DomTree: Extract (mostly) read-only logic into type-erased base classes

Avoid having to instantiate and compile a subset of the dominator tree logic
separately for each node type. More importantly, this allows generic
algorithms to be built on top of dominator trees without writing them as
templates -- such algorithms can now use opaque CfgBlockRef and
CfgInterface instead.

A type-erased implementation of dominator trees could be written in
terms of CfgInterface as well, but doing so would change the current
trade-off: it would slightly reduce code size at the cost of a slight
runtime overhead.

This patch does not change the trade-off, as it only does type-erasure
where basic blocks can be treated in a fully opaque way, i.e. it only
moves methods that don't require iteration over CFG successors and
predecessors.

v5:
- rename generic_{begin,end,children} back without the generic_ prefix
  and refer explictly to base class methods in NewGVN, which wants to
  mutate the order of dominator tree node children directly

v6:
- style change: iDom -> idom; it's arguable whether this is really
  invalid, since it is actually standard camelCase, but clang-tidy
  complains about it so... *shrug*
- rename {to,from}Generic -> {wrap,unwrap}Ref

Change-Id: Ib860dc04cf8bb093d8ed00be7def40d662213672

Differential Revision: https://reviews.llvm.org/D83089
This commit is contained in:
Nicolai Hähnle 2020-10-20 19:51:44 +02:00
parent b333d6e129
commit 848a68a032
7 changed files with 556 additions and 364 deletions

View File

@ -17,6 +17,7 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineCfgTraits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/GenericDomTree.h"

