFromRNBucket(const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
|
||||
|
||||
if (nodeData.isAllocable()) {
|
||||
rNAllocableBucket.erase(nodeData.getRNAllocableNodeListItr());
|
||||
}
|
||||
else {
|
||||
rNUnallocableBucket.erase(nodeData.getRNUnallocableNodeListItr());
|
||||
}
|
||||
}
|
||||
|
||||
void handleAddLink(const GraphEdgeIterator &edgeItr) {
|
||||
// We assume that if we got here this edge is attached to at least
|
||||
// one high degree node.
|
||||
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
|
||||
|
||||
GraphNodeIterator n1Itr = g->getEdgeNode1Itr(edgeItr),
|
||||
n2Itr = g->getEdgeNode2Itr(edgeItr);
|
||||
|
||||
HSIT::NodeData &n1Data = g->getNodeData(n1Itr),
|
||||
&n2Data = g->getNodeData(n2Itr);
|
||||
|
||||
if (n1Data.getLinkDegree() > 2) {
|
||||
n1Data.getHeuristicData().handleAddLink(*g, n1Itr, edgeItr);
|
||||
}
|
||||
if (n2Data.getLinkDegree() > 2) {
|
||||
n2Data.getHeuristicData().handleAddLink(*g, n2Itr, edgeItr);
|
||||
}
|
||||
}
|
||||
|
||||
void handleRemoveLink(const GraphEdgeIterator &edgeItr,
|
||||
const GraphNodeIterator &nodeItr) {
|
||||
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
|
||||
nodeData.handleRemoveLink(*g, nodeItr, edgeItr);
|
||||
}
|
||||
|
||||
void processRN() {
|
||||
|
||||
/*
|
||||
std::cerr << "processRN():\n"
|
||||
<< " rNAllocable = [ ";
|
||||
for (RNAllocableNodeListIterator nItr = rNAllocableBucket.begin(),
|
||||
nEnd = rNAllocableBucket.end();
|
||||
nItr != nEnd; ++nItr) {
|
||||
std::cerr << g->getNodeID(*nItr) << " (" << g->getNodeData(*nItr).getLinkDegree() << ") ";
|
||||
}
|
||||
std::cerr << "]\n"
|
||||
<< " rNUnallocable = [ ";
|
||||
for (RNUnallocableNodeListIterator nItr = rNUnallocableBucket.begin(),
|
||||
nEnd = rNUnallocableBucket.end();
|
||||
nItr != nEnd; ++nItr) {
|
||||
float bCost = g->getNodeCosts(*nItr)[0] / g->getNodeData(*nItr).getLinkDegree();
|
||||
std::cerr << g->getNodeID(*nItr) << " (" << bCost << ") ";
|
||||
}
|
||||
std::cerr << "]\n";
|
||||
*/
|
||||
|
||||
if (!rNAllocableBucket.empty()) {
|
||||
GraphNodeIterator selectedNodeItr = *rNAllocableBucket.begin();
|
||||
//std::cerr << "RN safely pushing " << g->getNodeID(selectedNodeItr) << "\n";
|
||||
rNAllocableBucket.erase(rNAllocableBucket.begin());
|
||||
s->pushStack(selectedNodeItr);
|
||||
s->unlinkNode(selectedNodeItr);
|
||||
}
|
||||
else {
|
||||
GraphNodeIterator selectedNodeItr = *rNUnallocableBucket.begin();
|
||||
//std::cerr << "RN optimistically pushing " << g->getNodeID(selectedNodeItr) << "\n";
|
||||
rNUnallocableBucket.erase(rNUnallocableBucket.begin());
|
||||
s->pushStack(selectedNodeItr);
|
||||
s->unlinkNode(selectedNodeItr);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
bool rNBucketEmpty() const {
|
||||
return (rNAllocableBucket.empty() && rNUnallocableBucket.empty());
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
Solver *s;
|
||||
SolverGraph *g;
|
||||
RNAllocableNodeList rNAllocableBucket;
|
||||
RNUnallocableNodeList rNUnallocableBucket;
|
||||
};
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
|
@ -0,0 +1,279 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H
|
||||
#define LLVM_CODEGEN_PBQP_PBQPMATH_H
|
||||
|
||||
#include <cassert>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
typedef double PBQPNum;
|
||||
|
||||
/// \brief PBQP Vector class.
|
||||
class Vector {
|
||||
public:
|
||||
|
||||
/// \brief Construct a PBQP vector of the given size.
|
||||
explicit Vector(unsigned length) :
|
||||
length(length), data(new PBQPNum[length]) {
|
||||
}
|
||||
|
||||
/// \brief Construct a PBQP vector with initializer.
