[MachineOutliner] NFC: Split up getOutliningBenefit

This is some more cleanup in preparation for some actual
functional changes. This splits getOutliningBenefit into
two cost functions: getOutliningCallOverhead and
getOutliningFrameOverhead. These functions return the
number of instructions that would be required to call
a specific function and the number of instructions
that would be required to construct a frame for a
specific funtion. The actual outlining benefit logic
is moved into the outliner, which calls these functions.

The goal of refactoring getOutliningBenefit is to:

- Get us closer to getting rid of the IsTailCall flag

- Further split up "target-specific" things and
"general algorithm" things

llvm-svn: 309356
This commit is contained in:
Jessica Paquette 2017-07-28 03:21:58 +00:00
parent 75a001ba78
commit 809d708b8a
6 changed files with 389 additions and 352 deletions

View File

@ -55,7 +55,7 @@ class TargetRegisterInfo;
class TargetSchedModel;
class TargetSubtargetInfo;
template<class T> class SmallVectorImpl;
template <class T> class SmallVectorImpl;
//---------------------------------------------------------------------------
///
@ -66,8 +66,7 @@ public:
TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
: CallFrameSetupOpcode(CFSetupOpcode),
CallFrameDestroyOpcode(CFDestroyOpcode),
CatchRetOpcode(CatchRetOpcode),
CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
ReturnOpcode(ReturnOpcode) {}
TargetInstrInfo(const TargetInstrInfo &) = delete;
TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
@ -79,8 +78,7 @@ public:
/// Given a machine instruction descriptor, returns the register
/// class constraint for OpNum, or NULL.
const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
unsigned OpNum,
const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
const TargetRegisterInfo *TRI,
const MachineFunction &MF) const;
@ -139,8 +137,7 @@ protected:
/// the fixed result pair is equal to or equivalent to the source pair of
/// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
/// the pairs (x,y) and (y,x) are equivalent.
static bool fixCommutedOpIndices(unsigned &ResultIdx1,
unsigned &ResultIdx2,
static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
unsigned CommutableOpIdx1,
unsigned CommutableOpIdx2);
@ -164,7 +161,7 @@ public:
/// Returns true if the argument is a frame pseudo instruction.
bool isFrameInstr(const MachineInstr &I) const {
return I.getOpcode() == getCallFrameSetupOpcode() ||
I.getOpcode() == getCallFrameDestroyOpcode();
I.getOpcode() == getCallFrameDestroyOpcode();
}
/// Returns true if the argument is a frame setup pseudo instruction.
@ -191,7 +188,8 @@ public:
/// prior to the pair.
int64_t getFrameTotalSize(const MachineInstr &I) const {
if (isFrameSetup(I)) {
assert(I.getOperand(1).getImm() >= 0 && "Frame size must not be negative");
assert(I.getOperand(1).getImm() >= 0 &&
"Frame size must not be negative");
return getFrameSize(I) + I.getOperand(1).getImm();
}
return getFrameSize(I);
@ -211,9 +209,8 @@ public:
/// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
/// expected the pre-extension value is available as a subreg of the result
/// register. This also returns the sub-register index in SubIdx.
virtual bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
unsigned &DstReg, unsigned &SubIdx) const {
return false;
}
@ -315,9 +312,7 @@ public:
/// MachineSink determines on its own whether the instruction is safe to sink;
/// this gives the target a hook to override the default behavior with regards
/// to which instructions should be sunk.
virtual bool shouldSink(const MachineInstr &MI) const {
return true;
}
virtual bool shouldSink(const MachineInstr &MI) const { return true; }
/// Re-issue the specified 'original' instruction at the
/// specific location targeting a new destination register.
@ -456,9 +451,8 @@ public:
/// \note The generic implementation does not provide any support for
/// MI.isExtractSubregLike(). In other words, one has to override
/// getExtractSubregLikeInputs for target specific instructions.
bool
getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const;
bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const;
/// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
/// and \p DefIdx.
@ -476,10 +470,9 @@ public:
/// \note The generic implementation does not provide any support for
/// MI.isInsertSubregLike(). In other words, one has to override
/// getInsertSubregLikeInputs for target specific instructions.
bool
getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg,
RegSubRegPairAndIdx &InsertedReg) const;
bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg,
RegSubRegPairAndIdx &InsertedReg) const;
/// Return true if two machine instructions would produce identical values.
/// By default, this is only true when the two instructions
@ -625,8 +618,8 @@ public:
MachineBasicBlock *DestBB,
const DebugLoc &DL,
int *BytesAdded = nullptr) const {
return insertBranch(MBB, DestBB, nullptr,
ArrayRef<MachineOperand>(), DL, BytesAdded);
return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
BytesAdded);
}
/// Analyze the loop code, return true if it cannot be understoo. Upon
@ -641,8 +634,8 @@ public:
/// finished. Return the value/register of the the new loop count. We need
/// this function when peeling off one or more iterations of a loop. This
/// function assumes the nth iteration is peeled first.
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
MachineInstr *IndVar, MachineInstr &Cmp,
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
MachineInstr &Cmp,
SmallVectorImpl<MachineOperand> &Cond,
SmallVectorImpl<MachineInstr *> &PrevInsts,
unsigned Iter, unsigned MaxIter) const {
@ -667,10 +660,9 @@ public:
/// of the specified basic block, where the probability of the instructions
/// being executed is given by Probability, and Confidence is a measure
/// of our confidence that it will be properly predicted.
virtual
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
unsigned ExtraPredCycles,
BranchProbability Probability) const {
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
unsigned ExtraPredCycles,
BranchProbability Probability) const {
return false;
}
@ -680,12 +672,11 @@ public:
/// predicates, where the probability of the true path being taken is given
/// by Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles,
BranchProbability Probability) const {
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
unsigned ExtraTCycles,
MachineBasicBlock &FMBB, unsigned NumFCycles,
unsigned ExtraFCycles,
BranchProbability Probability) const {
return false;
}
@ -695,9 +686,9 @@ public:
/// The probability of the instructions being executed is given by
/// Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const {
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles,