View File

@ -13,10 +13,13 @@
/// graph types.
///
/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
/// on the graph's NodeRef. The NodeRef should be a pointer and,
/// NodeRef->getParent() must return the parent node that is also a pointer.
/// on the graph's NodeRef:
/// * The NodeRef should be a pointer.
/// * NodeRef->getParent() must return the parent node that is also a pointer.
/// * CfgTraitsFor<NodeType> must be implemented, though a partial
/// implementation without the "value" parts of CfgTraits is sufficient.
///
/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
/// FIXME: Should GenericDomTree be implemented entirely in terms of CfgTraits?
///
//===----------------------------------------------------------------------===//
@ -30,6 +33,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CFGDiff.h"
#include "llvm/Support/CFGUpdate.h"
#include "llvm/Support/CfgTraits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
@ -41,6 +45,8 @@
namespace llvm {
class GenericDominatorTreeBase;
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase;
@ -49,93 +55,52 @@ template <typename DomTreeT>
struct SemiNCAInfo;
} // namespace DomTreeBuilder
/// Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase {
friend class PostDominatorTree;
friend class DominatorTreeBase<NodeT, false>;
friend class DominatorTreeBase<NodeT, true>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
/// Type-erased base class for dominator tree nodes. Can be used for generic
/// read-only queries on a dominator tree.
class GenericDomTreeNodeBase {
friend GenericDominatorTreeBase;
template <typename NodeT, bool IsPostDom> friend class DominatorTreeBase;
template <typename DomTreeT> friend struct DomTreeBuilder::SemiNCAInfo;
NodeT *TheBB;
DomTreeNodeBase *IDom;
protected:
CfgBlockRef TheBB;
GenericDomTreeNodeBase *IDom;
unsigned Level;
SmallVector<DomTreeNodeBase *, 4> Children;
SmallVector<GenericDomTreeNodeBase *, 4> Children;
mutable unsigned DFSNumIn = ~0;
mutable unsigned DFSNumOut = ~0;
public:
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
: TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
public:
GenericDomTreeNodeBase(CfgBlockRef BB, GenericDomTreeNodeBase *idom)
: TheBB(BB), IDom(idom), Level(idom ? idom->Level + 1 : 0) {}
using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
using iterator = typename SmallVector<GenericDomTreeNodeBase *, 4>::iterator;
using const_iterator =
typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
typename SmallVector<GenericDomTreeNodeBase *, 4>::const_iterator;
iterator begin() { return Children.begin(); }
iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
const_iterator end() const { return Children.end(); }
DomTreeNodeBase *const &back() const { return Children.back(); }
DomTreeNodeBase *&back() { return Children.back(); }
GenericDomTreeNodeBase *const &back() const { return Children.back(); }
iterator_range<iterator> children() { return make_range(begin(), end()); }
iterator_range<const_iterator> children() const {
return make_range(begin(), end());
}
NodeT *getBlock() const { return TheBB; }
DomTreeNodeBase *getIDom() const { return IDom; }
CfgBlockRef getBlock() const { return TheBB; }
GenericDomTreeNodeBase *getIDom() const { return IDom; }
unsigned getLevel() const { return Level; }
std::unique_ptr<DomTreeNodeBase> addChild(
std::unique_ptr<DomTreeNodeBase> C) {
Children.push_back(C.get());
return C;
}
bool isLeaf() const { return Children.empty(); }
size_t getNumChildren() const { return Children.size(); }
void clearAllChildren() { Children.clear(); }
bool compare(const DomTreeNodeBase *Other) const {
if (getNumChildren() != Other->getNumChildren())
return true;
if (Level != Other->Level) return true;
SmallPtrSet<const NodeT *, 4> OtherChildren;
for (const DomTreeNodeBase *I : *Other) {
const NodeT *Nd = I->getBlock();
OtherChildren.insert(Nd);
}
for (const DomTreeNodeBase *I : *this) {
const NodeT *N = I->getBlock();
if (OtherChildren.count(N) == 0)
return true;
}
return false;
}
void setIDom(DomTreeNodeBase *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom == NewIDom) return;
auto I = find(IDom->Children, this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
UpdateLevel();
}
bool compare(const GenericDomTreeNodeBase *Other) const;
