Detect an incompatible VLA pointer assignment

For pointer assignments of VLA types, Clang currently detects when array
dimensions _lower_ than a variable dimension differ, and reports a warning.
However it does not do the same when the _higher_ dimensions differ, a
case that GCC does catch.

These two pointer types

    int (*foo)[1][bar][3];
    int (*baz)[1][2][3];

are compatible with each another, and the program is well formed if
bar == 2, a matter that is the programmers problem. However the following:

    int (*qux)[2][2][3];

would not be compatible with either, because the upper dimension differs
in size. Clang reports baz is incompatible with qux, but not that foo is
incompatible with qux because it doesn't check those higher dimensions.

Fix this by comparing array sizes on higher dimensions: if both are
constants but unequal then report incompatibility; if either dimension is
variable then we can't know either way.

Differential Revision: https://reviews.llvm.org/D47628

llvm-svn: 333989
This commit is contained in:
Jeremy Morse 2018-06-05 09:18:26 +00:00
parent a998f98ba6
commit 8129c5c0a4
2 changed files with 45 additions and 2 deletions

View File

@ -8601,6 +8601,38 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
if (ResultType.isNull())
return {};
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
// If either side is a variable array, and both are complete, check whether
// the current dimension is definite.
if (LVAT || RVAT) {
auto SizeFetch = [this](const VariableArrayType* VAT,
const ConstantArrayType* CAT)
-> std::pair<bool,llvm::APInt> {
if (VAT) {
llvm::APSInt TheInt;
Expr *E = VAT->getSizeExpr();
if (E && E->isIntegerConstantExpr(TheInt, *this))
return std::make_pair(true, TheInt);
else
return std::make_pair(false, TheInt);
} else if (CAT) {
return std::make_pair(true, CAT->getSize());
} else {
return std::make_pair(false, llvm::APInt());
}
};
bool HaveLSize, HaveRSize;
llvm::APInt LSize, RSize;
std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
return {}; // Definite, but unequal, array dimension
}
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
@ -8609,8 +8641,6 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
ArrayType::ArraySizeModifier(), 0);
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))

View File

@ -76,3 +76,16 @@ struct {
];
};
int (*use_implicitly_declared)() = implicitly_declared; // ok, was implicitly declared at file scope
void VLAPtrAssign(int size) {
int array[1][2][3][size][4][5];
// This is well formed
int (*p)[2][3][size][4][5] = array;
// Last array dimension too large
int (*p2)[2][3][size][4][6] = array; // expected-warning {{incompatible pointer types}}
// Second array dimension too large
int (*p3)[20][3][size][4][5] = array; // expected-warning {{incompatible pointer types}}
// Not illegal in C, program _might_ be well formed if size == 3.
int (*p4)[2][size][3][4][5] = array;
}