forked from OSchip/llvm-project
Rework post dominator information so that we do not have to
unify all exit nodes of a function to compute post-dominance information. This does not work with functions that have both unwind and return nodes, because we cannot unify these blocks. The new implementation is better anyway. :) llvm-svn: 8460
This commit is contained in:
parent
2dcab00d57
commit
8157505fae
|
@ -5,7 +5,7 @@
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
#include "llvm/Analysis/PostDominators.h"
|
#include "llvm/Analysis/PostDominators.h"
|
||||||
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
|
#include "llvm/iTerminators.h"
|
||||||
#include "llvm/Support/CFG.h"
|
#include "llvm/Support/CFG.h"
|
||||||
#include "Support/DepthFirstIterator.h"
|
#include "Support/DepthFirstIterator.h"
|
||||||
#include "Support/SetOperations.h"
|
#include "Support/SetOperations.h"
|
||||||
|
@ -23,75 +23,77 @@ B("postdomset", "Post-Dominator Set Construction", true);
|
||||||
//
|
//
|
||||||
bool PostDominatorSet::runOnFunction(Function &F) {
|
bool PostDominatorSet::runOnFunction(Function &F) {
|
||||||
Doms.clear(); // Reset from the last time we were run...
|
Doms.clear(); // Reset from the last time we were run...
|
||||||
// Since we require that the unify all exit nodes pass has been run, we know
|
|
||||||
// that there can be at most one return instruction in the function left.
|
|
||||||
// Get it.
|
|
||||||
//
|
|
||||||
Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
|
|
||||||
|
|
||||||
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
|
// Scan the function looking for the root nodes of the post-dominance
|
||||||
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
// relationships. These blocks end with return and unwind instructions.
|
||||||
Doms[FI] = DomSetType();
|
// While we are iterating over the function, we also initialize all of the
|
||||||
return false;
|
// domsets to empty.
|
||||||
|
Roots.clear();
|
||||||
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
||||||
|
Doms[I]; // Initialize to empty
|
||||||
|
|
||||||
|
if (isa<ReturnInst>(I->getTerminator()) ||
|
||||||
|
isa<UnwindInst>(I->getTerminator()))
|
||||||
|
Roots.push_back(I);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If there are no exit nodes for the function, postdomsets are all empty.
|
||||||
|
// This can happen if the function just contains an infinite loop, for
|
||||||
|
// example.
|
||||||
|
if (Roots.empty()) return false;
|
||||||
|
|
||||||
|
// If we have more than one root, we insert an artificial "null" exit, which
|
||||||
|
// has "virtual edges" to each of the real exit nodes.
|
||||||
|
if (Roots.size() > 1)
|
||||||
|
Doms[0].insert(0);
|
||||||
|
|
||||||
bool Changed;
|
bool Changed;
|
||||||
do {
|
do {
|
||||||
Changed = false;
|
Changed = false;
|
||||||
|
|
||||||
std::set<const BasicBlock*> Visited;
|
std::set<const BasicBlock*> Visited;
|
||||||
DomSetType WorkingSet;
|
DomSetType WorkingSet;
|
||||||
idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
|
|
||||||
for ( ; It != End; ++It) {
|
|
||||||
BasicBlock *BB = *It;
|
|
||||||
succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
|
|
||||||
if (PI != PEnd) { // Is there SOME predecessor?
|
|
||||||
// Loop until we get to a successor that has had it's dom set filled
|
|
||||||
// in at least once. We are guaranteed to have this because we are
|
|
||||||
// traversing the graph in DFO and have handled start nodes specially.
|
|
||||||
//
|
|
||||||
while (Doms[*PI].size() == 0) ++PI;
|
|
||||||
WorkingSet = Doms[*PI];
|
|
||||||
|
|
||||||
for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||||
DomSetType &PredSet = Doms[*PI];
|
for (idf_iterator<BasicBlock*> It = idf_begin(Roots[i]),
|
||||||
if (PredSet.size())
|
E = idf_end(Roots[i]); It != E; ++It) {
|
||||||
set_intersect(WorkingSet, PredSet);
|
BasicBlock *BB = *It;
|
||||||
}
|
succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
||||||
} else if (BB != Root) {
|
if (SI != SE) { // Is there SOME successor?
|
||||||
// If this isn't the root basic block and it has no successors, it must
|
// Loop until we get to a successor that has had it's dom set filled
|
||||||
// be an non-returning block. Fib a bit by saying that the root node
|
// in at least once. We are guaranteed to have this because we are
|
||||||
// postdominates this unreachable node. This isn't exactly true,
|
// traversing the graph in DFO and have handled start nodes specially.
|
||||||
// because there is no path from this node to the root node, but it is
|
//
|
||||||
// sorta true because any paths to the exit node would have to go
|
while (Doms[*SI].size() == 0) ++SI;
|
||||||
// through this node.
|
WorkingSet = Doms[*SI];
|
||||||
//
|
|
||||||
// This allows for postdominator properties to be built for code that
|
for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets
|
||||||
// doesn't return in a reasonable manner.
|
DomSetType &SuccSet = Doms[*SI];
|
||||||
//
|
if (SuccSet.size())
|
||||||
WorkingSet = Doms[Root];
|
set_intersect(WorkingSet, SuccSet);
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
|
// If this node has no successors, it must be one of the root nodes.
|
||||||
|
// We will already take care of the notion that the node
|
||||||
|
// post-dominates itself. The only thing we have to add is that if
|
||||||
|
// there are multiple root nodes, we want to insert a special "null"
|
||||||
|
// exit node which dominates the roots as well.