void setIDom(GenericDomTreeNodeBase *NewIDom);
/// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
/// in the dominator tree. They are only guaranteed valid if
@ -143,29 +108,74 @@ template <class NodeT> class DomTreeNodeBase {
unsigned getDFSNumIn() const { return DFSNumIn; }
unsigned getDFSNumOut() const { return DFSNumOut; }
std::unique_ptr<GenericDomTreeNodeBase>
addChild(std::unique_ptr<GenericDomTreeNodeBase> C) {
Children.push_back(C.get());
return C;
}
private:
// Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase *other) const {
bool DominatedBy(const GenericDomTreeNodeBase *other) const {
return this->DFSNumIn >= other->DFSNumIn &&
this->DFSNumOut <= other->DFSNumOut;
}
void UpdateLevel() {
assert(IDom);
if (Level == IDom->Level + 1) return;
void UpdateLevel();
};
SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
/// Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase : public GenericDomTreeNodeBase {
using CfgTraits = typename CfgTraitsFor<NodeT>::CfgTraits;
while (!WorkStack.empty()) {
DomTreeNodeBase *Current = WorkStack.pop_back_val();
Current->Level = Current->IDom->Level + 1;
friend class PostDominatorTree;
friend class DominatorTreeBase<NodeT, false>;
friend class DominatorTreeBase<NodeT, true>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
for (DomTreeNodeBase *C : *Current) {
assert(C->IDom);
if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
}
}
public:
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *IDom)
: GenericDomTreeNodeBase(CfgTraits::wrapRef(BB), IDom) {}
struct const_iterator;
using const_iterator_base = iterator_adaptor_base<
const_iterator, GenericDomTreeNodeBase::const_iterator,
typename std::iterator_traits<
GenericDomTreeNodeBase::const_iterator>::iterator_category,
// value_type
DomTreeNodeBase *,
typename std::iterator_traits<
GenericDomTreeNodeBase::const_iterator>::difference_type,
// pointer (not really usable, but we need to put something here)
DomTreeNodeBase *const *,
// reference (not a true reference, because operator* doesn't return one)
DomTreeNodeBase *>;
struct const_iterator : const_iterator_base {
const_iterator() = default;
explicit const_iterator(GenericDomTreeNodeBase::const_iterator it)
: const_iterator_base(it) {}
auto operator*() const { return static_cast<DomTreeNodeBase *>(*this->I); }
};
auto begin() const { return const_iterator{GenericDomTreeNodeBase::begin()}; }
auto end() const { return const_iterator{GenericDomTreeNodeBase::end()}; }
DomTreeNodeBase *back() const {
return static_cast<DomTreeNodeBase *>(Children.back());
}
iterator_range<const_iterator> children() const {
return make_range(begin(), end());
}
NodeT *getBlock() const { return CfgTraits::unwrapRef(TheBB); }
DomTreeNodeBase *getIDom() const {
return static_cast<DomTreeNodeBase *>(IDom);
}
};
@ -186,10 +196,8 @@ template <class NodeT>
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
unsigned Lev) {
O.indent(2 * Lev) << "[" << Lev << "] " << N;
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
E = N->end();
I != E; ++I)
PrintDomTree<NodeT>(*I, O, Lev + 1);
for (const DomTreeNodeBase<NodeT> *Child : N->children())
PrintDomTree<NodeT>(Child, O, Lev + 1);
}
namespace DomTreeBuilder {
@ -220,13 +228,111 @@ template <typename DomTreeT>
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
} // namespace DomTreeBuilder
/// Type-erased dominator tree base class.
///
/// This base class of all dominator trees can be used for read-only queries
/// on a dominator tree.
class GenericDominatorTreeBase {
protected:
DenseMap<CfgBlockRef, std::unique_ptr<GenericDomTreeNodeBase>> DomTreeNodes;
GenericDomTreeNodeBase *RootNode = nullptr;
mutable bool DFSInfoValid = false;
mutable unsigned int SlowQueries = 0;
// Disallow copying
GenericDominatorTreeBase(const GenericDominatorTreeBase &) = delete;
GenericDominatorTreeBase &
operator=(const GenericDominatorTreeBase &) = delete;
public:
GenericDominatorTreeBase() {}
GenericDominatorTreeBase(GenericDominatorTreeBase &&Arg)
: DomTreeNodes(std::move(Arg.DomTreeNodes)), RootNode(Arg.RootNode),
DFSInfoValid(Arg.DFSInfoValid), SlowQueries(Arg.SlowQueries) {
Arg.wipe();
}
GenericDominatorTreeBase &operator=(GenericDominatorTreeBase &&RHS) {
DomTreeNodes = std::move(RHS.DomTreeNodes);
RootNode = RHS.RootNode;
DFSInfoValid = RHS.DFSInfoValid;