|
||||
Vector(unsigned length, PBQPNum initVal) :
|
||||
length(length), data(new PBQPNum[length]) {
|
||||
std::fill(data, data + length, initVal);
|
||||
}
|
||||
|
||||
/// \brief Copy construct a PBQP vector.
|
||||
Vector(const Vector &v) :
|
||||
length(v.length), data(new PBQPNum[length]) {
|
||||
std::copy(v.data, v.data + length, data);
|
||||
}
|
||||
|
||||
/// \brief Destroy this vector, return its memory.
|
||||
~Vector() { delete[] data; }
|
||||
|
||||
/// \brief Assignment operator.
|
||||
Vector& operator=(const Vector &v) {
|
||||
delete[] data;
|
||||
length = v.length;
|
||||
data = new PBQPNum[length];
|
||||
std::copy(v.data, v.data + length, data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Return the length of the vector
|
||||
unsigned getLength() const throw () {
|
||||
return length;
|
||||
}
|
||||
|
||||
/// \brief Element access.
|
||||
PBQPNum& operator[](unsigned index) {
|
||||
assert(index < length && "Vector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
|
||||
/// \brief Const element access.
|
||||
const PBQPNum& operator[](unsigned index) const {
|
||||
assert(index < length && "Vector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
|
||||
/// \brief Add another vector to this one.
|
||||
Vector& operator+=(const Vector &v) {
|
||||
assert(length == v.length && "Vector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Subtract another vector from this one.
|
||||
Vector& operator-=(const Vector &v) {
|
||||
assert(length == v.length && "Vector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns the index of the minimum value in this vector
|
||||
unsigned minIndex() const {
|
||||
return std::min_element(data, data + length) - data;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned length;
|
||||
PBQPNum *data;
|
||||
};
|
||||
|
||||
/// \brief Output a textual representation of the given vector on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &os, const Vector &v) {
|
||||
assert((v.getLength() != 0) && "Zero-length vector badness.");
|
||||
|
||||
os << "[ " << v[0];
|
||||
for (unsigned i = 1; i < v.getLength(); ++i) {
|
||||
os << ", " << v[i];
|
||||
}
|
||||
os << " ]";
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
/// \brief PBQP Matrix class
|
||||
class Matrix {
|
||||
public:
|
||||
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions.
|
||||
Matrix(unsigned rows, unsigned cols) :
|
||||
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
||||
}
|
||||
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions and initial
|
||||
/// value.
|
||||
Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
|
||||
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
||||
std::fill(data, data + (rows * cols), initVal);
|
||||
}
|
||||
|
||||
/// \brief Copy construct a PBQP matrix.
|
||||
Matrix(const Matrix &m) :
|
||||
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
}
|
||||
|
||||
/// \brief Destroy this matrix, return its memory.
|
||||
~Matrix() { delete[] data; }
|
||||
|
||||
/// \brief Assignment operator.
|
||||
Matrix& operator=(const Matrix &m) {
|
||||
delete[] data;
|
||||
rows = m.rows; cols = m.cols;
|
||||
data = new PBQPNum[rows * cols];
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Return the number of rows in this matrix.
|
||||
unsigned getRows() const throw () { return rows; }
|
||||
|
||||
/// \brief Return the number of cols in this matrix.
|
||||
unsigned getCols() const throw () { return cols; }
|
||||
|
||||
/// \brief Matrix element access.
|
||||
PBQPNum* operator[](unsigned r) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
|
||||
/// \brief Matrix element access.
|
||||
const PBQPNum* operator[](unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
|
||||
/// \brief Returns the given row as a vector.
|
||||
Vector getRowAsVector(unsigned r) const {
|
||||
Vector v(cols);
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
v[c] = (*this)[r][c];
|
||||
return v;
|
||||
}
|
||||
|
||||
/// \brief Returns the given column as a vector.
|
||||
Vector getColAsVector(unsigned c) const {
|
||||
Vector v(rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
v[r] = (*this)[r][c];
|
||||
return v;
|
||||
}
|
||||
|
||||
/// \brief Reset the matrix to the given value.
|
||||
Matrix& reset(PBQPNum val = 0) {
|
||||
std::fill(data, data + (rows * cols), val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Set a single row of this matrix to the given value.
|
||||
Matrix& setRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Set a single column of this matrix to the given value.
|
||||
Matrix& setCol(unsigned c, PBQPNum val) {
|
||||
assert(c < cols && "Column out of bounds.");
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] = val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Matrix transpose.
|
||||
Matrix transpose() const {
|
||||
Matrix m(cols, rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
m[c][r] = (*this)[r][c];
|
||||
return m;
|
||||
}
|
||||
|
||||
/// \brief Returns the diagonal of the matrix as a vector.