BranchProbability Probability) const {
return false;
}
@ -735,9 +726,8 @@ public:
/// @param TrueCycles Latency from TrueReg to select output.
/// @param FalseCycles Latency from FalseReg to select output.
virtual bool canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg,
int &CondCycles,
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
unsigned FalseReg, int &CondCycles,
int &TrueCycles, int &FalseCycles) const {
return false;
}
@ -953,8 +943,7 @@ public:
/// Set special operand attributes for new instructions after reassociation.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
MachineInstr &NewMI1,
MachineInstr &NewMI2) const {
}
MachineInstr &NewMI2) const {}
/// Return true when a target supports MachineCombiner.
virtual bool useMachineCombiner() const { return false; }
@ -1007,9 +996,9 @@ protected:
/// \pre MI.isExtractSubregLike().
///
/// \see TargetInstrInfo::getExtractSubregInputs.
virtual bool getExtractSubregLikeInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const {
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const {
return false;
}
@ -1040,7 +1029,7 @@ public:
}
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
SmallVectorImpl<SDNode *> &NewNodes) const {
return false;
}
@ -1050,9 +1039,9 @@ public:
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
/// index of the operand which will hold the register holding the loaded
/// value.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = nullptr) const {
virtual unsigned
getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = nullptr) const {
return 0;
}
@ -1061,7 +1050,8 @@ public:
/// pointers are the same and the only differences between the two addresses
/// are the offset. It also returns the offsets by reference.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
int64_t &Offset1,
int64_t &Offset2) const {
return false;
}
@ -1115,8 +1105,8 @@ public:
/// Reverses the branch condition of the specified condition list,
/// returning false on success and true if it cannot be reversed.
virtual
bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
virtual bool
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
return true;
}
@ -1128,14 +1118,10 @@ public:
virtual void getNoop(MCInst &NopInst) const;
/// Return true for post-incremented instructions.
virtual bool isPostIncrement(const MachineInstr &MI) const {
return false;
}
virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
/// Returns true if the instruction is already predicated.
virtual bool isPredicated(const MachineInstr &MI) const {
return false;
}
virtual bool isPredicated(const MachineInstr &MI) const { return false; }
/// Returns true if the instruction is a
/// terminator instruction that has not been predicated.
@ -1147,9 +1133,8 @@ public:
}
/// Returns true if the tail call can be made conditional on BranchCond.
virtual bool
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
const MachineInstr &TailCall) const {
virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
const MachineInstr &TailCall) const {
return false;
}
@ -1167,9 +1152,8 @@ public:
/// Returns true if the first specified predicate
/// subsumes the second, e.g. GE subsumes GT.
virtual
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
return false;
}
@ -1207,25 +1191,25 @@ public:
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions before register allocation.
virtual ScheduleHazardRecognizer*
virtual ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions before register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetMIHazardRecognizer(const InstrItineraryData*,
virtual ScheduleHazardRecognizer *
CreateTargetMIHazardRecognizer(const InstrItineraryData *,
const ScheduleDAG *DAG) const;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions after register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
virtual ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
const ScheduleDAG *DAG) const;
/// Allocate and return a hazard recognizer to use for by non-scheduling
/// passes.
virtual ScheduleHazardRecognizer*
virtual ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
return nullptr;
}
@ -1502,7 +1486,7 @@ public:
/// \brief Return the value to use for the MachineCSE's LookAheadLimit,
/// which is a heuristic used for CSE'ing phys reg defs.
virtual unsigned getMachineCSELookAheadLimit () const {
virtual unsigned getMachineCSELookAheadLimit() const {
// The default lookahead is small to prevent unprofitable quadratic
// behavior.
return 5;
@ -1569,13 +1553,24 @@ public:
return false;
}
/// \brief Return how many instructions would be saved by outlining a
/// sequence containing \p SequenceSize instructions that appears
/// \p Occurrences times in a module.
virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences,
bool CanBeTailCall) const {
/// \brief Returns the number of instructions that will be taken to call a
/// function defined by the sequence on the closed interval [ \p StartIt, \p
/// EndIt].
virtual size_t
getOutliningCallOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
llvm_unreachable(
"Target didn't implement TargetInstrInfo::getOutliningBenefit!");
"Target didn't implement TargetInstrInfo::getOutliningCallOverhead!");
}
/// \brief Returns the number of instructions that will be taken to construct
/// an outlined function frame for a function defined on the closed interval
/// [ \p StartIt, \p EndIt].
virtual size_t
getOutliningFrameOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
llvm_unreachable(
"Target didn't implement TargetInstrInfo::getOutliningCallOverhead!");
}
/// Represents how an instruction should be mapped by the outliner.
@ -1583,7 +1578,7 @@ public:
/// \p Illegal instructions are those which cannot be outlined.
/// \p Invisible instructions are instructions which can be outlined, but
/// shouldn't actually impact the outlining result.
enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
enum MachineOutlinerInstrType { Legal, Illegal, Invisible };
/// Returns how or if \p MI should be outlined.
virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
@ -1635,25 +1630,23 @@ private:
};
/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
template<>
struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
using RegInfo = DenseMapInfo<unsigned>;
static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
RegInfo::getEmptyKey());
RegInfo::getEmptyKey());
}
static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
RegInfo::getTombstoneKey());
RegInfo::getTombstoneKey());
}
/// \brief Reuse getHashValue implementation from
/// std::pair<unsigned, unsigned>.
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
std::pair<unsigned, unsigned> PairVal =
std::make_pair(Val.Reg, Val.SubReg);
std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
}