SlowQueries = RHS.SlowQueries;
RHS.wipe();
return *this;
}
void reset();
bool compare(const GenericDominatorTreeBase &Other) const;
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class. The result
/// may (but is not required to) be null for a forward (backwards)
/// statically unreachable block.
GenericDomTreeNodeBase *getNode(CfgBlockRef BB) const {
auto I = DomTreeNodes.find(BB);
if (I != DomTreeNodes.end())
return I->second.get();
return nullptr;
}
/// See getNode.
GenericDomTreeNodeBase *operator[](CfgBlockRef BB) const {
return getNode(BB);
}
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
GenericDomTreeNodeBase *getRootNode() { return RootNode; }
const GenericDomTreeNodeBase *getRootNode() const { return RootNode; }
bool isReachableFromEntry(const GenericDomTreeNodeBase *A) const { return A; }
bool properlyDominates(const GenericDomTreeNodeBase *A,
const GenericDomTreeNodeBase *B) const;
bool properlyDominatesBlock(CfgBlockRef A, CfgBlockRef B) const;
bool dominates(const GenericDomTreeNodeBase *A,
const GenericDomTreeNodeBase *B) const;
bool dominatesBlock(CfgBlockRef A, CfgBlockRef B) const;
const GenericDomTreeNodeBase *
findNearestCommonDominator(const GenericDomTreeNodeBase *A,
const GenericDomTreeNodeBase *B) const;
CfgBlockRef findNearestCommonDominatorBlock(CfgBlockRef A,
CfgBlockRef B) const;
void updateDFSNumbers() const;
private:
/// Wipe this tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DomTreeNodes.clear();
RootNode = nullptr;
}
bool dominatedBySlowTreeWalk(const GenericDomTreeNodeBase *A,
const GenericDomTreeNodeBase *B) const;
};
/// Core dominator tree base class.
///
/// This class is a generic template over graph nodes. It is instantiated for
/// various graphs in the LLVM IR or in the code generator.
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase {
public:
class DominatorTreeBase : public GenericDominatorTreeBase {
public:
using CfgTraits = typename CfgTraitsFor<NodeT>::CfgTraits;
static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
"Currently DominatorTreeBase supports only pointer nodes");
using NodeType = NodeT;
@ -247,45 +353,13 @@ class DominatorTreeBase {
protected:
// Dominators always have a single root, postdominators can have more.
SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
using DomTreeNodeMapType =
DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode = nullptr;
ParentPtr Parent = nullptr;
mutable bool DFSInfoValid = false;
mutable unsigned int SlowQueries = 0;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
public:
public:
DominatorTreeBase() {}
DominatorTreeBase(DominatorTreeBase &&Arg)
: Roots(std::move(Arg.Roots)),
DomTreeNodes(std::move(Arg.DomTreeNodes)),
RootNode(Arg.RootNode),
Parent(Arg.Parent),
DFSInfoValid(Arg.DFSInfoValid),
SlowQueries(Arg.SlowQueries) {
Arg.wipe();
}
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
Roots = std::move(RHS.Roots);
DomTreeNodes = std::move(RHS.DomTreeNodes);
RootNode = RHS.RootNode;
Parent = RHS.Parent;
DFSInfoValid = RHS.DFSInfoValid;
SlowQueries = RHS.SlowQueries;
RHS.wipe();
return *this;
}
DominatorTreeBase(const DominatorTreeBase &) = delete;
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
/// Iteration over roots.
///
/// This may include multiple blocks if we are computing post dominators.
@ -323,25 +397,7 @@ protected:
if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
return true;
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
return true;
for (const auto &DomTreeNode : DomTreeNodes) {
NodeT *BB = DomTreeNode.first;
typename DomTreeNodeMapType::const_iterator OI =
OtherDomTreeNodes.find(BB);
if (OI == OtherDomTreeNodes.end())
return true;
DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
if (MyNd.compare(&OtherNd))
return true;
}
return false;
return GenericDominatorTreeBase::compare(Other);
}
/// getNode - return the (Post)DominatorTree node for the specified basic
@ -349,10 +405,9 @@ protected:
/// may (but is not required to) be null for a forward (backwards)
/// statically unreachable block.
DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
auto I = DomTreeNodes.find(BB);
if (I != DomTreeNodes.end())
return I->second.get();
return nullptr;
return static_cast<DomTreeNodeBase<NodeT> *>(
GenericDominatorTreeBase::getNode(