|
||||
///
|
||||
/// Matrix must be square.
|
||||
Vector diagonalize() const {
|
||||
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
|
||||
|
||||
Vector v(rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
v[r] = (*this)[r][r];
|
||||
return v;
|
||||
}
|
||||
|
||||
/// \brief Add the given matrix to this one.
|
||||
Matrix& operator+=(const Matrix &m) {
|
||||
assert(rows == m.rows && cols == m.cols &&
|
||||
"Matrix dimensions mismatch.");
|
||||
std::transform(data, data + (rows * cols), m.data, data,
|
||||
std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns the minimum of the given row
|
||||
PBQPNum getRowMin(unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
|
||||
}
|
||||
|
||||
/// \brief Returns the minimum of the given column
|
||||
PBQPNum getColMin(unsigned c) const {
|
||||
PBQPNum minElem = (*this)[0][c];
|
||||
for (unsigned r = 1; r < rows; ++r)
|
||||
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
|
||||
return minElem;
|
||||
}
|
||||
|
||||
/// \brief Subtracts the given scalar from the elements of the given row.
|
||||
Matrix& subFromRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
std::transform(data + (r * cols), data + ((r + 1) * cols),
|
||||
data + (r * cols),
|
||||
std::bind2nd(std::minus<PBQPNum>(), val));
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Subtracts the given scalar from the elements of the given column.
|
||||
Matrix& subFromCol(unsigned c, PBQPNum val) {
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] -= val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns true if this is a zero matrix.
|
||||
bool isZero() const {
|
||||
return find_if(data, data + (rows * cols),
|
||||
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
|
||||
data + (rows * cols);
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned rows, cols;
|
||||
PBQPNum *data;
|
||||
};
|
||||
|
||||
/// \brief Output a textual representation of the given matrix on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &os, const Matrix &m) {
|
||||
|
||||
assert((m.getRows() != 0) && "Zero-row matrix badness.");
|
||||
|
||||
for (unsigned i = 0; i < m.getRows(); ++i) {
|
||||
os << m.getRowAsVector(i);
|
||||
}
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP
|
|
@ -0,0 +1,86 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
|
||||
#define LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
|
||||
|
||||
#include "GraphBase.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
class SimpleEdge;
|
||||
|
||||
class SimpleNode : public NodeBase<SimpleNode, SimpleEdge> {
|
||||
public:
|
||||
SimpleNode(const Vector &costs) :
|
||||
NodeBase<SimpleNode, SimpleEdge>(costs) {}
|
||||
};
|
||||
|
||||
class SimpleEdge : public EdgeBase<SimpleNode, SimpleEdge> {
|
||||
public:
|
||||
SimpleEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
|
||||
const Matrix &costs) :
|
||||
EdgeBase<SimpleNode, SimpleEdge>(node1Itr, node2Itr, costs) {}
|
||||
};
|
||||
|
||||
class SimpleGraph : public GraphBase<SimpleNode, SimpleEdge> {
|
||||
private:
|
||||
|
||||
typedef GraphBase<SimpleNode, SimpleEdge> PGraph;
|
||||
|
||||
void copyFrom(const SimpleGraph &other) {
|
||||
assert(other.areNodeIDsValid() &&
|
||||
"Cannot copy from another graph unless IDs have been assigned.");
|
||||
|
||||
std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
|
||||
|
||||
for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
|
||||
}
|
||||
|
||||
for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
|
||||
unsigned node1ID = other.getNodeID(other.getEdgeNode1Itr(eItr)),
|
||||
node2ID = other.getNodeID(other.getEdgeNode2Itr(eItr));
|
||||
|
||||
addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
|
||||
other.getEdgeCosts(eItr));
|
||||
}
|
||||
}
|
||||
|
||||
void copyFrom(SimpleGraph &other) {
|
||||
if (!other.areNodeIDsValid()) {
|
||||
other.assignNodeIDs();
|
||||
}
|
||||
copyFrom(const_cast<const SimpleGraph&>(other));
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
SimpleGraph() {}
|
||||
|
||||
|
||||
SimpleGraph(const SimpleGraph &other) : PGraph() {
|
||||
copyFrom(other);
|
||||
}
|
||||
|
||||
SimpleGraph& operator=(const SimpleGraph &other) {
|
||||
clear();
|
||||
copyFrom(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
NodeIterator addNode(const Vector &costs) {
|
||||
return PGraph::addConstructedNode(SimpleNode(costs));
|
||||
}
|
||||
|
||||
EdgeIterator addEdge(const NodeIterator &node1Itr,
