Patch by Ben Laurie:

ConstraintManager:
- constify getSymVal()

BasicConstraintManager:
- Pull out logic that would be common to ConstraintManagers of a similar nature
  and put them in a parent class called 'SimpleConstraintManager'.

RangeConstraintManager:
- Added a new prototype ConstraintManager to track ranges of variables! This
  ConstraintManager keeps tracks of ranges of concrete integers that a symbolic
  integer may have.

AnalysisConsumer:
- Add driver option to use RangeConstraintManager with GRExprEngine-based
  analyses.

llvm-svn: 64558
This commit is contained in:
Ted Kremenek 2009-02-14 17:08:39 +00:00
parent 7e96595f11
commit 7efe43db99
6 changed files with 1131 additions and 239 deletions

View File

@ -48,6 +48,11 @@ PurgeDead("analyzer-purge-dead",
llvm::cl::init(true),
llvm::cl::desc("Remove dead symbols, bindings, and constraints before"
" processing a statement."));
static llvm::cl::opt<bool>
UseRanges("analyzer-range-constraints",
llvm::cl::init(true),
llvm::cl::desc("Use the range constraint manager instead of the basic"
" constraint manager"));
//===----------------------------------------------------------------------===//
// Basic type definitions.
@ -288,6 +293,8 @@ case PD_##NAME: C.PD.reset(CREATEFN(C.HTMLDir, C.PP, C.PPF)); break;
if (ManagerRegistry::ConstraintMgrCreator != 0)
CreateConstraintMgr = ManagerRegistry::ConstraintMgrCreator;
else if (UseRanges)
CreateConstraintMgr = CreateRangeConstraintManager;
else
CreateConstraintMgr = CreateBasicConstraintManager;

View File

@ -38,7 +38,8 @@ public:
SVal UpperBound, bool Assumption,
bool& isFeasible) = 0;
virtual const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) = 0;
virtual const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym)
const = 0;
virtual bool isEqual(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const = 0;
@ -53,6 +54,7 @@ public:
};
ConstraintManager* CreateBasicConstraintManager(GRStateManager& statemgr);
ConstraintManager* CreateRangeConstraintManager(GRStateManager& statemgr);
} // end clang namespace