CfgTraits::wrapRef(const_cast<NodeT *>(BB))));
}
/// See getNode.
@ -367,8 +422,12 @@ protected:
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
DomTreeNodeBase<NodeT> *getRootNode() {
return static_cast<DomTreeNodeBase<NodeT> *>(RootNode);
}
const DomTreeNodeBase<NodeT> *getRootNode() const {
return static_cast<const DomTreeNodeBase<NodeT> *>(RootNode);
}
/// Get all nodes dominated by R, including R itself.
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
@ -386,126 +445,70 @@ protected:
}
}
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
if (!A || !B)
return false;
return GenericDominatorTreeBase::properlyDominates(A, B);
}
bool properlyDominates(const NodeT *A, const NodeT *B) const {
if (A == B)
return false;
return dominates(A, B);
return GenericDominatorTreeBase::dominates(getNode(A), getNode(B));
}
bool properlyDominates(const NodeT *A, const NodeT *B) const;
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(const NodeT *A) const {
assert(!this->isPostDominator() &&
"This is not implemented for post dominators");
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
return getNode(const_cast<NodeT *>(A)) != nullptr;
}
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
return A != nullptr;
}
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
bool dominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
// A node trivially dominates itself.
if (B == A)
return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B))
return true;
// And dominates nothing.
if (!isReachableFromEntry(A))
return false;
if (B->getIDom() == A) return true;
if (A->getIDom() == B) return false;
// A can only dominate B if it is higher in the tree.
if (A->getLevel() >= B->getLevel()) return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef EXPENSIVE_CHECKS
assert((!DFSInfoValid ||
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
"Tree walk disagrees with dfs numbers!");
#endif
if (DFSInfoValid)
return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return B->DominatedBy(A);
}
return dominatedBySlowTreeWalk(A, B);
return GenericDominatorTreeBase::dominates(A, B);
}
bool dominates(const NodeT *A, const NodeT *B) const {
if (A == B)
return true;
return GenericDominatorTreeBase::dominates(getNode(A), getNode(B));
}
bool dominates(const NodeT *A, const NodeT *B) const;
NodeT *getRoot() const {
assert(this->Roots.size() == 1 && "Should always have entry node!");
return this->Roots[0];
}
/// Find nearest common dominator basic block for basic block A and B. A and B
/// must have tree nodes.
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
assert(A && B && "Pointers are not valid");
assert(A->getParent() == B->getParent() &&
"Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator
// (for forward-dominators).
if (!isPostDominator()) {
NodeT &Entry = A->getParent()->front();
if (A == &Entry || B == &Entry)
return &Entry;
}
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
assert(NodeA && "A must be in the tree");
assert(NodeB && "B must be in the tree");
// Use level information to go up the tree until the levels match. Then
// continue going up til we arrive at the same node.
while (NodeA != NodeB) {
if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
NodeA = NodeA->IDom;
}
return NodeA->getBlock();
}
const NodeT *findNearestCommonDominator(const NodeT *A,
const NodeT *B) const {
// Cast away the const qualifiers here. This is ok since
// const is re-introduced on the return type.
return findNearestCommonDominator(const_cast<NodeT *>(A),
const_cast<NodeT *>(B));
}
bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
return isPostDominator() && !A->getBlock();
}
const DomTreeNodeBase<NodeT> *
findNearestCommonDominator(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
return static_cast<const DomTreeNodeBase<NodeT> *>(
GenericDominatorTreeBase::findNearestCommonDominator(A, B));
}
const NodeT *findNearestCommonDominator(const NodeT *A,
const NodeT *B) const {
assert(A && B && "Pointers are not valid");
const DomTreeNodeBase<NodeT> *dom =
static_cast<const DomTreeNodeBase<NodeT> *>(
GenericDominatorTreeBase::findNearestCommonDominator(getNode(A),
getNode(B)));
return dom->getBlock();
}
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
assert(A && B && "Pointers are not valid");
const DomTreeNodeBase<NodeT> *dom =