|
||||
const NodeIterator &node2Itr,
|
||||
const Matrix &costs) {
|
||||
return PGraph::addConstructedEdge(SimpleEdge(node1Itr, node2Itr, costs));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
|
|
@ -0,0 +1,74 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
|
||||
#define LLVM_CODEGEN_PBQP_SOLUTION_H
|
||||
|
||||
#include "PBQPMath.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
class Solution {
|
||||
|
||||
friend class SolverImplementation;
|
||||
|
||||
private:
|
||||
|
||||
std::vector<unsigned> selections;
|
||||
PBQPNum solutionCost;
|
||||
bool provedOptimal;
|
||||
unsigned r0Reductions, r1Reductions,
|
||||
r2Reductions, rNReductions;
|
||||
|
||||
public:
|
||||
|
||||
Solution() :
|
||||
solutionCost(0.0), provedOptimal(false),
|
||||
r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
|
||||
|
||||
Solution(unsigned length, bool assumeOptimal) :
|
||||
selections(length), solutionCost(0.0), provedOptimal(assumeOptimal),
|
||||
r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
|
||||
|
||||
void setProvedOptimal(bool provedOptimal) {
|
||||
this->provedOptimal = provedOptimal;
|
||||
}
|
||||
|
||||
void setSelection(unsigned nodeID, unsigned selection) {
|
||||
selections[nodeID] = selection;
|
||||
}
|
||||
|
||||
void setSolutionCost(PBQPNum solutionCost) {
|
||||
this->solutionCost = solutionCost;
|
||||
}
|
||||
|
||||
void incR0Reductions() { ++r0Reductions; }
|
||||
void incR1Reductions() { ++r1Reductions; }
|
||||
void incR2Reductions() { ++r2Reductions; }
|
||||
void incRNReductions() { ++rNReductions; }
|
||||
|
||||
unsigned numNodes() const { return selections.size(); }
|
||||
|
||||
unsigned getSelection(unsigned nodeID) const {
|
||||
return selections[nodeID];
|
||||
}
|
||||
|
||||
PBQPNum getCost() const { return solutionCost; }
|
||||
|
||||
bool isProvedOptimal() const { return provedOptimal; }
|
||||
|
||||
unsigned getR0Reductions() const { return r0Reductions; }
|
||||
unsigned getR1Reductions() const { return r1Reductions; }
|
||||
unsigned getR2Reductions() const { return r2Reductions; }
|
||||
unsigned getRNReductions() const { return rNReductions; }
|
||||
|
||||
bool operator==(const Solution &other) const {
|
||||
return (selections == other.selections);
|
||||
}
|
||||
|
||||
bool operator!=(const Solution &other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_SOLUTION_H
|
|
@ -0,0 +1,21 @@
|
|||
#ifndef LLVM_CODEGEN_PBQP_SOLVER_H
|
||||
#define LLVM_CODEGEN_PBQP_SOLVER_H
|
||||
|
||||
#include "SimpleGraph.h"
|
||||
#include "Solution.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// \brief Interface for solver classes.
|
||||
class Solver {
|
||||
public:
|
||||
|
||||
virtual ~Solver() = 0;
|
||||
virtual Solution solve(const SimpleGraph &orig) const = 0;
|
||||
};
|
||||
|
||||
Solver::~Solver() {}
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_SOLVER_H
|
|
@ -31,7 +31,9 @@
|
|||
|
||||
#define DEBUG_TYPE "regalloc"
|
||||
|
||||
#include "PBQP.h"
|
||||
#include "PBQP/HeuristicSolver.h"
|
||||
#include "PBQP/SimpleGraph.h"
|
||||
#include "PBQP/Heuristics/Briggs.h"
|
||||
#include "VirtRegMap.h"
|
||||
#include "VirtRegRewriter.h"
|
||||
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
||||
|
@ -54,42 +56,41 @@
|
|||
using namespace llvm;
|
||||
|
||||
static RegisterRegAlloc
|
||||
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
|
||||
createPBQPRegisterAllocator);
|
||||
registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
|
||||
llvm::createPBQPRegisterAllocator);
|
||||
|
||||
namespace {
|
||||
|
||||
//!
|
||||
//! PBQP based allocators solve the register allocation problem by mapping
|
||||
//! register allocation problems to Partitioned Boolean Quadratic
|
||||
//! Programming problems.
|
||||
///
|
||||
/// PBQP based allocators solve the register allocation problem by mapping
|
||||
/// register allocation problems to Partitioned Boolean Quadratic
|
||||
/// Programming problems.
|
||||
class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
|
||||
public:
|
||||
|
||||
static char ID;
|
||||
|
||||
//! Construct a PBQP register allocator.
|
||||
/// Construct a PBQP register allocator.
|
||||
PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
|
||||
|
||||
//! Return the pass name.
|
||||
/// Return the pass name.
|
||||
virtual const char* getPassName() const throw() {
|
||||
return "PBQP Register Allocator";
|
||||
}
|
||||
|
||||
//! PBQP analysis usage.
