forked from OSchip/llvm-project
[mlir][sparse] fix bug in permuting data structure
Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D107379
This commit is contained in:
parent
e64e6924b8
commit
817303ef34
|
@ -282,14 +282,18 @@ static bool genBuffers(Merger &merger, CodeGen &codegen,
|
|||
codegen.indices[tensor][idx] =
|
||||
rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
|
||||
}
|
||||
// Find lower and upper bound in current dimension.
|
||||
// Find lower and upper bound in current dimension. Note that a
|
||||
// permuted encoding queries static type dimensions accordingly,
|
||||
// but queries dynamic type dimensions in the generated order.
|
||||
Value up;
|
||||
if (shape[d] == MemRefType::kDynamicSize) {
|
||||
unsigned p = perm(enc, d);
|
||||
if (shape[p] == MemRefType::kDynamicSize) {
|
||||
up = rewriter.create<tensor::DimOp>(loc, t->get(), d);
|
||||
args.push_back(up);
|
||||
} else {
|
||||
up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
|
||||
up = rewriter.create<ConstantIndexOp>(loc, shape[p]);
|
||||
}
|
||||
assert(codegen.highs[tensor][idx] == nullptr);
|
||||
codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
|
||||
}
|
||||
// Perform the required bufferization. Dense inputs materialize
|
||||
|
|
|
@ -0,0 +1,92 @@
|
|||
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
|
||||
// RUN: mlir-opt %s -sparsification | FileCheck %s
|
||||
|
||||
#X = #sparse_tensor.encoding<{
|
||||
dimLevelType = [ "dense", "dense", "dense" ],
|
||||
dimOrdering = affine_map<(i,j,k) -> (k,i,j)>
|
||||
}>
|
||||
|
||||
#trait = {
|
||||
indexing_maps = [
|
||||
affine_map<(i,j,k) -> (k,i,j)>, // A (in)
|
||||
affine_map<(i,j,k) -> (i,j,k)> // X (out)
|
||||
],
|
||||
iterator_types = ["parallel", "parallel", "parallel"]
|
||||
}
|
||||
|
||||
// CHECK-LABEL: builtin.func @sparse_static_dims(
|
||||
// CHECK-SAME: %[[VAL_0:.*]]: tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>>,
|
||||
// CHECK-SAME: %[[VAL_1:.*]]: tensor<20x30x10xf32>) -> tensor<20x30x10xf32> {
|
||||
// CHECK: %[[VAL_2:.*]] = constant 20 : index
|
||||
// CHECK: %[[VAL_3:.*]] = constant 30 : index
|
||||
// CHECK: %[[VAL_4:.*]] = constant 10 : index
|
||||
// CHECK: %[[VAL_5:.*]] = constant 0 : index
|
||||
// CHECK: %[[VAL_6:.*]] = constant 1 : index
|
||||
// CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>>
|
||||
// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20x30x10xf32>
|
||||
// CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<20x30x10xf32>
|
||||
// CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<20x30x10xf32> to memref<20x30x10xf32>
|
||||
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
|
||||
// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
|
||||
// CHECK: %[[VAL_12:.*]] = muli %[[VAL_10]], %[[VAL_4]] : index
|
||||
// CHECK: %[[VAL_13:.*]] = addi %[[VAL_12]], %[[VAL_11]] : index
|
||||
// CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_2]] step %[[VAL_6]] {
|
||||
// CHECK: %[[VAL_15:.*]] = muli %[[VAL_13]], %[[VAL_2]] : index
|
||||
// CHECK: %[[VAL_16:.*]] = addi %[[VAL_15]], %[[VAL_14]] : index
|
||||
// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xf32>
|
||||
// CHECK: memref.store %[[VAL_17]], %[[VAL_9]]{{\[}}%[[VAL_14]], %[[VAL_10]], %[[VAL_11]]] : memref<20x30x10xf32>
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_9]] : memref<20x30x10xf32>
|
||||
// CHECK: return %[[VAL_18]] : tensor<20x30x10xf32>
|
||||
// CHECK: }
|
||||
func @sparse_static_dims(%arga: tensor<10x20x30xf32, #X>,
|
||||
%argx: tensor<20x30x10xf32>) -> tensor<20x30x10xf32> {
|
||||
%0 = linalg.generic #trait
|
||||
ins(%arga: tensor<10x20x30xf32, #X>)
|
||||
outs(%argx: tensor<20x30x10xf32>) {
|
||||
^bb(%a : f32, %x: f32):
|
||||
linalg.yield %a : f32
|
||||
} -> tensor<20x30x10xf32>
|
||||
return %0 : tensor<20x30x10xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: builtin.func @sparse_dynamic_dims(
|
||||
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>,
|
||||
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
|
||||
// CHECK: %[[VAL_2:.*]] = constant 2 : index
|
||||
// CHECK: %[[VAL_3:.*]] = constant 0 : index
|
||||
// CHECK: %[[VAL_4:.*]] = constant 1 : index
|
||||
// CHECK: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>
|
||||
// CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?x?xf32>
|
||||
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor<?x?x?xf32>
|
||||
// CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_2]] : tensor<?x?x?xf32>
|
||||
// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<?x?x?xf32>
|
||||
// CHECK: %[[VAL_10:.*]] = memref.alloc(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) : memref<?x?x?xf32>
|
||||
// CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref<?x?x?xf32> to memref<?x?x?xf32>
|
||||
// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_3]] to %[[VAL_7]] step %[[VAL_4]] {
|
||||
// CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_3]] to %[[VAL_8]] step %[[VAL_4]] {
|
||||
// CHECK: %[[VAL_13:.*]] = muli %[[VAL_8]], %[[VAL_11]] : index
|
||||
// CHECK: %[[VAL_14:.*]] = addi %[[VAL_13]], %[[VAL_12]] : index
|
||||
// CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_3]] to %[[VAL_6]] step %[[VAL_4]] {
|
||||
// CHECK: %[[VAL_16:.*]] = muli %[[VAL_6]], %[[VAL_14]] : index
|
||||
// CHECK: %[[VAL_17:.*]] = addi %[[VAL_16]], %[[VAL_15]] : index
|
||||
// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_17]]] : memref<?xf32>
|
||||
// CHECK: memref.store %[[VAL_18]], %[[VAL_10]]{{\[}}%[[VAL_15]], %[[VAL_11]], %[[VAL_12]]] : memref<?x?x?xf32>
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: }
|
||||
// CHECK: %[[VAL_19:.*]] = memref.tensor_load %[[VAL_10]] : memref<?x?x?xf32>
|
||||
// CHECK: return %[[VAL_19]] : tensor<?x?x?xf32>
|
||||
// CHECK: }
|
||||
func @sparse_dynamic_dims(%arga: tensor<?x?x?xf32, #X>,
|
||||
%argx: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
|
||||
%0 = linalg.generic #trait
|
||||
ins(%arga: tensor<?x?x?xf32, #X>)
|
||||
outs(%argx: tensor<?x?x?xf32>) {
|
||||
^bb(%a : f32, %x: f32):
|
||||
linalg.yield %a : f32
|
||||
} -> tensor<?x?x?xf32>
|
||||
return %0 : tensor<?x?x?xf32>
|
||||
}
|
Loading…
Reference in New Issue