View File

@ -114,7 +114,7 @@ struct OutlinedFunction {
/// This is initialized after we go through and create the actual function.
MachineFunction *MF = nullptr;
/// A number assigned to this function which appears at the end of its name.
/// A numbefr assigned to this function which appears at the end of its name.
size_t Name;
/// The number of candidates for this OutlinedFunction.
@ -813,11 +813,13 @@ struct MachineOutliner : public ModulePass {
///
/// \param[in,out] CandidateList A list of outlining candidates.
/// \param[in,out] FunctionList A list of functions to be outlined.
/// \param Mapper Contains instruction mapping info for outlining.
/// \param MaxCandidateLen The length of the longest candidate.
/// \param TII TargetInstrInfo for the module.
void pruneOverlaps(std::vector<Candidate> &CandidateList,
std::vector<OutlinedFunction> &FunctionList,
unsigned MaxCandidateLen, const TargetInstrInfo &TII);
InstructionMapper &Mapper, unsigned MaxCandidateLen,
const TargetInstrInfo &TII);
/// Construct a suffix tree on the instructions in \p M and outline repeated
/// strings from that tree.
@ -859,23 +861,40 @@ MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
continue;
// How many instructions would outlining this string save?
// Figure out if this candidate is beneficial.
size_t StringLen = Leaf->ConcatLen - Leaf->size();
unsigned EndVal = ST.Str[Leaf->SuffixIdx + StringLen - 1];
size_t CallOverhead = 0;
size_t FrameOverhead = 0;
size_t SequenceOverhead = StringLen;
// Determine if this is going to be tail called.
// FIXME: The target should decide this. The outlining pass shouldn't care
// about things like tail calling. It should be representation-agnostic.
MachineInstr *LastInstr = Mapper.IntegerInstructionMap[EndVal];
assert(LastInstr && "Last instruction in sequence was unmapped!");
bool IsTailCall = LastInstr->isTerminator();
unsigned Benefit =
TII.getOutliningBenefit(StringLen, Parent.OccurrenceCount, IsTailCall);
// Figure out the call overhead for each instance of the sequence.
for (auto &ChildPair : Parent.Children) {
SuffixTreeNode *M = ChildPair.second;
// If it's not beneficial, skip it.
if (Benefit < 1)
if (M && M->IsInTree && M->isLeaf()) {
// Each sequence is over [StartIt, EndIt].
MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
MachineBasicBlock::iterator EndIt =
Mapper.InstrList[M->SuffixIdx + StringLen - 1];
CallOverhead += TII.getOutliningCallOverhead(StartIt, EndIt);
}
}
// Figure out how many instructions it'll take to construct an outlined
// function frame for this sequence.
MachineBasicBlock::iterator StartIt = Mapper.InstrList[Leaf->SuffixIdx];
MachineBasicBlock::iterator EndIt =
Mapper.InstrList[Leaf->SuffixIdx + StringLen - 1];
FrameOverhead = TII.getOutliningFrameOverhead(StartIt, EndIt);
size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead;
size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount;
if (NotOutliningCost <= OutliningCost)
continue;
size_t Benefit = NotOutliningCost - OutliningCost;
if (StringLen > MaxLen)
MaxLen = StringLen;
@ -910,6 +929,7 @@ MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
std::vector<OutlinedFunction> &FunctionList,
InstructionMapper &Mapper,
unsigned MaxCandidateLen,
const TargetInstrInfo &TII) {
// TODO: Experiment with interval trees or other interval-checking structures
@ -993,8 +1013,18 @@ void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
assert(F2.OccurrenceCount > 0 &&
"Can't remove OutlinedFunction with no occurrences!");
F2.OccurrenceCount--;
F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
F2.OccurrenceCount, F2.IsTailCall);
// Remove the call overhead from the removed sequence.
MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx];
MachineBasicBlock::iterator EndIt =
Mapper.InstrList[C2.StartIdx + C2.Len - 1];
F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt);
// Add back one instance of the sequence.
if (F2.Sequence.size() > F2.Benefit)
F2.Benefit = 0;
else
F2.Benefit -= F2.Sequence.size();
C2.InCandidateList = false;
@ -1009,8 +1039,19 @@ void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
assert(F1.OccurrenceCount > 0 &&
"Can't remove OutlinedFunction with no occurrences!");
F1.OccurrenceCount--;
F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(),
F1.OccurrenceCount, F1.IsTailCall);
// Remove the call overhead from the removed sequence.
MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx];
MachineBasicBlock::iterator EndIt =
Mapper.InstrList[C1.StartIdx + C1.Len - 1];
F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt);
// Add back one instance of the sequence.
if (F1.Sequence.size() > F1.Benefit)
F1.Benefit = 0;
else
F1.Benefit -= F1.Sequence.size();
C1.InCandidateList = false;
DEBUG(dbgs() << "- Removed C1. \n";
@ -1206,7 +1247,7 @@ bool MachineOutliner::runOnModule(Module &M) {
buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
// Remove candidates that overlap with other candidates.
pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
// Outline each of the candidates and return true if something was outlined.
return outline(M, CandidateList, FunctionList, Mapper);

