Handle sqrt() shrinking in SimplifyLibCalls like any other call

This patch removes a chunk of special case logic for folding 
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.

No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.

I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.

Differential Revision: http://reviews.llvm.org/D5919

llvm-svn: 220514
This commit is contained in:
Sanjay Patel 2014-10-23 21:52:45 +00:00
parent ecbe7c03a0
commit 848309da7c
3 changed files with 33 additions and 47 deletions

View File

@ -1317,42 +1317,6 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
}
}
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
// Note that we restrict this transformation based on
// TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
// TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
// single-precision intrinsic can be expanded in the backend.
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
(Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
Call->getNumArgOperands() == 1 &&
Call->hasOneUse()) {
CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
if (Arg && Arg->getOpcode() == Instruction::FPExt &&
CI.getType()->isFloatTy() &&
Call->getType()->isDoubleTy() &&
Arg->getType()->isDoubleTy() &&
Arg->getOperand(0)->getType()->isFloatTy()) {
Function *Callee = Call->getCalledFunction();
Module *M = CI.getParent()->getParent()->getParent();
Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
Builder->getFloatTy(), Builder->getFloatTy(),
NULL);
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
"sqrtfcall");
ret->setAttributes(Callee->getAttributes());
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
EraseInstFromFunction(*Call);
return ret;
}
}
return nullptr;
}

View File

@ -1058,7 +1058,16 @@ Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
if (Callee->isIntrinsic()) {
Module *M = CI->getParent()->getParent()->getParent();
Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
V = B.CreateCall(F, V);
} else {
// The call is a library call rather than an intrinsic.
V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
}
return B.CreateFPExt(V, B.getDoubleTy());
}
@ -1086,6 +1095,7 @@ Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
Value *V = nullptr;
Value *V1 = Cast1->getOperand(0);
Value *V2 = Cast2->getOperand(0);
// TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
Callee->getAttributes());
return B.CreateFPExt(V, B.getDoubleTy());
@ -1267,10 +1277,9 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
if (UnsafeFPShrink && Callee->getName() == "sqrt" &&
TLI->has(LibFunc::sqrtf)) {
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
}
// FIXME: For finer-grain optimization, we need intrinsics to have the same
// fast-math flag decorations that are applied to FP instructions. For now,
@ -2010,7 +2019,7 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
UnsafeFPShrink = true;
}
// Next check for intrinsics.
// First, check for intrinsics.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
if (!isCallingConvC)
return nullptr;

View File

@ -279,6 +279,14 @@ define float @sqrt_test(float %f) {
; CHECK: call float @sqrtf(float %f)
}
define double @sqrt_test2(float %f) {
%conv = fpext float %f to double
%call = call double @sqrt(double %conv)
ret double %call
; CHECK-LABEL: sqrt_test2
; CHECK: call double @sqrt(double %conv)
}
define float @sqrt_int_test(float %f) {
%conv = fpext float %f to double
%call = call double @llvm.sqrt.f64(double %conv)
@ -288,13 +296,14 @@ define float @sqrt_int_test(float %f) {
; CHECK: call float @llvm.sqrt.f32(float %f)
}
define double @sqrt_test2(float %f) {
define double @sqrt_int_test2(float %f) {
%conv = fpext float %f to double
%call = call double @sqrt(double %conv)
%call = call double @llvm.sqrt.f64(double %conv)
ret double %call
; CHECK-LABEL: sqrt_test2
; CHECK: call double @sqrt(double %conv)
; CHECK-LABEL: sqrt_int_test2
; CHECK: call double @llvm.sqrt.f64(double %conv)
}
define float @tan_test(float %f) {
%conv = fpext float %f to double
%call = call double @tan(double %conv)
@ -330,7 +339,12 @@ define double @tanh_test2(float %f) {
declare double @tanh(double) #1
declare double @tan(double) #1
declare double @sqrt(double) #1
; sqrt is a special case: the shrinking optimization
; is valid even without unsafe-fp-math.
declare double @sqrt(double)
declare double @llvm.sqrt.f64(double)
declare double @sin(double) #1
declare double @log2(double) #1
declare double @log1p(double) #1
@ -348,6 +362,5 @@ declare double @acosh(double) #1
declare double @asin(double) #1
declare double @asinh(double) #1
declare double @llvm.sqrt.f64(double) #1
attributes #1 = { "unsafe-fp-math"="true" }