[flang][OpenMP] Fix the types of worksharing-loop variables

The types of lower bound, upper bound, and step are converted into the
type of the loop variable if necessary. OpenMP runtime requires 32-bit
or 64-bit loop variables. OpenMP loop iteration variable cannot have
more than 64 bits size and will be narrowed.

This patch is part of upstreaming code from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project. (#1256)

Co-authored-by: kiranchandramohan <kiranchandramohan@gmail.com>

Reviewed By: kiranchandramohan, shraiysh

Differential Revision: https://reviews.llvm.org/D125740
This commit is contained in:
Peixin-Qiao 2022-05-20 15:16:03 +08:00
parent 8fc4fcecb8
commit 870f4421ac
2 changed files with 169 additions and 6 deletions

View File

@ -120,6 +120,24 @@ static void genObjectList(const Fortran::parser::OmpObjectList &objectList,
}
}
static mlir::Type getLoopVarType(Fortran::lower::AbstractConverter &converter,
std::size_t loopVarTypeSize) {
// OpenMP runtime requires 32-bit or 64-bit loop variables.
loopVarTypeSize = loopVarTypeSize * 8;
if (loopVarTypeSize < 32) {
loopVarTypeSize = 32;
} else if (loopVarTypeSize > 64) {
loopVarTypeSize = 64;
mlir::emitWarning(converter.getCurrentLocation(),
"OpenMP loop iteration variable cannot have more than 64 "
"bits size and will be narrowed into 64 bits.");
}
assert((loopVarTypeSize == 32 || loopVarTypeSize == 64) &&
"OpenMP loop iteration variable size must be transformed into 32-bit "
"or 64-bit");
return converter.getFirOpBuilder().getIntegerType(loopVarTypeSize);
}
/// Create the body (block) for an OpenMP Operation.
///
/// \param [in] op - the operation the body belongs to.
@ -143,15 +161,19 @@ createBodyOfOp(Op &op, Fortran::lower::AbstractConverter &converter,
// e.g. For loops the arguments are the induction variable. And all further
// uses of the induction variable should use this mlir value.
if (args.size()) {
std::size_t loopVarTypeSize = 0;
for (const Fortran::semantics::Symbol *arg : args)
loopVarTypeSize = std::max(loopVarTypeSize, arg->GetUltimate().size());
mlir::Type loopVarType = getLoopVarType(converter, loopVarTypeSize);
SmallVector<Type> tiv;
SmallVector<Location> locs;
int argIndex = 0;
for (auto &arg : args) {
tiv.push_back(converter.genType(*arg));
for (int i = 0; i < (int)args.size(); i++) {
tiv.push_back(loopVarType);
locs.push_back(loc);
}
firOpBuilder.createBlock(&op.getRegion(), {}, tiv, locs);
for (auto &arg : args) {
int argIndex = 0;
for (const Fortran::semantics::Symbol *arg : args) {
fir::ExtendedValue exval = op.getRegion().front().getArgument(argIndex);
converter.bindSymbol(*arg, exval);
argIndex++;
@ -490,11 +512,12 @@ static void genOMP(Fortran::lower::AbstractConverter &converter,
TODO(converter.getCurrentLocation(), "Construct enclosing do loop");
}
int64_t collapseValue = Fortran::lower::getCollapseValue(wsLoopOpClauseList);
// Collect the loops to collapse.
auto *doConstructEval = &eval.getFirstNestedEvaluation();
std::int64_t collapseValue =
Fortran::lower::getCollapseValue(wsLoopOpClauseList);
std::size_t loopVarTypeSize = 0;
SmallVector<const Fortran::semantics::Symbol *> iv;
do {
auto *doLoop = &doConstructEval->getFirstNestedEvaluation();
@ -518,12 +541,26 @@ static void genOMP(Fortran::lower::AbstractConverter &converter,
currentLocation, firOpBuilder.getIntegerType(32), 1));
}
iv.push_back(bounds->name.thing.symbol);
loopVarTypeSize = std::max(loopVarTypeSize,
bounds->name.thing.symbol->GetUltimate().size());
collapseValue--;
doConstructEval =
&*std::next(doConstructEval->getNestedEvaluations().begin());
} while (collapseValue > 0);
// The types of lower bound, upper bound, and step are converted into the
// type of the loop variable if necessary.
mlir::Type loopVarType = getLoopVarType(converter, loopVarTypeSize);
for (unsigned it = 0; it < (unsigned)lowerBound.size(); it++) {
lowerBound[it] = firOpBuilder.createConvert(currentLocation, loopVarType,
lowerBound[it]);
upperBound[it] = firOpBuilder.createConvert(currentLocation, loopVarType,
upperBound[it]);
step[it] =
firOpBuilder.createConvert(currentLocation, loopVarType, step[it]);
}
// FIXME: Add support for following clauses:
// 1. linear
// 2. order