View File

@ -52,17 +52,17 @@ using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "AArch64GenInstrInfo.inc"
static cl::opt<unsigned>
TBZDisplacementBits("aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
static cl::opt<unsigned> TBZDisplacementBits(
"aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
static cl::opt<unsigned> CBZDisplacementBits(
"aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
static cl::opt<unsigned>
CBZDisplacementBits("aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
static cl::opt<unsigned>
BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
cl::desc("Restrict range of Bcc instructions (DEBUG)"));
BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
cl::desc("Restrict range of Bcc instructions (DEBUG)"));
AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
: AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
@ -172,8 +172,8 @@ bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
return isIntN(Bits, BrOffset / 4);
}
MachineBasicBlock *AArch64InstrInfo::getBranchDestBlock(
const MachineInstr &MI) const {
MachineBasicBlock *
AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default:
llvm_unreachable("unexpected opcode!");
@ -374,12 +374,9 @@ void AArch64InstrInfo::instantiateCondBranch(
}
}
unsigned AArch64InstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
unsigned AArch64InstrInfo::insertBranch(
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
@ -485,10 +482,11 @@ static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
return Opc;
}
bool AArch64InstrInfo::canInsertSelect(
const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
int &FalseCycles) const {
bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg,
int &CondCycles, int &TrueCycles,
int &FalseCycles) const {
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
@ -656,8 +654,10 @@ void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
MRI.constrainRegClass(FalseReg, RC);
// Insert the csel.
BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
CC);
BuildMI(MBB, I, DL, get(Opc), DstReg)
.addReg(TrueReg)
.addReg(FalseReg)
.addImm(CC);
}
/// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
@ -1078,11 +1078,7 @@ static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
}
}
enum AccessKind {
AK_Write = 0x01,
AK_Read = 0x10,
AK_All = 0x11
};
enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
/// True when condition flags are accessed (either by writing or reading)
/// on the instruction trace starting at From and ending at To.
@ -1111,21 +1107,24 @@ static bool areCFlagsAccessedBetweenInstrs(
for (--To; To != From; --To) {
const MachineInstr &Instr = *To;
if ( ((AccessToCheck & AK_Write) && Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
if (((AccessToCheck & AK_Write) &&
Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
return true;
}
return false;
}
/// Try to optimize a compare instruction. A compare instruction is an
/// instruction which produces AArch64::NZCV. It can be truly compare instruction
/// instruction which produces AArch64::NZCV. It can be truly compare
/// instruction
/// when there are no uses of its destination register.
///
/// The following steps are tried in order:
/// 1. Convert CmpInstr into an unconditional version.
/// 2. Remove CmpInstr if above there is an instruction producing a needed
/// condition code or an instruction which can be converted into such an instruction.
/// condition code or an instruction which can be converted into such an
/// instruction.
/// Only comparison with zero is supported.
bool AArch64InstrInfo::optimizeCompareInstr(
MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
@ -1187,20 +1186,34 @@ static unsigned sForm(MachineInstr &Instr) {
case AArch64::SUBSXri:
return Instr.getOpcode();
case AArch64::ADDWrr: return AArch64::ADDSWrr;
case AArch64::ADDWri: return AArch64::ADDSWri;
case AArch64::ADDXrr: return AArch64::ADDSXrr;
case AArch64::ADDXri: return AArch64::ADDSXri;
case AArch64::ADCWr: return AArch64::ADCSWr;
case AArch64::ADCXr: return AArch64::ADCSXr;
case AArch64::SUBWrr: return AArch64::SUBSWrr;
case AArch64::SUBWri: return AArch64::SUBSWri;
case AArch64::SUBXrr: return AArch64::SUBSXrr;
case AArch64::SUBXri: return AArch64::SUBSXri;
case AArch64::SBCWr: return AArch64::SBCSWr;
case AArch64::SBCXr: return AArch64::SBCSXr;
case AArch64::ANDWri: return AArch64::ANDSWri;
case AArch64::ANDXri: return AArch64::ANDSXri;
case AArch64::ADDWrr:
return AArch64::ADDSWrr;
case AArch64::ADDWri:
return AArch64::ADDSWri;
case AArch64::ADDXrr:
return AArch64::ADDSXrr;
case AArch64::ADDXri:
return AArch64::ADDSXri;
case AArch64::ADCWr:
return AArch64::ADCSWr;
case AArch64::ADCXr:
return AArch64::ADCSXr;
case AArch64::SUBWrr:
return AArch64::SUBSWrr;
case AArch64::SUBWri:
return AArch64::SUBSWri;
case AArch64::SUBXrr:
return AArch64::SUBSXrr;
case AArch64::SUBXri:
return AArch64::SUBSXri;
case AArch64::SBCWr:
return AArch64::SBCSWr;
case AArch64::SBCXr:
return AArch64::SBCSXr;
case AArch64::ANDWri:
return AArch64::ANDSWri;
case AArch64::ANDXri:
return AArch64::ANDSXri;
}
}
@ -1222,7 +1235,7 @@ struct UsedNZCV {
UsedNZCV() = default;
UsedNZCV& operator |=(const UsedNZCV& UsedFlags) {
UsedNZCV &operator|=(const UsedNZCV &UsedFlags) {
this->N |= UsedFlags.N;
this->Z |= UsedFlags.Z;
this->C |= UsedFlags.C;
@ -1238,29 +1251,29 @@ struct UsedNZCV {
/// codes or we don't optimize CmpInstr in the presence of such instructions.
static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
switch (Instr.getOpcode()) {
default:
return AArch64CC::Invalid;
default:
return AArch64CC::Invalid;
case AArch64::Bcc: {
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
assert(Idx >= 2);
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm());
}
case AArch64::Bcc: {
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
assert(Idx >= 2);
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm());
}
case AArch64::CSINVWr:
case AArch64::CSINVXr:
case AArch64::CSINCWr:
case AArch64::CSINCXr:
case AArch64::CSELWr:
case AArch64::CSELXr:
case AArch64::CSNEGWr:
case AArch64::CSNEGXr:
case AArch64::FCSELSrrr:
case AArch64::FCSELDrrr: {
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
assert(Idx >= 1);
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm());
}
case AArch64::CSINVWr:
case AArch64::CSINVXr:
case AArch64::CSINCWr:
case AArch64::CSINCXr:
case AArch64::CSELWr:
case AArch64::CSELXr:
case AArch64::CSNEGWr:
case AArch64::CSNEGXr:
case AArch64::FCSELSrrr:
case AArch64::FCSELDrrr: {
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
assert(Idx >= 1);
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm());
}
}
}
@ -1268,42 +1281,42 @@ static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