static_cast<const DomTreeNodeBase<NodeT> *>(
GenericDominatorTreeBase::findNearestCommonDominator(getNode(A),
getNode(B)));
return dom->getBlock();
}
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
@ -638,13 +641,14 @@ protected:
} else {
assert(Roots.size() == 1);
NodeT *OldRoot = Roots.front();
auto &OldNode = DomTreeNodes[OldRoot];
OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
auto &OldNode = DomTreeNodes[CfgTraits::wrapRef(OldRoot)];
OldNode = NewNode->addChild(std::move(OldNode));
OldNode->IDom = NewNode;
OldNode->UpdateLevel();
Roots[0] = BB;
}
return RootNode = NewNode;
RootNode = NewNode;
return static_cast<DomTreeNodeBase<NodeT> *>(RootNode);
}
/// changeImmediateDominator - This method is used to update the dominator
@ -681,7 +685,7 @@ protected:
IDom->Children.erase(I);
}
DomTreeNodes.erase(BB);
DomTreeNodes.erase(CfgTraits::wrapRef(BB));
if (!IsPostDom) return;
@ -725,53 +729,6 @@ protected:
}
public:
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() const {
if (DFSInfoValid) {
SlowQueries = 0;
return;
}
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
typename DomTreeNodeBase<NodeT>::const_iterator>,
32> WorkStack;
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
assert((!Parent || ThisRoot) && "Empty constructed DomTree");
if (!ThisRoot)
return;
// Both dominators and postdominators have a single root node. In the case
// case of PostDominatorTree, this node is a virtual root.
WorkStack.push_back({ThisRoot, ThisRoot->begin()});
unsigned DFSNum = 0;
ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) {
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
const auto ChildIt = WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) {
Node->DFSNumOut = DFSNum++;
WorkStack.pop_back();
} else {
// Otherwise, recursively visit this child.
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
++WorkStack.back().second;
WorkStack.push_back({Child, Child->begin()});
Child->DFSNumIn = DFSNum++;
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
/// recalculate - compute a dominator tree for the given function
void recalculate(ParentType &Func) {
Parent = &Func;
@ -802,27 +759,28 @@ public:
}
void reset() {
DomTreeNodes.clear();
GenericDominatorTreeBase::reset();
Roots.clear();
RootNode = nullptr;
Parent = nullptr;
DFSInfoValid = false;
SlowQueries = 0;
}
protected:
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
return (DomTreeNodes[BB] = IDom->addChild(
std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
.get();
CfgBlockRef bbRef = CfgTraits::wrapRef(BB);
return static_cast<DomTreeNodeBase<NodeT> *>(
(DomTreeNodes[bbRef] = IDom->addChild(
std::make_unique<GenericDomTreeNodeBase>(bbRef, IDom)))
.get());
}
DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
return (DomTreeNodes[BB] =
std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
.get();
CfgBlockRef bbRef = CfgTraits::wrapRef(BB);
return static_cast<DomTreeNodeBase<NodeT> *>(
(DomTreeNodes[bbRef] =
std::make_unique<GenericDomTreeNodeBase>(bbRef, nullptr))
.get());
}
// NewBB is split and now it has one successor. Update dominator tree to
@ -881,34 +839,6 @@ protected:
changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
private:
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
assert(A != B);
assert(isReachableFromEntry(B));
assert(isReachableFromEntry(A));
const unsigned ALevel = A->getLevel();
const DomTreeNodeBase<NodeT> *IDom;
// Don't walk nodes above A's subtree. When we reach A's level, we must
// either find A or be in some other subtree not dominated by A.
while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
B = IDom; // Walk up the tree
return B == A;
}
/// Wipe this tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DomTreeNodes.clear();
RootNode = nullptr;
Parent = nullptr;
}
};
template <typename T>
@ -917,33 +847,6 @@ using DomTreeBase = DominatorTreeBase<T, false>;
template <typename T>
using PostDomTreeBase = DominatorTreeBase<T, true>;
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
const NodeT *B) const {
if (A == B)
return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
const NodeT *A, const NodeT *B) const {
if (A == B)
return false;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
} // end namespace llvm
#endif // LLVM_SUPPORT_GENERICDOMTREE_H