View File

@ -0,0 +1,126 @@
! This test checks lowering of OpenMP DO Directive(Worksharing) for different
! types of loop iteration variable, lower bound, upper bound, and step.
!REQUIRES: shell
!RUN: bbc -fopenmp -emit-fir %s -o - 2>&1 | FileCheck %s
!CHECK: OpenMP loop iteration variable cannot have more than 64 bits size and will be narrowed into 64 bits.
program wsloop_variable
integer(kind=1) :: i1_lb, i1_ub
integer(kind=2) :: i2, i2_ub, i2_s
integer(kind=4) :: i4_s
integer(kind=8) :: i8, i8_s
integer(kind=16) :: i16, i16_lb
real :: x
!CHECK: [[TMP0:%.*]] = arith.constant 1 : i32
!CHECK: [[TMP1:%.*]] = arith.constant 100 : i32
!CHECK: [[TMP2:%.*]] = fir.convert [[TMP0]] : (i32) -> i64
!CHECK: [[TMP3:%.*]] = fir.convert %{{.*}} : (i8) -> i64
!CHECK: [[TMP4:%.*]] = fir.convert %{{.*}} : (i16) -> i64
!CHECK: [[TMP5:%.*]] = fir.convert %{{.*}} : (i128) -> i64
!CHECK: [[TMP6:%.*]] = fir.convert [[TMP1]] : (i32) -> i64
!CHECK: [[TMP7:%.*]] = fir.convert %{{.*}} : (i32) -> i64
!CHECK: omp.wsloop collapse(2) for ([[TMP8:%.*]], [[TMP9:%.*]]) : i64 = ([[TMP2]], [[TMP5]]) to ([[TMP3]], [[TMP6]]) inclusive step ([[TMP4]], [[TMP7]]) {
!CHECK: [[TMP10:%.*]] = arith.addi [[TMP8]], [[TMP9]] : i64
!CHECK: [[TMP11:%.*]] = fir.convert [[TMP10]] : (i64) -> f32
!CHECK: fir.store [[TMP11]] to %{{.*}} : !fir.ref<f32>
!CHECK: omp.yield
!CHECK: }
!$omp do collapse(2)
do i2 = 1, i1_ub, i2_s
do i8 = i16_lb, 100, i4_s
x = i2 + i8
end do
end do
!$omp end do
!CHECK: [[TMP12:%.*]] = arith.constant 1 : i32
!CHECK: [[TMP13:%.*]] = fir.convert %{{.*}} : (i8) -> i32
!CHECK: [[TMP14:%.*]] = fir.convert %{{.*}} : (i64) -> i32
!CHECK: omp.wsloop for ([[TMP15:%.*]]) : i32 = ([[TMP12]]) to ([[TMP13]]) inclusive step ([[TMP14]]) {
!CHECK: [[TMP16:%.*]] = fir.convert [[TMP15]] : (i32) -> f32
!CHECK: fir.store [[TMP16]] to %{{.*}} : !fir.ref<f32>
!CHECK: omp.yield
!CHECK: }
!$omp do
do i2 = 1, i1_ub, i8_s
x = i2
end do
!$omp end do
!CHECK: [[TMP17:%.*]] = fir.convert %{{.*}} : (i8) -> i64
!CHECK: [[TMP18:%.*]] = fir.convert %{{.*}} : (i16) -> i64
!CHECK: [[TMP19:%.*]] = fir.convert %{{.*}} : (i32) -> i64
!CHECK: omp.wsloop for ([[TMP20:%.*]]) : i64 = ([[TMP17]]) to ([[TMP18]]) inclusive step ([[TMP19]]) {
!CHECK: [[TMP21:%.*]] = fir.convert [[TMP20]] : (i64) -> f32
!CHECK: fir.store [[TMP21]] to %{{.*}} : !fir.ref<f32>
!CHECK: omp.yield
!CHECK: }
!$omp do
do i16 = i1_lb, i2_ub, i4_s
x = i16
end do
!$omp end do
end program wsloop_variable
!CHECK-LABEL: func.func @_QPwsloop_variable_sub() {
!CHECK: %[[VAL_0:.*]] = fir.alloca i128 {bindc_name = "i16_lb", uniq_name = "_QFwsloop_variable_subEi16_lb"}