assert(CC != AArch64CC::Invalid);
UsedNZCV UsedFlags;
switch (CC) {
default:
break;
default:
break;
case AArch64CC::EQ: // Z set
case AArch64CC::NE: // Z clear
UsedFlags.Z = true;
break;
case AArch64CC::EQ: // Z set
case AArch64CC::NE: // Z clear
UsedFlags.Z = true;
break;
case AArch64CC::HI: // Z clear and C set
case AArch64CC::LS: // Z set or C clear
UsedFlags.Z = true;
LLVM_FALLTHROUGH;
case AArch64CC::HS: // C set
case AArch64CC::LO: // C clear
UsedFlags.C = true;
break;
case AArch64CC::HI: // Z clear and C set
case AArch64CC::LS: // Z set or C clear
UsedFlags.Z = true;
LLVM_FALLTHROUGH;
case AArch64CC::HS: // C set
case AArch64CC::LO: // C clear
UsedFlags.C = true;
break;
case AArch64CC::MI: // N set
case AArch64CC::PL: // N clear
UsedFlags.N = true;
break;
case AArch64CC::MI: // N set
case AArch64CC::PL: // N clear
UsedFlags.N = true;
break;
case AArch64CC::VS: // V set
case AArch64CC::VC: // V clear
UsedFlags.V = true;
break;
case AArch64CC::VS: // V set
case AArch64CC::VC: // V clear
UsedFlags.V = true;
break;
case AArch64CC::GT: // Z clear, N and V the same
case AArch64CC::LE: // Z set, N and V differ
UsedFlags.Z = true;
LLVM_FALLTHROUGH;
case AArch64CC::GE: // N and V the same
case AArch64CC::LT: // N and V differ
UsedFlags.N = true;
UsedFlags.V = true;
break;
case AArch64CC::GT: // Z clear, N and V the same
case AArch64CC::LE: // Z set, N and V differ
UsedFlags.Z = true;
LLVM_FALLTHROUGH;
case AArch64CC::GE: // N and V the same
case AArch64CC::LT: // N and V differ
UsedFlags.N = true;
UsedFlags.V = true;
break;
}
return UsedFlags;
}
@ -1328,7 +1341,7 @@ static bool isSUBSRegImm(unsigned Opcode) {
/// nor uses of flags between MI and CmpInstr.
/// - and C/V flags are not used after CmpInstr
static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
const TargetRegisterInfo *TRI) {
const TargetRegisterInfo *TRI) {
assert(MI);
assert(sForm(*MI) != AArch64::INSTRUCTION_LIST_END);
assert(CmpInstr);
@ -1350,7 +1363,8 @@ static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
return false;
UsedNZCV NZCVUsedAfterCmp;
for (auto I = std::next(CmpInstr->getIterator()), E = CmpInstr->getParent()->instr_end();
for (auto I = std::next(CmpInstr->getIterator()),
E = CmpInstr->getParent()->instr_end();
I != E; ++I) {
const MachineInstr &Instr = *I;
if (Instr.readsRegister(AArch64::NZCV, TRI)) {
@ -1363,7 +1377,7 @@ static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
if (Instr.modifiesRegister(AArch64::NZCV, TRI))
break;
}
return !NZCVUsedAfterCmp.C && !NZCVUsedAfterCmp.V;
}
@ -1421,16 +1435,20 @@ bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
.addMemOperand(*MI.memoperands_begin());
} else if (TM.getCodeModel() == CodeModel::Large) {
BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
.addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC).addImm(0);
.addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
.addImm(0);
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
.addReg(Reg, RegState::Kill)
.addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC).addImm(16);
.addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
.addImm(16);
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
.addReg(Reg, RegState::Kill)
.addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC).addImm(32);
.addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
.addImm(32);
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
.addReg(Reg, RegState::Kill)
.addGlobalAddress(GV, 0, AArch64II::MO_G3).addImm(48);
.addGlobalAddress(GV, 0, AArch64II::MO_G3)
.addImm(48);
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
.addReg(Reg, RegState::Kill)
.addImm(0)
@ -1812,7 +1830,7 @@ bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth(
} else
return false;
// Get the scaling factor for the instruction and set the width for the
// Get the scaling factor for the instruction and set the width for the
// instruction.
unsigned Scale = 0;
int64_t Dummy1, Dummy2;
@ -1835,10 +1853,10 @@ bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth(
return true;
}
MachineOperand&
MachineOperand &
AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands()-1);
MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
return OfsOp;
}
@ -1847,7 +1865,7 @@ bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, unsigned &Scale,
unsigned &Width, int64_t &MinOffset,
int64_t &MaxOffset) const {
switch (Opcode) {
// Not a memory operation or something we want to handle.
// Not a memory operation or something we want to handle.
default:
Scale = Width = 0;
MinOffset = MaxOffset = 0;
@ -2102,12 +2120,13 @@ static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
return ((DestReg - SrcReg) & 0x1f) < NumRegs;
}
void AArch64InstrInfo::copyPhysRegTuple(
MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL,
unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
ArrayRef<unsigned> Indices) const {
assert(Subtarget.hasNEON() &&
"Unexpected register copy without NEON");
void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, unsigned DestReg,
unsigned SrcReg, bool KillSrc,
unsigned Opcode,
ArrayRef<unsigned> Indices) const {
assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
const TargetRegisterInfo *TRI = &getRegisterInfo();
uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
@ -2160,8 +2179,9 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
}
} else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
.addImm(0)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
} else {
if (Subtarget.hasZeroCycleRegMove()) {
// Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
@ -2196,8 +2216,9 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
.addImm(0)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
} else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
.addImm(0)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
} else {
// Otherwise, expand to ORR XZR.
BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
@ -2210,8 +2231,8 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a DDDD register quad by copying the individual sub-registers.
if (AArch64::DDDDRegClass.contains(DestReg) &&
AArch64::DDDDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
AArch64::dsub2, AArch64::dsub3 };
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
AArch64::dsub2, AArch64::dsub3};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
Indices);
return;
@ -2220,8 +2241,8 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a DDD register triple by copying the individual sub-registers.
if (AArch64::DDDRegClass.contains(DestReg) &&
AArch64::DDDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
AArch64::dsub2 };
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