View File

@ -53,6 +53,7 @@ namespace DomTreeBuilder {
template <typename DomTreeT>
struct SemiNCAInfo {
using CfgTraits = typename DomTreeT::CfgTraits;
using NodePtr = typename DomTreeT::NodePtr;
using NodeT = typename DomTreeT::NodeType;
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
@ -137,7 +138,7 @@ struct SemiNCAInfo {
// immediate dominator.
NodePtr IDom = getIDom(BB);
assert(IDom || DT.DomTreeNodes[nullptr]);
assert(IDom || DT.DomTreeNodes[CfgBlockRef{}]);
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
// Add a new tree node for this NodeT, and link it as a child of
@ -593,7 +594,7 @@ struct SemiNCAInfo {
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
DT.RootNode = DT.createNode(Root);
SNCA.attachNewSubtree(DT, DT.RootNode);
SNCA.attachNewSubtree(DT, DT.getRootNode());
}
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
@ -604,7 +605,8 @@ struct SemiNCAInfo {
NodePtr W = NumToNode[i];
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
if (DT.DomTreeNodes[CfgTraits::wrapRef(W)])
continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
@ -1142,7 +1144,7 @@ struct SemiNCAInfo {
std::swap(*ChIt, IDom->Children.back());
IDom->Children.pop_back();
DT.DomTreeNodes.erase(TN->getBlock());
DT.DomTreeNodes.erase(CfgTraits::wrapRef(TN->getBlock()));
}
//~~
@ -1268,7 +1270,8 @@ struct SemiNCAInfo {
doFullDFSWalk(DT, AlwaysDescend);
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const TreeNodePtr TN =
static_cast<const TreeNodePtr>(NodeToTN.second.get());
const NodePtr BB = TN->getBlock();
// Virtual root has a corresponding virtual CFG node.
@ -1301,7 +1304,8 @@ struct SemiNCAInfo {
// Running time: O(N).
static bool VerifyLevels(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const TreeNodePtr TN =
static_cast<const TreeNodePtr>(NodeToTN.second.get());
const NodePtr BB = TN->getBlock();
if (!BB) continue;
@ -1356,7 +1360,8 @@ struct SemiNCAInfo {
// For each tree node verify if children's DFS numbers cover their parent's
// DFS numbers with no gaps.
for (const auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr Node = NodeToTN.second.get();
const TreeNodePtr Node =
static_cast<const TreeNodePtr>(NodeToTN.second.get());
// Handle tree leaves.
if (Node->isLeaf()) {
@ -1469,7 +1474,8 @@ struct SemiNCAInfo {
// the nodes it dominated previously will now become unreachable.
bool verifyParentProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const TreeNodePtr TN =
static_cast<const TreeNodePtr>(NodeToTN.second.get());
const NodePtr BB = TN->getBlock();
if (!BB || TN->isLeaf())
continue;
@ -1503,7 +1509,8 @@ struct SemiNCAInfo {
// siblings will now still be reachable.
bool verifySiblingProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const TreeNodePtr TN =
static_cast<const TreeNodePtr>(NodeToTN.second.get());
const NodePtr BB = TN->getBlock();
if (!BB || TN->isLeaf())
continue;