!CHECK: %[[VAL_1:.*]] = fir.alloca i8 {bindc_name = "i1_ub", uniq_name = "_QFwsloop_variable_subEi1_ub"}
!CHECK: %[[VAL_2:.*]] = fir.alloca i16 {bindc_name = "i2", uniq_name = "_QFwsloop_variable_subEi2"}
!CHECK: %[[VAL_3:.*]] = fir.alloca i16 {bindc_name = "i2_s", uniq_name = "_QFwsloop_variable_subEi2_s"}
!CHECK: %[[VAL_4:.*]] = fir.alloca i32 {bindc_name = "i4_s", uniq_name = "_QFwsloop_variable_subEi4_s"}
!CHECK: %[[VAL_5:.*]] = fir.alloca i64 {bindc_name = "i8", uniq_name = "_QFwsloop_variable_subEi8"}
!CHECK: %[[VAL_6:.*]] = fir.alloca f32 {bindc_name = "x", uniq_name = "_QFwsloop_variable_subEx"}
!CHECK: %[[VAL_7:.*]] = arith.constant 1 : i32
!CHECK: %[[VAL_8:.*]] = fir.load %[[VAL_1]] : !fir.ref<i8>
!CHECK: %[[VAL_9:.*]] = fir.load %[[VAL_3]] : !fir.ref<i16>
!CHECK: %[[VAL_10:.*]] = fir.convert %[[VAL_8]] : (i8) -> i32
!CHECK: %[[VAL_11:.*]] = fir.convert %[[VAL_9]] : (i16) -> i32
!CHECK: omp.wsloop for (%[[VAL_12:.*]]) : i32 = (%[[VAL_7]]) to (%[[VAL_10]]) inclusive step (%[[VAL_11]]) {
!CHECK: %[[VAL_13:.*]] = fir.load %[[VAL_0]] : !fir.ref<i128>
!CHECK: %[[VAL_14:.*]] = fir.convert %[[VAL_13]] : (i128) -> index
!CHECK: %[[VAL_15:.*]] = arith.constant 100 : i32
!CHECK: %[[VAL_16:.*]] = fir.convert %[[VAL_15]] : (i32) -> index
!CHECK: %[[VAL_17:.*]] = fir.load %[[VAL_4]] : !fir.ref<i32>
!CHECK: %[[VAL_18:.*]] = fir.convert %[[VAL_17]] : (i32) -> index
!CHECK: %[[VAL_19:.*]] = fir.do_loop %[[VAL_20:.*]] = %[[VAL_14]] to %[[VAL_16]] step %[[VAL_18]] -> index {
!CHECK: %[[VAL_21:.*]] = fir.convert %[[VAL_20]] : (index) -> i64
!CHECK: fir.store %[[VAL_21]] to %[[VAL_5]] : !fir.ref<i64>
!CHECK: %[[VAL_22:.*]] = fir.convert %[[VAL_12]] : (i32) -> i64
!CHECK: %[[VAL_23:.*]] = fir.load %[[VAL_5]] : !fir.ref<i64>
!CHECK: %[[VAL_24:.*]] = arith.addi %[[VAL_22]], %[[VAL_23]] : i64
!CHECK: %[[VAL_25:.*]] = fir.convert %[[VAL_24]] : (i64) -> f32
!CHECK: fir.store %[[VAL_25]] to %[[VAL_6]] : !fir.ref<f32>
!CHECK: %[[VAL_26:.*]] = arith.addi %[[VAL_20]], %[[VAL_18]] : index
!CHECK: fir.result %[[VAL_26]] : index
!CHECK: }
!CHECK: %[[VAL_27:.*]] = fir.convert %[[VAL_28:.*]] : (index) -> i64
!CHECK: fir.store %[[VAL_27]] to %[[VAL_5]] : !fir.ref<i64>
!CHECK: omp.yield
!CHECK: }
!CHECK: return
!CHECK: }
subroutine wsloop_variable_sub
integer(kind=1) :: i1_ub
integer(kind=2) :: i2, i2_s
integer(kind=4) :: i4_s
integer(kind=8) :: i8
integer(kind=16) :: i16_lb
real :: x
!$omp do
do i2 = 1, i1_ub, i2_s
do i8 = i16_lb, 100, i4_s
x = i2 + i8
end do
end do
!$omp end do
end