AArch64::dsub2};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
Indices);
return;
@ -2230,7 +2251,7 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a DD register pair by copying the individual sub-registers.
if (AArch64::DDRegClass.contains(DestReg) &&
AArch64::DDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
Indices);
return;
@ -2239,8 +2260,8 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a QQQQ register quad by copying the individual sub-registers.
if (AArch64::QQQQRegClass.contains(DestReg) &&
AArch64::QQQQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2, AArch64::qsub3 };
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2, AArch64::qsub3};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
Indices);
return;
@ -2249,8 +2270,8 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a QQQ register triple by copying the individual sub-registers.
if (AArch64::QQQRegClass.contains(DestReg) &&
AArch64::QQQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2 };
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
Indices);
return;
@ -2259,7 +2280,7 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Copy a QQ register pair by copying the individual sub-registers.
if (AArch64::QQRegClass.contains(DestReg) &&
AArch64::QQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
Indices);
return;
@ -2267,28 +2288,28 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
if (AArch64::FPR128RegClass.contains(DestReg) &&
AArch64::FPR128RegClass.contains(SrcReg)) {
if(Subtarget.hasNEON()) {
if (Subtarget.hasNEON()) {
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
.addReg(SrcReg)
.addReg(SrcReg, getKillRegState(KillSrc));
} else {
BuildMI(MBB, I, DL, get(AArch64::STRQpre))
.addReg(AArch64::SP, RegState::Define)
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(AArch64::SP)
.addImm(-16);
.addReg(AArch64::SP, RegState::Define)
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(AArch64::SP)
.addImm(-16);
BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
.addReg(AArch64::SP, RegState::Define)
.addReg(DestReg, RegState::Define)
.addReg(AArch64::SP)
.addImm(16);
.addReg(AArch64::SP, RegState::Define)
.addReg(DestReg, RegState::Define)
.addReg(AArch64::SP)
.addImm(16);
}
return;
}
if (AArch64::FPR64RegClass.contains(DestReg) &&
AArch64::FPR64RegClass.contains(SrcReg)) {
if(Subtarget.hasNEON()) {
if (Subtarget.hasNEON()) {
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
&AArch64::FPR128RegClass);
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
@ -2305,7 +2326,7 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
if (AArch64::FPR32RegClass.contains(DestReg) &&
AArch64::FPR32RegClass.contains(SrcReg)) {
if(Subtarget.hasNEON()) {
if (Subtarget.hasNEON()) {
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
&AArch64::FPR128RegClass);
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
@ -2322,7 +2343,7 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
if (AArch64::FPR16RegClass.contains(DestReg) &&
AArch64::FPR16RegClass.contains(SrcReg)) {
if(Subtarget.hasNEON()) {
if (Subtarget.hasNEON()) {
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
&AArch64::FPR128RegClass);
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
@ -2343,7 +2364,7 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
if (AArch64::FPR8RegClass.contains(DestReg) &&
AArch64::FPR8RegClass.contains(SrcReg)) {
if(Subtarget.hasNEON()) {
if (Subtarget.hasNEON()) {
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
&AArch64::FPR128RegClass);
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
@ -2392,17 +2413,17 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
if (DestReg == AArch64::NZCV) {
assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
BuildMI(MBB, I, DL, get(AArch64::MSR))
.addImm(AArch64SysReg::NZCV)
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
.addImm(AArch64SysReg::NZCV)
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
return;
}
if (SrcReg == AArch64::NZCV) {
assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
.addImm(AArch64SysReg::NZCV)
.addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
.addImm(AArch64SysReg::NZCV)
.addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
return;
}
@ -2458,45 +2479,39 @@ void AArch64InstrInfo::storeRegToStackSlot(
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
Opc = AArch64::STRQui;
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Twov1d;
Offset = false;
}
break;
case 24:
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Threev1d;
Offset = false;
}
break;
case 32:
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Fourv1d;
Offset = false;
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Twov2d;
Offset = false;
}
break;
case 48:
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Threev2d;
Offset = false;
}
break;
case 64:
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register store without NEON");
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
Opc = AArch64::ST1Fourv2d;
Offset = false;
}
@ -2505,8 +2520,8 @@ void AArch64InstrInfo::storeRegToStackSlot(
assert(Opc && "Unknown register class");
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI);
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI);
if (Offset)
MI.addImm(0);
@ -2562,45 +2577,39 @@ void AArch64InstrInfo::loadRegFromStackSlot(
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
Opc = AArch64::LDRQui;
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Twov1d;
Offset = false;
}
break;
case 24:
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Threev1d;
Offset = false;
}
break;
case 32:
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Fourv1d;
Offset = false;
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Twov2d;
Offset = false;
}
break;
case 48:
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Threev2d;
Offset = false;
}
break;
case 64:
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
assert(Subtarget.hasNEON() &&
"Unexpected register load without NEON");
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
Opc = AArch64::LD1Fourv2d;
Offset = false;
}
@ -2609,8 +2618,8 @@ void AArch64InstrInfo::loadRegFromStackSlot(
assert(Opc && "Unknown register class");
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
.addReg(DestReg, getDefRegState(true))
.addFrameIndex(FI);
.addReg(DestReg, getDefRegState(true))
.addFrameIndex(FI);
if (Offset)
MI.addImm(0);
MI.addMemOperand(MMO);
@ -2755,7 +2764,7 @@ MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
"Mismatched register size in non subreg COPY");
if (IsSpill)
storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
@ -3138,10 +3147,7 @@ void AArch64InstrInfo::getNoop(MCInst &NopInst) const {