View File

@ -125,6 +125,7 @@ add_llvm_component_library(LLVMSupport
FoldingSet.cpp
FormattedStream.cpp
FormatVariadic.cpp
GenericDomTree.cpp
GlobPattern.cpp
GraphWriter.cpp
Hashing.cpp

View File

@ -0,0 +1,278 @@
//===- GenericDomTree.cpp - Generic dominator trees for graphs --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/GenericDomTree.h"
#include "llvm/ADT/SmallSet.h"
using namespace llvm;
bool GenericDomTreeNodeBase::compare(
const GenericDomTreeNodeBase *Other) const {
if (getNumChildren() != Other->getNumChildren())
return true;
if (Level != Other->Level)
return true;
SmallSet<CfgBlockRef, 4> OtherChildren;
for (const GenericDomTreeNodeBase *I : *Other) {
CfgBlockRef Nd = I->getBlock();
OtherChildren.insert(Nd);
}
for (const GenericDomTreeNodeBase *I : *this) {
CfgBlockRef N = I->getBlock();
if (OtherChildren.count(N) == 0)
return true;
}
return false;
}
void GenericDomTreeNodeBase::setIDom(GenericDomTreeNodeBase *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom == NewIDom)
return;
auto I = find(IDom->Children, this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
UpdateLevel();
}
void GenericDomTreeNodeBase::UpdateLevel() {
assert(IDom);
if (Level == IDom->Level + 1)
return;
SmallVector<GenericDomTreeNodeBase *, 64> WorkStack = {this};
while (!WorkStack.empty()) {
GenericDomTreeNodeBase *Current = WorkStack.pop_back_val();
Current->Level = Current->IDom->Level + 1;
for (GenericDomTreeNodeBase *C : *Current) {
assert(C->IDom);
if (C->Level != C->IDom->Level + 1)
WorkStack.push_back(C);
}
}
}
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool GenericDominatorTreeBase::compare(
const GenericDominatorTreeBase &Other) const {
if (DomTreeNodes.size() != Other.DomTreeNodes.size())
return true;
for (const auto &DomTreeNode : DomTreeNodes) {
CfgBlockRef BB = DomTreeNode.first;
auto OI = Other.DomTreeNodes.find(BB);
if (OI == Other.DomTreeNodes.end())
return true;
GenericDomTreeNodeBase &MyNd = *DomTreeNode.second;
GenericDomTreeNodeBase &OtherNd = *OI->second;
if (MyNd.compare(&OtherNd))
return true;
}
return false;
}
void GenericDominatorTreeBase::reset() {
DomTreeNodes.clear();
RootNode = nullptr;
DFSInfoValid = false;
SlowQueries = 0;
}
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
bool GenericDominatorTreeBase::properlyDominates(
const GenericDomTreeNodeBase *A, const GenericDomTreeNodeBase *B) const {
if (!A || !B)
return false;
if (A == B)
return false;
return dominates(A, B);
}
bool GenericDominatorTreeBase::properlyDominatesBlock(CfgBlockRef A,
CfgBlockRef B) const {
if (A == B)
return false;
return dominates(getNode(A), getNode(B));
}
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
bool GenericDominatorTreeBase::dominates(
const GenericDomTreeNodeBase *A, const GenericDomTreeNodeBase *B) const {
// A node trivially dominates itself.
if (B == A)
return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B))
return true;
// And dominates nothing.
if (!isReachableFromEntry(A))
return false;
if (B->getIDom() == A)
return true;
if (A->getIDom() == B)
return false;
// A can only dominate B if it is higher in the tree.
if (A->getLevel() >= B->getLevel())
return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef EXPENSIVE_CHECKS
assert(
(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
"Tree walk disagrees with dfs numbers!");
#endif
if (DFSInfoValid)
return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return B->DominatedBy(A);
}
return dominatedBySlowTreeWalk(A, B);
}
bool GenericDominatorTreeBase::dominatesBlock(CfgBlockRef A,
CfgBlockRef B) const {
if (A == B)
return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(A), getNode(B));
}
/// findNearestCommonDominator - Find nearest common dominator of A and B.
const GenericDomTreeNodeBase *
GenericDominatorTreeBase::findNearestCommonDominator(
const GenericDomTreeNodeBase *A, const GenericDomTreeNodeBase *B) const {
if (A == RootNode || B == RootNode)
return RootNode;
assert(A && "A muset be in the tree");
assert(B && "B muset be in the tree");
// Use level information to go up the tree until the levels match. Then
// continue going up til we arrive at the same node.
while (A != B) {
if (A->getLevel() < B->getLevel())
std::swap(A, B);
A = A->IDom;
assert(A != nullptr && "nodes in different dominator trees?");
}
return A;
}
CfgBlockRef
GenericDominatorTreeBase::findNearestCommonDominatorBlock(CfgBlockRef A,
CfgBlockRef B) const {
assert(A && B && "Pointers are not valid");
const GenericDomTreeNodeBase *Dom =
findNearestCommonDominator(getNode(A), getNode(B));
return Dom ? Dom->getBlock() : CfgBlockRef();
}
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void GenericDominatorTreeBase::updateDFSNumbers() const {
if (DFSInfoValid) {
SlowQueries = 0;
return;
}
SmallVector<std::pair<const GenericDomTreeNodeBase *,
GenericDomTreeNodeBase::const_iterator>,
32>
WorkStack;
const GenericDomTreeNodeBase *ThisRoot = getRootNode();
if (!ThisRoot)
return;
// Both dominators and postdominators have a single root node. In the case
// case of PostDominatorTree, this node is a virtual root.
WorkStack.push_back({ThisRoot, ThisRoot->begin()});
unsigned DFSNum = 0;
ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) {
const GenericDomTreeNodeBase *Node = WorkStack.back().first;
const auto ChildIt = WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) {
Node->DFSNumOut = DFSNum++;
WorkStack.pop_back();
} else {
// Otherwise, recursively visit this child.
const GenericDomTreeNodeBase *Child = *ChildIt;
++WorkStack.back().second;
WorkStack.push_back({Child, Child->begin()});
Child->DFSNumIn = DFSNum++;
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
bool GenericDominatorTreeBase::dominatedBySlowTreeWalk(
const GenericDomTreeNodeBase *A, const GenericDomTreeNodeBase *B) const {
assert(A != B);
assert(isReachableFromEntry(B));
assert(isReachableFromEntry(A));
const unsigned ALevel = A->getLevel();
const GenericDomTreeNodeBase *IDom;
// Don't walk nodes above A's subtree. When we reach A's level, we must
// either find A or be in some other subtree not dominated by A.
while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
B = IDom; // Walk up the tree
return B == A;
}

View File

@ -295,7 +295,7 @@ void AggressiveDeadCodeElimination::initialize() {
// return of the function.
// We do this by seeing which of the postdomtree root children exit the
// program, and for all others, mark the subtree live.
for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
for (auto *PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
auto *BB = PDTChild->getBlock();
auto &Info = BlockInfo[BB];
// Real function return

View File

@ -511,7 +511,7 @@ class NewGVN {
unsigned int NumFuncArgs = 0;
// RPOOrdering of basic blocks
DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
DenseMap<const GenericDomTreeNodeBase *, unsigned> RPOOrdering;
// Congruence class info.
@ -3388,8 +3388,10 @@ bool NewGVN::runGVN() {
for (auto &B : RPOT) {
auto *Node = DT->getNode(B);
if (Node->getNumChildren() > 1)
llvm::sort(Node->begin(), Node->end(),
[&](const DomTreeNode *A, const DomTreeNode *B) {
llvm::sort(Node->GenericDomTreeNodeBase::begin(),
Node->GenericDomTreeNodeBase::end(),
[&](const GenericDomTreeNodeBase *A,
const GenericDomTreeNodeBase *B) {
return RPOOrdering[A] < RPOOrdering[B];
});
}