[AArch64] This is a work in progress to provide a machine description

for the Cortex-A53 subtarget in the AArch64 backend.

This patch lays the ground work to annotate each AArch64 instruction
(no NEON yet) with a list of SchedReadWrite types. The patch also
provides the Cortex-A53 processor resources, maps those the the default
SchedReadWrites, and provides basic latency. NEON support will be added
in a subsequent patch with proper forwarding logic.

Verification was done by setting the pre-RA scheduler to linearize to
better gauge the effect of the MIScheduler. Even without modeling the
forward logic, the results show a modest improvement for Cortex-A53.

Reviewers: apazos, mcrosier, atrick
Patch by Dave Estes <cestes@codeaurora.org>!

llvm-svn: 203125
This commit is contained in:
Chad Rosier 2014-03-06 16:04:00 +00:00
parent 38765b9c17
commit 86a8f72041
6 changed files with 628 additions and 184 deletions

View File

@ -41,13 +41,20 @@ class ProcNoItin<string Name, list<SubtargetFeature> Features>
def : Processor<"generic", GenericItineraries, [FeatureFPARMv8, FeatureNEON]>;
def : ProcNoItin<"cortex-a53", [FeatureFPARMv8,
FeatureNEON,
FeatureCrypto]>;
def ProcA53 : SubtargetFeature<"a53", "ARMProcFamily", "CortexA53",
"Cortex-A53 ARM processors",
[FeatureFPARMv8,
FeatureNEON,
FeatureCrypto]>;
def : ProcNoItin<"cortex-a57", [FeatureFPARMv8,
FeatureNEON,
FeatureCrypto]>;
def ProcA57 : SubtargetFeature<"a57", "ARMProcFamily", "CortexA57",
"Cortex-A57 ARM processors",
[FeatureFPARMv8,
FeatureNEON,
FeatureCrypto]>;
def : ProcessorModel<"cortex-a53", CortexA53Model, [ProcA53]>;
def : Processor<"cortex-a57", NoItineraries, [ProcA57]>;
//===----------------------------------------------------------------------===//
// Register File Description

File diff suppressed because it is too large Load Diff

View File

@ -7,4 +7,66 @@
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Generic processor itineraries for legacy compatibility.
def GenericItineraries : ProcessorItineraries<[], [], []>;
//===----------------------------------------------------------------------===//
// Base SchedReadWrite types
// Basic ALU
def WriteALU : SchedWrite; // Generic: may contain shift and/or ALU operation
def WriteALUs : SchedWrite; // Shift only with no ALU operation
def ReadALU : SchedRead; // Operand not needed for shifting
def ReadALUs : SchedRead; // Operand needed for shifting
// Multiply with optional accumulate
def WriteMAC : SchedWrite;
def ReadMAC : SchedRead;
// Compares
def WriteCMP : SchedWrite;
def ReadCMP : SchedRead;
// Division
def WriteDiv : SchedWrite;
def ReadDiv : SchedRead;
// Loads
def WriteLd : SchedWrite;
def WritePreLd : SchedWrite;
def ReadLd : SchedRead;
def ReadPreLd : SchedRead;
// Branches
def WriteBr : SchedWrite;
def WriteBrL : SchedWrite;
def ReadBr : SchedRead;
// Floating Point ALU
def WriteFPALU : SchedWrite;
def ReadFPALU : SchedRead;
// Floating Point MAC, Mul, Div, Sqrt
// Most processors will simply send all of these down a dedicated pipe, but
// they're explicitly seperated here for flexibility of modeling later. May
// consider consolidating them into a single WriteFPXXXX type in the future.
def WriteFPMAC : SchedWrite;
def WriteFPMul : SchedWrite;
def WriteFPDiv : SchedWrite;
def WriteFPSqrt : SchedWrite;
def ReadFPMAC : SchedRead;
def ReadFPMul : SchedRead;
def ReadFPDiv : SchedRead;
def ReadFPSqrt : SchedRead;
// Noop
def WriteNoop : SchedWrite;
//===----------------------------------------------------------------------===//
// Subtarget specific Machine Models.
include "AArch64ScheduleA53.td"