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesCFG();
|
||||
AU.addRequired<LiveIntervals>();
|
||||
AU.addRequiredTransitive<RegisterCoalescer>();
|
||||
AU.addRequired<LiveStacks>();
|
||||
AU.addPreserved<LiveStacks>();
|
||||
AU.addRequired<MachineLoopInfo>();
|
||||
AU.addPreserved<MachineLoopInfo>();
|
||||
AU.addRequired<VirtRegMap>();
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
/// PBQP analysis usage.
|
||||
virtual void getAnalysisUsage(AnalysisUsage &au) const {
|
||||
au.addRequired<LiveIntervals>();
|
||||
//au.addRequiredID(SplitCriticalEdgesID);
|
||||
au.addRequired<LiveStacks>();
|
||||
au.addPreserved<LiveStacks>();
|
||||
au.addRequired<MachineLoopInfo>();
|
||||
au.addPreserved<MachineLoopInfo>();
|
||||
au.addRequired<VirtRegMap>();
|
||||
MachineFunctionPass::getAnalysisUsage(au);
|
||||
}
|
||||
|
||||
//! Perform register allocation
|
||||
/// Perform register allocation
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||||
|
||||
private:
|
||||
|
@ -99,7 +100,7 @@ namespace {
|
|||
typedef std::vector<AllowedSet> AllowedSetMap;
|
||||
typedef std::set<unsigned> RegSet;
|
||||
typedef std::pair<unsigned, unsigned> RegPair;
|
||||
typedef std::map<RegPair, PBQPNum> CoalesceMap;
|
||||
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
|
||||
|
||||
typedef std::set<LiveInterval*> LiveIntervalSet;
|
||||
|
||||
|
@ -121,60 +122,60 @@ namespace {
|
|||
emptyVRegIntervals;
|
||||
|
||||
|
||||
//! Builds a PBQP cost vector.
|
||||
/// Builds a PBQP cost vector.
|
||||
template <typename RegContainer>
|
||||
PBQPVector* buildCostVector(unsigned vReg,
|
||||
const RegContainer &allowed,
|
||||
const CoalesceMap &cealesces,
|
||||
PBQPNum spillCost) const;
|
||||
PBQP::Vector buildCostVector(unsigned vReg,
|
||||
const RegContainer &allowed,
|
||||
const CoalesceMap &cealesces,
|
||||
PBQP::PBQPNum spillCost) const;
|
||||
|
||||
//! \brief Builds a PBQP interference matrix.
|
||||
//!
|
||||
//! @return Either a pointer to a non-zero PBQP matrix representing the
|
||||
//! allocation option costs, or a null pointer for a zero matrix.
|
||||
//!
|
||||
//! Expects allowed sets for two interfering LiveIntervals. These allowed
|
||||
//! sets should contain only allocable registers from the LiveInterval's
|
||||
//! register class, with any interfering pre-colored registers removed.
|
||||
/// \brief Builds a PBQP interference matrix.
|
||||
///
|
||||
/// @return Either a pointer to a non-zero PBQP matrix representing the
|
||||
/// allocation option costs, or a null pointer for a zero matrix.
|
||||
///
|
||||
/// Expects allowed sets for two interfering LiveIntervals. These allowed
|
||||
/// sets should contain only allocable registers from the LiveInterval's
|
||||
/// register class, with any interfering pre-colored registers removed.
|
||||
template <typename RegContainer>
|
||||
PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
|
||||
const RegContainer &allowed2) const;
|
||||
PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
|
||||
const RegContainer &allowed2) const;
|
||||
|
||||
//!
|
||||
//! Expects allowed sets for two potentially coalescable LiveIntervals,
|
||||
//! and an estimated benefit due to coalescing. The allowed sets should
|
||||
//! contain only allocable registers from the LiveInterval's register
|
||||
//! classes, with any interfering pre-colored registers removed.
|
||||
///
|
||||
/// Expects allowed sets for two potentially coalescable LiveIntervals,
|
||||
/// and an estimated benefit due to coalescing. The allowed sets should
|
||||
/// contain only allocable registers from the LiveInterval's register
|
||||
/// classes, with any interfering pre-colored registers removed.
|
||||
template <typename RegContainer>
|
||||
PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
|
||||
const RegContainer &allowed2,
|
||||
PBQPNum cBenefit) const;
|
||||
PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
|
||||
const RegContainer &allowed2,
|
||||
PBQP::PBQPNum cBenefit) const;
|
||||
|
||||
//! \brief Finds coalescing opportunities and returns them as a map.