}
// AArch64 supports MachineCombiner.
bool AArch64InstrInfo::useMachineCombiner() const {
return true;
}
bool AArch64InstrInfo::useMachineCombiner() const { return true; }
// True when Opc sets flag
static bool isCombineInstrSettingFlag(unsigned Opc) {
@ -3275,7 +3281,8 @@ static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
// 1. Other data types (integer, vectors)
// 2. Other math / logic operations (xor, or)
// 3. Other forms of the same operation (intrinsics and other variants)
bool AArch64InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
bool AArch64InstrInfo::isAssociativeAndCommutative(
const MachineInstr &Inst) const {
switch (Inst.getOpcode()) {
case AArch64::FADDDrr:
case AArch64::FADDSrr:
@ -3595,8 +3602,8 @@ static bool getFMAPatterns(MachineInstr &Root,
/// Return true when a code sequence can improve throughput. It
/// should be called only for instructions in loops.
/// \param Pattern - combiner pattern
bool
AArch64InstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
bool AArch64InstrInfo::isThroughputPattern(
MachineCombinerPattern Pattern) const {
switch (Pattern) {
default:
break;
@ -3747,8 +3754,8 @@ genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
const TargetInstrInfo *TII, MachineInstr &Root,
SmallVectorImpl<MachineInstr *> &InsInstrs,
unsigned IdxMulOpd, unsigned MaddOpc,
unsigned VR, const TargetRegisterClass *RC) {
unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
const TargetRegisterClass *RC) {
assert(IdxMulOpd == 1 || IdxMulOpd == 2);
MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
@ -3767,11 +3774,11 @@ static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
if (TargetRegisterInfo::isVirtualRegister(VR))
MRI.constrainRegClass(VR, RC);
MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
ResultReg)
.addReg(SrcReg0, getKillRegState(Src0IsKill))
.addReg(SrcReg1, getKillRegState(Src1IsKill))
.addReg(VR);
MachineInstrBuilder MIB =
BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
.addReg(SrcReg0, getKillRegState(Src0IsKill))
.addReg(SrcReg1, getKillRegState(Src1IsKill))
.addReg(VR);
// Insert the MADD
InsInstrs.push_back(MIB);
return MUL;
@ -4401,12 +4408,9 @@ AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace AArch64II;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_PAGE, "aarch64-page"},
{MO_PAGEOFF, "aarch64-pageoff"},
{MO_G3, "aarch64-g3"},
{MO_G2, "aarch64-g2"},
{MO_G1, "aarch64-g1"},
{MO_G0, "aarch64-g0"},
{MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
{MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"},
{MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"},
{MO_HI12, "aarch64-hi12"}};
return makeArrayRef(TargetFlags);
}
@ -4416,9 +4420,7 @@ AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
using namespace AArch64II;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_GOT, "aarch64-got"},
{MO_NC, "aarch64-nc"},
{MO_TLS, "aarch64-tls"}};
{MO_GOT, "aarch64-got"}, {MO_NC, "aarch64-nc"}, {MO_TLS, "aarch64-tls"}};
return makeArrayRef(TargetFlags);
}
@ -4430,26 +4432,27 @@ AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
return makeArrayRef(TargetFlags);
}
unsigned AArch64InstrInfo::getOutliningBenefit(size_t SequenceSize,
size_t Occurrences,
bool CanBeTailCall) const {
unsigned NotOutlinedSize = SequenceSize * Occurrences;
unsigned OutlinedSize;
size_t AArch64InstrInfo::getOutliningCallOverhead(
MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
// Is this a tail-call?
if (EndIt->isTerminator())
return 1; // Yes, so we don't need to save/restore LR.
// Is this candidate something we can outline as a tail call?
if (CanBeTailCall) {
// If yes, then we just outline the sequence and replace each of its
// occurrences with a branch instruction.
OutlinedSize = SequenceSize + Occurrences;
} else {
// If no, then we outline the sequence (SequenceSize), add a return (+1),
// and replace each occurrence with a save/restore to LR and a call
// (3 * Occurrences)
OutlinedSize = (SequenceSize + 1) + (3 * Occurrences);
}
// No, so save + restore LR.
return 3;
}
// Return the number of instructions saved by outlining this sequence.
return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
size_t AArch64InstrInfo::getOutliningFrameOverhead(
MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
// Is this a tail-call?
if (EndIt->isTerminator())
return 0; // Yes, so we already have a return.
// No, so we have to add a return to the end.
return 1;
}
bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
@ -4475,7 +4478,7 @@ AArch64InstrInfo::getOutliningType(MachineInstr &MI) const {
// Is this the end of a function?
if (MI.getParent()->succ_empty())
return MachineOutlinerInstrType::Legal;
return MachineOutlinerInstrType::Legal;
// It's not, so don't outline it.
return MachineOutlinerInstrType::Illegal;
@ -4494,7 +4497,7 @@ AArch64InstrInfo::getOutliningType(MachineInstr &MI) const {
// Don't outline anything that uses the link register.
if (MI.modifiesRegister(AArch64::LR, &RI) ||
MI.readsRegister(AArch64::LR, &RI))
return MachineOutlinerInstrType::Illegal;
return MachineOutlinerInstrType::Illegal;
// Does this use the stack?
if (MI.modifiesRegister(AArch64::SP, &RI) ||
@ -4502,13 +4505,13 @@ AArch64InstrInfo::getOutliningType(MachineInstr &MI) const {
// Is it a memory operation?
if (MI.mayLoadOrStore()) {
unsigned Base; // Filled with the base regiser of MI.
unsigned Base; // Filled with the base regiser of MI.
int64_t Offset; // Filled with the offset of MI.
unsigned DummyWidth;
// Does it allow us to offset the base register and is the base SP?
if (!getMemOpBaseRegImmOfsWidth(MI, Base, Offset, DummyWidth, &RI) ||
Base != AArch64::SP)
Base != AArch64::SP)
return MachineOutlinerInstrType::Illegal;
// Find the minimum/maximum offset for this instruction and check if
@ -4522,7 +4525,7 @@ AArch64InstrInfo::getOutliningType(MachineInstr &MI) const {
// This is tricky to test with IR tests, but when the outliner is moved
// to a MIR test, it really ought to be checked.
if (Offset + 16 < MinOffset || Offset + 16 > MaxOffset)
return MachineOutlinerInstrType::Illegal;
return MachineOutlinerInstrType::Illegal;
// It's in range, so we can outline it.
return MachineOutlinerInstrType::Legal;
@ -4558,7 +4561,7 @@ void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
// We've pushed the return address to the stack, so add 16 to the offset.
// This is safe, since we already checked if it would overflow when we
// checked if this instruction was legal to outline.
int64_t NewImm = (Offset + 16)/Scale;
int64_t NewImm = (Offset + 16) / Scale;
StackOffsetOperand.setImm(NewImm);
}
}
@ -4624,4 +4627,3 @@ MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
return It;
}