View File

@ -0,0 +1,130 @@
//=- AArch64ScheduleA53.td - ARM Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the ARM Cortex A53 processors.
//
//===----------------------------------------------------------------------===//
// ===---------------------------------------------------------------------===//
// The following definitions describe the simpler per-operand machine model.
// This works with MachineScheduler. See MCSchedModel.h for details.
// Cortex-A53 machine model for scheduling and other instruction cost heuristics.
def CortexA53Model : SchedMachineModel {
let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
let MinLatency = 1 ; // OperandCycles are interpreted as MinLatency.
let LoadLatency = 2; // Optimistic load latency assuming bypass.
// This is overriden by OperandCycles if the
// Itineraries are queried instead.
let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
// Specification - Instruction Timings"
// v 1.0 Spreadsheet
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available.
// Modeling each pipeline as a ProcResource using the default BufferSize = -1.
// Cortex-A53 is in-order and therefore should be using BufferSize = 0. The
// current configuration performs better with the basic latencies provided so
// far. Will revisit BufferSize once the latency information is more accurate.
let SchedModel = CortexA53Model in {
def A53UnitALU : ProcResource<2>; // Int ALU
def A53UnitMAC : ProcResource<1>; // Int MAC
def A53UnitDiv : ProcResource<1>; // Int Division
def A53UnitLdSt : ProcResource<1>; // Load/Store
def A53UnitB : ProcResource<1>; // Branch
def A53UnitFPALU : ProcResource<1>; // FP ALU
def A53UnitFPMDS : ProcResource<1>; // FP Mult/Div/Sqrt
//===----------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types which both map the ProcResources and
// set the latency.
// Issue - Every instruction must consume an A53WriteIssue. Optionally,
// instructions that cannot be dual-issued will also include the
// A53WriteIssue2nd in their SchedRW list. That second WriteRes will
// ensure that a second issue slot is consumed.
def A53WriteIssue : SchedWriteRes<[]>;
def A53WriteIssue2nd : SchedWriteRes<[]> { let Latency = 0; }
// ALU - These are reduced to 1 despite a true latency of 4 in order to easily
// model forwarding logic. Once forwarding is properly modelled, then
// they'll be corrected.
def : WriteRes<WriteALU, [A53UnitALU]> { let Latency = 1; }
def : WriteRes<WriteALUs, [A53UnitALU]> { let Latency = 1; }
def : WriteRes<WriteCMP, [A53UnitALU]> { let Latency = 1; }
// MAC
def : WriteRes<WriteMAC, [A53UnitMAC]> { let Latency = 4; }
// Div
def : WriteRes<WriteDiv, [A53UnitDiv]> { let Latency = 4; }
// Load
def : WriteRes<WriteLd, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WritePreLd, [A53UnitLdSt]> { let Latency = 4; }
// Branch
def : WriteRes<WriteBr, [A53UnitB]>;
def : WriteRes<WriteBrL, [A53UnitB]>;
// FP ALU
def : WriteRes<WriteFPALU, [A53UnitFPALU]> {let Latency = 6; }
// FP MAC, Mul, Div, Sqrt
// Using Double Precision numbers for now as a worst case. Additionally, not
// modeling the exact hazard but instead treating the whole pipe as a hazard.
// As an example VMUL, VMLA, and others are actually pipelined. VDIV and VSQRT
// have a total latency of 33 and 32 respectively but only a hazard of 29 and
// 28 (double-prescion example).
def : WriteRes<WriteFPMAC, [A53UnitFPMDS]> { let Latency = 10; }
def : WriteRes<WriteFPMul, [A53UnitFPMDS]> { let Latency = 6; }
def : WriteRes<WriteFPDiv, [A53UnitFPMDS]> { let Latency = 33;
let ResourceCycles = [29]; }
def : WriteRes<WriteFPSqrt, [A53UnitFPMDS]> { let Latency = 32;
let ResourceCycles = [28]; }
//===----------------------------------------------------------------------===//
// Subtarget-specific SchedRead types.
// No forwarding defined for ReadALU yet.
def : ReadAdvance<ReadALU, 0>;
// No forwarding defined for ReadCMP yet.
def : ReadAdvance<ReadCMP, 0>;
// No forwarding defined for ReadBr yet.
def : ReadAdvance<ReadBr, 0>;
// No forwarding defined for ReadMAC yet.
def : ReadAdvance<ReadMAC, 0>;
// No forwarding defined for ReadDiv yet.
def : ReadAdvance<ReadDiv, 0>;
// No forwarding defined for ReadLd, ReadPreLd yet.
def : ReadAdvance<ReadLd, 0>;
def : ReadAdvance<ReadPreLd, 0>;
// No forwarding defined for ReadFPALU yet.
def : ReadAdvance<ReadFPALU, 0>;
// No forwarding defined for ReadFPMAC/Mul/Div/Sqrt yet.
def : ReadAdvance<ReadFPMAC, 0>;
def : ReadAdvance<ReadFPMul, 0>;
def : ReadAdvance<ReadFPDiv, 0>;
def : ReadAdvance<ReadFPSqrt, 0>;
}