|
||||
//!
|
||||
//! Any entries in the map are guaranteed coalescable, even if their
|
||||
//! corresponding live intervals overlap.
|
||||
/// \brief Finds coalescing opportunities and returns them as a map.
|
||||
///
|
||||
/// Any entries in the map are guaranteed coalescable, even if their
|
||||
/// corresponding live intervals overlap.
|
||||
CoalesceMap findCoalesces();
|
||||
|
||||
//! \brief Finds the initial set of vreg intervals to allocate.
|
||||
/// \brief Finds the initial set of vreg intervals to allocate.
|
||||
void findVRegIntervalsToAlloc();
|
||||
|
||||
//! \brief Constructs a PBQP problem representation of the register
|
||||
//! allocation problem for this function.
|
||||
//!
|
||||
//! @return a PBQP solver object for the register allocation problem.
|
||||
pbqp* constructPBQPProblem();
|
||||
/// \brief Constructs a PBQP problem representation of the register
|
||||
/// allocation problem for this function.
|
||||
///
|
||||
/// @return a PBQP solver object for the register allocation problem.
|
||||
PBQP::SimpleGraph constructPBQPProblem();
|
||||
|
||||
//! \brief Adds a stack interval if the given live interval has been
|
||||
//! spilled. Used to support stack slot coloring.
|
||||
/// \brief Adds a stack interval if the given live interval has been
|
||||
/// spilled. Used to support stack slot coloring.
|
||||
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
|
||||
|
||||
//! \brief Given a solved PBQP problem maps this solution back to a register
|
||||
//! assignment.
|
||||
bool mapPBQPToRegAlloc(pbqp *problem);
|
||||
/// \brief Given a solved PBQP problem maps this solution back to a register
|
||||
/// assignment.
|
||||
bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
|
||||
|
||||
//! \brief Postprocessing before final spilling. Sets basic block "live in"
|
||||
//! variables.
|
||||
/// \brief Postprocessing before final spilling. Sets basic block "live in"
|
||||
/// variables.
|
||||
void finalizeAlloc() const;
|
||||
|
||||
};
|
||||
|
@ -184,17 +185,17 @@ namespace {
|
|||
|
||||
|
||||
template <typename RegContainer>
|
||||
PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
|
||||
const RegContainer &allowed,
|
||||
const CoalesceMap &coalesces,
|
||||
PBQPNum spillCost) const {
|
||||
PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
|
||||
const RegContainer &allowed,
|
||||
const CoalesceMap &coalesces,
|
||||
PBQP::PBQPNum spillCost) const {
|
||||
|
||||
typedef typename RegContainer::const_iterator AllowedItr;
|
||||
|
||||
// Allocate vector. Additional element (0th) used for spill option
|
||||
PBQPVector *v = new PBQPVector(allowed.size() + 1);
|
||||
PBQP::Vector v(allowed.size() + 1, 0);
|
||||
|
||||
(*v)[0] = spillCost;
|
||||
v[0] = spillCost;
|
||||
|
||||
// Iterate over the allowed registers inserting coalesce benefits if there
|
||||
// are any.
|
||||
|
@ -212,14 +213,14 @@ PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
|
|||
continue;
|
||||
|
||||
// We have a coalesce - insert the benefit.
|
||||
(*v)[ai + 1] = -cmItr->second;
|
||||
v[ai + 1] = -cmItr->second;
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
template <typename RegContainer>
|
||||
PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
|
||||
PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
|
||||
const RegContainer &allowed1, const RegContainer &allowed2) const {
|
||||
|
||||
typedef typename RegContainer::const_iterator RegContainerIterator;
|
||||
|
@ -232,7 +233,8 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
|
|||
// that the spill option (element 0,0) has zero cost, since we can allocate
|
||||
// both intervals to memory safely (the cost for each individual allocation
|
||||
// to memory is accounted for by the cost vectors for each live interval).
|
||||
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
|
||||
PBQP::Matrix *m =
|
||||
new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
|
||||
|
||||
// Assume this is a zero matrix until proven otherwise. Zero matrices occur
|
||||
// between interfering live ranges with non-overlapping register sets (e.g.
|
||||
|
@ -262,7 +264,7 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
|
|||
|
||||
// If the row/column regs are identical or alias insert an infinity.
|
||||
if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
|
||||
(*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
|
||||
(*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
|
||||
isZeroMatrix = false;
|
||||
}
|
||||
|
||||
|
@ -284,9 +286,9 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
|
|||
}
|
||||
|
||||
template <typename RegContainer>
|
||||
PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
|
||||
PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
|
||||
const RegContainer &allowed1, const RegContainer &allowed2,
|
||||
PBQPNum cBenefit) const {
|
||||
PBQP::PBQPNum cBenefit) const {
|
||||
|
||||
typedef typename RegContainer::const_iterator RegContainerIterator;
|
||||
|
||||
|
@ -295,7 +297,8 @@ PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
|
|||
// for the LiveIntervals which are (potentially) to be coalesced. The amount
|
||||
// -cBenefit will be placed in any element representing the same register
|
||||
// for both intervals.