View File

@ -299,8 +299,10 @@ public:
getSerializableMachineMemOperandTargetFlags() const override;
bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences,
bool CanBeTailCall) const override;
size_t getOutliningCallOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const override;
size_t getOutliningFrameOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const override;
AArch64GenInstrInfo::MachineOutlinerInstrType
getOutliningType(MachineInstr &MI) const override;
void insertOutlinerEpilogue(MachineBasicBlock &MBB,

View File

@ -10537,25 +10537,22 @@ char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize,
size_t Occurrences,
bool CanBeTailCall) const {
unsigned NotOutlinedSize = SequenceSize * Occurrences;
unsigned OutlinedSize;
size_t X86InstrInfo::getOutliningCallOverhead(
MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
// We just have to emit a call, so return 1.
return 1;
}
// Is it a tail call?
if (CanBeTailCall) {
// If yes, we don't have to include a return instruction-- it's already in
// our sequence. So we have one occurrence of the sequence + #Occurrences
// calls.
OutlinedSize = SequenceSize + Occurrences;
} else {
// If not, add one for the return instruction.
OutlinedSize = (SequenceSize + 1) + Occurrences;
}
size_t X86InstrInfo::getOutliningFrameOverhead(
MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const {
// Is this a tail-call?
if (EndIt->isTerminator())
return 0; // Yes, so we already have a return.
// Return the number of instructions saved by outlining this sequence.
return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
// No, so we have to add a return to the end.
return 1;
}
bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {

View File

@ -566,9 +566,11 @@ public:
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
unsigned getOutliningBenefit(size_t SequenceSize,
size_t Occurrences,
bool CanBeTailCall) const override;
size_t getOutliningCallOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const override;
size_t getOutliningFrameOverhead(MachineBasicBlock::iterator &StartIt,
MachineBasicBlock::iterator &EndIt) const override;
bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;