|
||||||
|
if (Roots.size() > 1)
|
||||||
|
WorkingSet.insert(0);
|
||||||
|
}
|
||||||
|
|
||||||
WorkingSet.insert(BB); // A block always dominates itself
|
WorkingSet.insert(BB); // A block always dominates itself
|
||||||
DomSetType &BBSet = Doms[BB];
|
DomSetType &BBSet = Doms[BB];
|
||||||
if (BBSet != WorkingSet) {
|
if (BBSet != WorkingSet) {
|
||||||
BBSet.swap(WorkingSet); // Constant time operation!
|
BBSet.swap(WorkingSet); // Constant time operation!
|
||||||
Changed = true; // The sets changed.
|
Changed = true; // The sets changed.
|
||||||
|
}
|
||||||
|
WorkingSet.clear(); // Clear out the set for next iteration
|
||||||
}
|
}
|
||||||
WorkingSet.clear(); // Clear out the set for next iteration
|
|
||||||
}
|
|
||||||
} while (Changed);
|
} while (Changed);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// getAnalysisUsage - This obviously provides a post-dominator set, but it also
|
|
||||||
// requires the UnifyFunctionExitNodes pass.
|
|
||||||
//
|
|
||||||
void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
||||||
AU.setPreservesAll();
|
|
||||||
AU.addRequired<UnifyFunctionExitNodes>();
|
|
||||||
}
|
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
// ImmediatePostDominators Implementation
|
// ImmediatePostDominators Implementation
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
@ -107,17 +109,25 @@ static RegisterAnalysis<PostDominatorTree>
|
||||||
F("postdomtree", "Post-Dominator Tree Construction", true);
|
F("postdomtree", "Post-Dominator Tree Construction", true);
|
||||||
|
|
||||||
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
|
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
|
||||||
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
if (Roots.empty()) return;
|
||||||
|
BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
|
||||||
|
|
||||||
if (Root) {
|
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
|
||||||
// Iterate over all nodes in depth first order...
|
|
||||||
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
|
// Iterate over all nodes in depth first order...
|
||||||
I != E; ++I) {
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||||
|
for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
|
||||||
|
E = idf_end(Roots[i]); I != E; ++I) {
|
||||||
BasicBlock *BB = *I;
|
BasicBlock *BB = *I;
|
||||||
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
||||||
unsigned DomSetSize = Dominators.size();
|
unsigned DomSetSize = Dominators.size();
|
||||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||||
|
|
||||||
|
// If we have already computed the immediate dominator for this node,
|
||||||
|
// don't revisit. This can happen due to nodes reachable from multiple
|
||||||
|
// roots, but which the idf_iterator doesn't know about.
|
||||||
|
if (Nodes.find(BB) != Nodes.end()) continue;
|
||||||
|
|
||||||
// Loop over all dominators of this node. This corresponds to looping
|
// Loop over all dominators of this node. This corresponds to looping
|
||||||
// over nodes in the dominator chain, looking for a node whose dominator
|
// over nodes in the dominator chain, looking for a node whose dominator
|
||||||
// set is equal to the current nodes, except that the current node does
|
// set is equal to the current nodes, except that the current node does
|
||||||
|
@ -130,28 +140,27 @@ void PostDominatorTree::calculate(const PostDominatorSet &DS) {
|
||||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||||
for (; I != End; ++I) { // Iterate over dominators...
|
for (; I != End; ++I) { // Iterate over dominators...
|
||||||
// All of our dominators should form a chain, where the number
|
// All of our dominators should form a chain, where the number
|
||||||
// of elements in the dominator set indicates what level the
|
// of elements in the dominator set indicates what level the
|
||||||
// node is at in the chain. We want the node immediately
|
// node is at in the chain. We want the node immediately
|
||||||
// above us, so it will have an identical dominator set,
|
// above us, so it will have an identical dominator set,
|
||||||
// except that BB will not dominate it... therefore it's
|
// except that BB will not dominate it... therefore it's
|
||||||
// dominator set size will be one less than BB's...
|
// dominator set size will be one less than BB's...
|
||||||
//
|
//
|
||||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||||
// We know that the immediate dominator should already have a node,
|
// We know that the immediate dominator should already have a node,
|
||||||
// because we are traversing the CFG in depth first order!
|
// because we are traversing the CFG in depth first order!
|
||||||
//
|
//
|
||||||
Node *IDomNode = Nodes[*I];
|
Node *IDomNode = Nodes[*I];
|
||||||
assert(IDomNode && "No node for IDOM?");
|
assert(IDomNode && "No node for IDOM?");
|
||||||
|
|
||||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||||
// IDomNode
|
// IDomNode
|
||||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
@ -167,14 +176,14 @@ PostDominanceFrontier::calculate(const PostDominatorTree &DT,
|
||||||
// Loop over CFG successors to calculate DFlocal[Node]
|
// Loop over CFG successors to calculate DFlocal[Node]
|
||||||
BasicBlock *BB = Node->getNode();
|
BasicBlock *BB = Node->getNode();
|
||||||
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
||||||
if (!Root) return S;
|
if (getRoots().empty()) return S;
|
||||||
|
|
||||||
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
|
if (BB)
|
||||||
SI != SE; ++SI) {
|
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
|
||||||
// Does Node immediately dominate this predeccessor?
|
SI != SE; ++SI)
|
||||||
if (DT[*SI]->getIDom() != Node)
|
// Does Node immediately dominate this predeccessor?
|
||||||
S.insert(*SI);
|
if (DT[*SI]->getIDom() != Node)
|
||||||
}
|
S.insert(*SI);
|
||||||
|
|
||||||
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
||||||
// Loop through and visit the nodes that Node immediately dominates (Node's
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
||||||
|
|
Loading…
Reference in New Issue