|
||||
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
|
||||
PBQP::Matrix *m =
|
||||
new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
|
||||
|
||||
// Reset costs to zero.
|
||||
m->reset(0);
|
||||
|
@ -497,10 +500,11 @@ void PBQPRegAlloc::findVRegIntervalsToAlloc() {
|
|||
}
|
||||
}
|
||||
|
||||
pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
||||
PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
|
||||
|
||||
typedef std::vector<const LiveInterval*> LIVector;
|
||||
typedef std::vector<unsigned> RegVector;
|
||||
typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
|
||||
|
||||
// This will store the physical intervals for easy reference.
|
||||
LIVector physIntervals;
|
||||
|
@ -532,10 +536,11 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
|||
}
|
||||
|
||||
// Get the set of potential coalesces.
|
||||
CoalesceMap coalesces(findCoalesces());
|
||||
CoalesceMap coalesces;//(findCoalesces());
|
||||
|
||||
// Construct a PBQP solver for this problem
|
||||
pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
|
||||
PBQP::SimpleGraph problem;
|
||||
NodeVector problemNodes(vregIntervalsToAlloc.size());
|
||||
|
||||
// Resize allowedSets container appropriately.
|
||||
allowedSets.resize(vregIntervalsToAlloc.size());
|
||||
|
@ -596,13 +601,13 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
|||
|
||||
// Set the spill cost to the interval weight, or epsilon if the
|
||||
// interval weight is zero
|
||||
PBQPNum spillCost = (li->weight != 0.0) ?
|
||||
li->weight : std::numeric_limits<PBQPNum>::min();
|
||||
PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
|
||||
li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
|
||||
|
||||
// Build a cost vector for this interval.
|
||||
add_pbqp_nodecosts(solver, node,
|
||||
buildCostVector(li->reg, allowedSets[node], coalesces,
|
||||
spillCost));
|
||||
problemNodes[node] =
|
||||
problem.addNode(
|
||||
buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
|
||||
|
||||
}
|
||||
|
||||
|
@ -618,7 +623,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
|||
CoalesceMap::const_iterator cmItr =
|
||||
coalesces.find(RegPair(li->reg, li2->reg));
|
||||
|
||||
PBQPMatrix *m = 0;
|
||||
PBQP::Matrix *m = 0;
|
||||
|
||||
if (cmItr != coalesces.end()) {
|
||||
m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
|
||||
|
@ -629,14 +634,29 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
|||
}
|
||||
|
||||
if (m != 0) {
|
||||
add_pbqp_edgecosts(solver, node1, node2, m);
|
||||
problem.addEdge(problemNodes[node1],
|
||||
problemNodes[node2],
|
||||
*m);
|
||||
|
||||
delete m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
problem.assignNodeIDs();
|
||||
|
||||
assert(problem.getNumNodes() == allowedSets.size());
|
||||
for (unsigned i = 0; i < allowedSets.size(); ++i) {
|
||||
assert(problem.getNodeItr(i) == problemNodes[i]);
|
||||
}
|
||||
/*
|
||||
std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
|
||||
<< problem.getNumEdges() << " edges.\n";
|
||||
|
||||
problem.printDot(std::cerr);
|
||||
*/
|
||||
// We're done, PBQP problem constructed - return it.
|
||||
return solver;
|
||||
return problem;
|
||||
}
|
||||
|
||||
void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
|
||||
|
@ -659,7 +679,9 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
|
|||
stackInterval.MergeRangesInAsValue(rhsInterval, vni);
|
||||
}
|
||||
|
||||
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
|
||||
bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
|
||||
|
||||
static unsigned round = 0;
|
||||
|
||||
// Set to true if we have any spills
|
||||
bool anotherRoundNeeded = false;
|
||||
|
@ -667,10 +689,56 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
|
|||
// Clear the existing allocation.