View File

@ -29,6 +29,11 @@ class GlobalValue;
class AArch64Subtarget : public AArch64GenSubtargetInfo {
virtual void anchor();
protected:
enum ARMProcFamilyEnum {Others, CortexA53, CortexA57};
/// ARMProcFamily - ARM processor family: Cortex-A53, Cortex-A57, and others.
ARMProcFamilyEnum ARMProcFamily;
bool HasFPARMv8;
bool HasNEON;
bool HasCrypto;

View File

@ -0,0 +1,83 @@
; REQUIRES: asserts
; RUN: llc < %s -mtriple=aarch64-none-linux-gnu -mcpu=cortex-a53 -pre-RA-sched=source -enable-misched -verify-misched -debug-only=misched -o - 2>&1 > /dev/null | FileCheck %s
;
; The Cortex-A53 machine model will cause the MADD instruction to be scheduled
; much higher than the ADD instructions in order to hide latency. When not
; specifying a subtarget, the MADD will remain near the end of the block.
; CHECK: main
; CHECK: *** Final schedule for BB#2 ***
; CHECK: SU(13)
; CHECK: MADDwwww
; CHECK: SU(4)
; CHECK: ADDwwi_lsl0_s
; CHECK: ********** MI Scheduling **********
@main.x = private unnamed_addr constant [8 x i32] [i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1], align 4
@main.y = private unnamed_addr constant [8 x i32] [i32 2, i32 2, i32 2, i32 2, i32 2, i32 2, i32 2, i32 2], align 4
; Function Attrs: nounwind
define i32 @main() #0 {
entry:
%retval = alloca i32, align 4
%x = alloca [8 x i32], align 4
%y = alloca [8 x i32], align 4
%i = alloca i32, align 4
%xx = alloca i32, align 4
%yy = alloca i32, align 4
store i32 0, i32* %retval
%0 = bitcast [8 x i32]* %x to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* bitcast ([8 x i32]* @main.x to i8*), i64 32, i32 4, i1 false)
%1 = bitcast [8 x i32]* %y to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %1, i8* bitcast ([8 x i32]* @main.y to i8*), i64 32, i32 4, i1 false)
store i32 0, i32* %xx, align 4
store i32 0, i32* %yy, align 4
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%2 = load i32* %i, align 4
%cmp = icmp slt i32 %2, 8
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%3 = load i32* %i, align 4
%idxprom = sext i32 %3 to i64
%arrayidx = getelementptr inbounds [8 x i32]* %x, i32 0, i64 %idxprom
%4 = load i32* %arrayidx, align 4
%add = add nsw i32 %4, 1
store i32 %add, i32* %xx, align 4
%5 = load i32* %xx, align 4
%add1 = add nsw i32 %5, 12
store i32 %add1, i32* %xx, align 4
%6 = load i32* %xx, align 4
%add2 = add nsw i32 %6, 23
store i32 %add2, i32* %xx, align 4
%7 = load i32* %xx, align 4
%add3 = add nsw i32 %7, 34
store i32 %add3, i32* %xx, align 4
%8 = load i32* %i, align 4
%idxprom4 = sext i32 %8 to i64
%arrayidx5 = getelementptr inbounds [8 x i32]* %y, i32 0, i64 %idxprom4
%9 = load i32* %arrayidx5, align 4
%10 = load i32* %yy, align 4
%mul = mul nsw i32 %10, %9
store i32 %mul, i32* %yy, align 4
br label %for.inc
for.inc: ; preds = %for.body
%11 = load i32* %i, align 4
%inc = add nsw i32 %11, 1
store i32 %inc, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
%12 = load i32* %xx, align 4
%13 = load i32* %yy, align 4
%add6 = add nsw i32 %12, %13
ret i32 %add6
}
; Function Attrs: nounwind
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1
attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind }