Move checks for creation of objects of abstract class type from the various

constructs that can do so into the initialization code. This fixes a number
of different cases in which we used to fail to check for abstract types.

Thanks to Tim Shen for inspiring the weird code that uncovered this!

llvm-svn: 289753
This commit is contained in:
Richard Smith 2016-12-15 02:28:18 +00:00
parent 1a328f508f
commit 81f5ade227
5 changed files with 153 additions and 10 deletions

View File

@ -1291,10 +1291,6 @@ Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
diag::err_invalid_incomplete_type_use, FullRange))
return ExprError();
if (RequireNonAbstractType(TyBeginLoc, Ty,
diag::err_allocation_of_abstract_type))
return ExprError();
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
InitializationKind Kind =
Exprs.size() ? ListInitialization
@ -5491,9 +5487,6 @@ QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
if (LTy->isRecordType()) {
// The operands have class type. Make a temporary copy.
if (RequireNonAbstractType(QuestionLoc, LTy,
diag::err_allocation_of_abstract_type))
return QualType();
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
ExprResult LHSCopy = PerformCopyInitialization(Entity,

View File

@ -4599,7 +4599,7 @@ static void TryValueInitialization(Sema &S,
MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
bool InitListSyntax = InitList;
// FIXME: Instead of creating a CXXConstructExpr of non-array type here,
// FIXME: Instead of creating a CXXConstructExpr of array type here,
// wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
return TryConstructorInitialization(
S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
@ -6366,6 +6366,8 @@ ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
return E;
// C++1z [conv.rval]/1: T shall be a complete type.
// FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
// If so, we should check for a non-abstract class type here too.
QualType T = E->getType();
if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
return ExprError();
@ -6541,6 +6543,17 @@ InitializationSequence::Perform(Sema &S,
break;
}
// C++ [class.abstract]p2:
// no objects of an abstract class can be created except as subobjects
// of a class derived from it
auto checkAbstractType = [&](QualType T) -> bool {
if (Entity.getKind() == InitializedEntity::EK_Base ||
Entity.getKind() == InitializedEntity::EK_Delegating)
return false;
return S.RequireNonAbstractType(Kind.getLocation(), T,
diag::err_allocation_of_abstract_type);
};
// Walk through the computed steps for the initialization sequence,
// performing the specified conversions along the way.
bool ConstructorInitRequiresZeroInit = false;
@ -6647,6 +6660,9 @@ InitializationSequence::Perform(Sema &S,
}
case SK_FinalCopy:
if (checkAbstractType(Step->Type))
return ExprError();
// If the overall initialization is initializing a temporary, we already
// bound our argument if it was necessary to do so. If not (if we're
// ultimately initializing a non-temporary), our argument needs to be
@ -6731,6 +6747,9 @@ InitializationSequence::Perform(Sema &S,
CreatedObject = Conversion->getReturnType()->isRecordType();
}
if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
return ExprError();
CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
CastKind, CurInit.get(), nullptr,
CurInit.get()->getValueKind());
@ -6813,6 +6832,9 @@ InitializationSequence::Perform(Sema &S,
}
case SK_ListInitialization: {
if (checkAbstractType(Step->Type))
return ExprError();
InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
// If we're not initializing the top-level entity, we need to create an
// InitializeTemporary entity for our target type.
@ -6849,6 +6871,9 @@ InitializationSequence::Perform(Sema &S,
}
case SK_ConstructorInitializationFromList: {
if (checkAbstractType(Step->Type))
return ExprError();
// When an initializer list is passed for a parameter of type "reference
// to object", we don't get an EK_Temporary entity, but instead an
// EK_Parameter entity with reference type.
@ -6892,6 +6917,9 @@ InitializationSequence::Perform(Sema &S,
case SK_ConstructorInitialization:
case SK_StdInitializerListConstructorCall: {
if (checkAbstractType(Step->Type))
return ExprError();
// When an initializer list is passed for a parameter of type "reference
// to object", we don't get an EK_Temporary entity, but instead an
// EK_Parameter entity with reference type.

View File

@ -1146,9 +1146,11 @@ Decl *Sema::ActOnPropertyImplDecl(Scope *S,
diag::err_abstract_type_in_decl,
AbstractSynthesizedIvarType)) {
Diag(property->getLocation(), diag::note_property_declare);
// An abstract type is as bad as an incomplete type.
CompleteTypeErr = true;
}
if (CompleteTypeErr)
Ivar->setInvalidDecl();
} else if (CompleteTypeErr)
Ivar->setInvalidDecl();
ClassImpDecl->addDecl(Ivar);
IDecl->makeDeclVisibleInContext(Ivar);

View File

@ -0,0 +1,23 @@
// RUN: %clang_cc1 -std=c++1z -verify %s
// no objects of an abstract class can be created except as subobjects of a
// class derived from it
struct A {
A() {}
A(int) : A() {} // ok
virtual void f() = 0; // expected-note 1+{{unimplemented}}
};
void f(A &&a);
void g() {
f({}); // expected-error {{abstract class}}
f({0}); // expected-error {{abstract class}}
f(0); // expected-error {{abstract class}}
}
struct B : A {
B() : A() {} // ok
};

View File

@ -0,0 +1,97 @@
// RUN: %clang_cc1 -std=c++1z -verify %s
struct A {
A() {}
A(int) : A() {} // ok
virtual void f() = 0; // expected-note 1+{{unimplemented}}
};
template<typename> struct SecretlyAbstract {
SecretlyAbstract();
SecretlyAbstract(int);
virtual void f() = 0; // expected-note 1+{{unimplemented}}
};
using B = SecretlyAbstract<int>;
using C = SecretlyAbstract<float>;
using D = SecretlyAbstract<char>[1];
B b; // expected-error {{abstract class}}
D d; // expected-error {{abstract class}}
template<int> struct N;
// Note: C is not instantiated anywhere in this file, so we never discover that
// it is in fact abstract. The C++ standard suggests that we need to
// instantiate in all cases where abstractness could affect the validity of a
// program, but that breaks a *lot* of code, so we don't do that.
//
// FIXME: Once DR1640 is resolved, remove the check on forming an abstract
// array type entirely. The only restriction we need is that you can't create
// an object of abstract (most-derived) type.
// An abstract class shall not be used
// - as a parameter type
void f(A&);
void f(A); // expected-error {{abstract class}}
void f(A[1]); // expected-error {{abstract class}}
void f(B); // expected-error {{abstract class}}
void f(B[1]); // expected-error {{abstract class}}
void f(C);
void f(C[1]);
void f(D); // expected-error {{abstract class}}
void f(D[1]); // expected-error {{abstract class}}
// - as a function return type
A &f(N<0>);
A *f(N<1>);
A f(N<2>); // expected-error {{abstract class}}
A (&f(N<3>))[2]; // expected-error {{abstract class}}
B f(N<4>); // expected-error {{abstract class}}
B (&f(N<5>))[2]; // expected-error {{abstract class}}
C f(N<6>);
C (&f(N<7>))[2];
// - as the type of an explicit conversion
void g(A&&);
void h() {
A(); // expected-error {{abstract class}}
A(0); // expected-error {{abstract class}}
A{}; // expected-error {{abstract class}}
A{0}; // expected-error {{abstract class}}
(A)(0); // expected-error {{abstract class}}
(A){}; // expected-error {{abstract class}}
(A){0}; // expected-error {{abstract class}}
D(); // expected-error {{array type}}
D{}; // expected-error {{abstract class}}
D{0}; // expected-error {{abstract class}}
(D){}; // expected-error {{abstract class}}
(D){0}; // expected-error {{abstract class}}
}
template<typename T> void t(T); // expected-note 2{{abstract class}}
void i(A &a, B &b, C &c, D &d) {
// FIXME: These should be handled consistently. We currently reject the first
// two early because we (probably incorrectly, depending on dr1640) take
// abstractness into account in forming implicit conversion sequences.
t(a); // expected-error {{no matching function}}
t(b); // expected-error {{no matching function}}
t(c); // expected-error {{allocating an object of abstract class type}}
t(d); // ok, decays to pointer
}
struct E : A {
E() : A() {} // ok
E(int n) : A( A(n) ) {} // expected-error {{abstract class}}
};
namespace std {
template<typename T> struct initializer_list {
const T *begin, *end;
initializer_list();
};
}
std::initializer_list<A> ila = {1, 2, 3, 4}; // expected-error {{abstract class}}