|
||||
vrm->clearAllVirt();
|
||||
|
||||
CoalesceMap coalesces;//(findCoalesces());
|
||||
|
||||
for (unsigned i = 0; i < node2LI.size(); ++i) {
|
||||
if (solution.getSelection(i) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned iSel = solution.getSelection(i);
|
||||
unsigned iAlloc = allowedSets[i][iSel - 1];
|
||||
|
||||
for (unsigned j = i + 1; j < node2LI.size(); ++j) {
|
||||
|
||||
if (solution.getSelection(j) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned jSel = solution.getSelection(j);
|
||||
unsigned jAlloc = allowedSets[j][jSel - 1];
|
||||
|
||||
if ((iAlloc != jAlloc) && !tri->areAliases(iAlloc, jAlloc)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node2LI[i]->overlaps(*node2LI[j])) {
|
||||
if (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) == coalesces.end()) {
|
||||
DEBUG(errs() << "In round " << ++round << ":\n"
|
||||
<< "Bogusness in " << mf->getFunction()->getName() << "!\n"
|
||||
<< "Live interval " << i << " (reg" << node2LI[i]->reg << ") and\n"
|
||||
<< "Live interval " << j << " (reg" << node2LI[j]->reg << ")\n"
|
||||
<< " were allocated registers " << iAlloc << " (index " << iSel << ") and "
|
||||
<< jAlloc << "(index " << jSel
|
||||
<< ") respectively in a graph of " << solution.numNodes() << " nodes.\n"
|
||||
<< "li[i]->empty() = " << node2LI[i]->empty() << "\n"
|
||||
<< "li[j]->empty() = " << node2LI[j]->empty() << "\n"
|
||||
<< "li[i]->overlaps(li[j]) = " << node2LI[i]->overlaps(*node2LI[j]) << "\n"
|
||||
<< "coalesce = " << (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) != coalesces.end()) << "\n");
|
||||
|
||||
DEBUG(errs() << "solution.getCost() = " << solution.getCost() << "\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Iterate over the nodes mapping the PBQP solution to a register assignment.
|
||||
for (unsigned node = 0; node < node2LI.size(); ++node) {
|
||||
unsigned virtReg = node2LI[node]->reg,
|
||||
allocSelection = get_pbqp_solution(problem, node);
|
||||
allocSelection = solution.getSelection(node);
|
||||
|
||||
|
||||
// If the PBQP solution is non-zero it's a physical register...
|
||||
if (allocSelection != 0) {
|
||||
|
@ -731,11 +799,12 @@ void PBQPRegAlloc::finalizeAlloc() const {
|
|||
|
||||
// First allocate registers for the empty intervals.
|
||||
for (LiveIntervalSet::const_iterator
|
||||
itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
|
||||
itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
|
||||
itr != end; ++itr) {
|
||||
LiveInterval *li = *itr;
|
||||
|
||||
unsigned physReg = vrm->getRegAllocPref(li->reg);
|
||||
|
||||
if (physReg == 0) {
|
||||
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
|
||||
physReg = *liRC->allocation_order_begin(*mf);
|
||||
|
@ -766,8 +835,8 @@ void PBQPRegAlloc::finalizeAlloc() const {
|
|||
continue;
|
||||
}
|
||||
|
||||
// Ignore unallocated vregs:
|
||||
if (reg == 0) {
|
||||
// Filter out zero regs - they're for intervals that were spilled.
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -806,8 +875,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
|
|||
|
||||
vrm = &getAnalysis<VirtRegMap>();
|
||||
|
||||
DEBUG(errs() << "PBQP Register Allocating for "
|
||||
<< mf->getFunction()->getName() << "\n");
|
||||
DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
|
||||
|
||||
// Allocator main loop:
|
||||
//
|
||||
|
@ -832,15 +900,19 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
|
|||
unsigned round = 0;
|
||||
|
||||
while (!pbqpAllocComplete) {
|
||||
DOUT << " PBQP Regalloc round " << round << ":\n";
|
||||
DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
|
||||
|
||||
pbqp *problem = constructPBQPProblem();
|
||||
|
||||
solve_pbqp(problem);
|
||||
|
||||
pbqpAllocComplete = mapPBQPToRegAlloc(problem);
|
||||
|
||||
free_pbqp(problem);
|
||||
PBQP::SimpleGraph problem = constructPBQPProblem();
|
||||
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
|
||||
problem.assignNodeIDs();
|
||||
PBQP::Solution solution = solver.solve(problem);
|
||||
/*
|
||||
std::cerr << "Solution:\n";
|
||||
for (unsigned i = 0; i < solution.numNodes(); ++i) {
|
||||
std::cerr << " " << i << " -> " << solution.getSelection(i) << "\n";
|
||||
}
|
||||
*/
|
||||
pbqpAllocComplete = mapPBQPToRegAlloc(solution);
|
||||
|
||||
++round;
|
||||
}
|
||||
|
@ -855,7 +927,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
|
|||
node2LI.clear();
|
||||
allowedSets.clear();
|
||||
|
||||
DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
|
||||
DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
|
||||
|
||||
// Run rewriter
|
||||
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
|
||||
|
|
Loading…
Reference in New Issue