View File

@ -12,7 +12,7 @@
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "SimpleConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
@ -46,30 +46,12 @@ struct GRStateTrait<ConstEq> : public GRStatePartialTrait<ConstEqTy> {
namespace {
// BasicConstraintManager only tracks equality and inequality constraints of
// constants and integer variables.
class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager {
GRStateManager& StateMgr;
class VISIBILITY_HIDDEN BasicConstraintManager
: public SimpleConstraintManager {
GRState::IntSetTy::Factory ISetFactory;
public:
BasicConstraintManager(GRStateManager& statemgr)
: StateMgr(statemgr), ISetFactory(statemgr.getAllocator()) {}
virtual const GRState* Assume(const GRState* St, SVal Cond,
bool Assumption, bool& isFeasible);
const GRState* Assume(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, Loc Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
: SimpleConstraintManager(statemgr), ISetFactory(statemgr.getAllocator()) {}
const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
@ -89,25 +71,20 @@ public:
const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound,
bool Assumption, bool& isFeasible);
const GRState* AddEQ(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddNE(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym);
bool isNotEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
bool isNotEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V)
const;
bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V)
const;
const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper);
void print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep);
private:
BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
};
} // end anonymous namespace
@ -117,182 +94,6 @@ ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr)
return new BasicConstraintManager(StateMgr);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, SVal Cond,
bool Assumption, bool& isFeasible) {
if (Cond.isUnknown()) {
isFeasible = true;
return St;
}
if (isa<NonLoc>(Cond))
return Assume(St, cast<NonLoc>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<Loc>(Cond), Assumption, isFeasible);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, Loc Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState* BasicConstraintManager::AssumeAux(const GRState* St, Loc Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this Loc.");
return St;
case loc::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case loc::MemRegionKind: {
// FIXME: Should this go into the storemanager?
const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion();
const SubRegion* SubR = dyn_cast<SubRegion>(R);
while (SubR) {
// FIXME: now we only find the first symbolic region.
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(SubR))
return AssumeAux(St, loc::SymbolVal(SymR->getSymbol()), Assumption,
isFeasible);
SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
}
// FALL-THROUGH.
}
case loc::FuncValKind:
case loc::GotoLabelKind:
isFeasible = Assumption;
return St;
case loc::ConcreteIntKind: {
bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
} // end switch
}
const GRState*
BasicConstraintManager::Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState*
BasicConstraintManager::AssumeAux(const GRState* St,NonLoc Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SymbolManager& SymMgr = StateMgr.getSymbolManager();
switch (Cond.getSubKind()) {
default:
assert(false && "'Assume' not implemented for this NonLoc");
case nonloc::SymbolValKind: {
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
SymbolRef sym = SV.getSymbol();
QualType T = SymMgr.getType(sym);
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible);
}
case nonloc::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonloc::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonloc::ConcreteIntKind: {
bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonloc::LocAsIntegerKind:
return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(),
Assumption, isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GT:
if (Assumption)
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LT:
if (Assumption)
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
@ -425,34 +226,6 @@ BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolRef sym,
return St;
}
const GRState*
BasicConstraintManager::AssumeInBound(const GRState* St, SVal Idx,
SVal UpperBound, bool Assumption,
bool& isFeasible) {
// Only support ConcreteInt for now.
if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))){
isFeasible = true;
return St;
}
const llvm::APSInt& Zero = getBasicVals().getZeroWithPtrWidth(false);
llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue();
// IdxV might be too narrow.
if (IdxV.getBitWidth() < Zero.getBitWidth())
IdxV.extend(Zero.getBitWidth());
// UBV might be too narrow, too.
llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue();
if (UBV.getBitWidth() < Zero.getBitWidth())
UBV.extend(Zero.getBitWidth());
bool InBound = (Zero <= IdxV) && (IdxV < UBV);
isFeasible = Assumption ? InBound : !InBound;
return St;
}
const GRState* BasicConstraintManager::AddEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
@ -478,9 +251,9 @@ const GRState* BasicConstraintManager::AddNE(const GRState* St, SymbolRef sym,
}
const llvm::APSInt* BasicConstraintManager::getSymVal(const GRState* St,
SymbolRef sym) {
SymbolRef sym) const {
const ConstEqTy::data_type* T = St->get<ConstEq>(sym);
return T ? *T : NULL;
return T ? *T : NULL;
}
bool BasicConstraintManager::isNotEqual(const GRState* St, SymbolRef sym,

View File

@ -0,0 +1,720 @@
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines RangeConstraintManager, a class that tracks simple
// equality and inequality constraints on symbolic values of GRState.
//
//===----------------------------------------------------------------------===//
#include "SimpleConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
#include "clang/Driver/ManagerRegistry.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace { class VISIBILITY_HIDDEN ConstRange {}; }
static int ConstRangeIndex = 0;
// A Range represents the closed range [from, to]. The caller must
// guarantee that from <= to. Note that Range is immutable, so as not
// to subvert RangeSet's immutability.
class Range : public std::pair<llvm::APSInt, llvm::APSInt> {
public:
Range(const llvm::APSInt &from, const llvm::APSInt &to)
: std::pair<llvm::APSInt, llvm::APSInt>(from, to) {
assert(from <= to);
}
bool Includes(const llvm::APSInt &v) const {
return first <= v && v <= second;
}
const llvm::APSInt &From() const {
return first;
}
const llvm::APSInt &To() const {
return second;
}
const llvm::APSInt *HasConcreteValue() const {
return From() == To() ? &From() : NULL;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
From().Profile(ID);
To().Profile(ID);
}
};
struct RangeCmp {
bool operator()(const Range &r1, const Range &r2) {
if (r1.From() < r2.From()) {
assert(!r1.Includes(r2.From()));
assert(!r2.Includes(r1.To()));
return true;
} else if (r1.From() > r2.From()) {
assert(!r1.Includes(r2.To()));
assert(!r2.Includes(r1.From()));
return false;
} else
assert(!"Ranges should never be equal in the same set");
}
};
typedef llvm::ImmutableSet<Range> PrimRangeSet;
class RangeSet;
std::ostream &operator<<(std::ostream &os, const RangeSet &r);
// A RangeSet contains a set of ranges. If the set is empty, then
// noValues -> Nothing matches.
// !noValues -> Everything (in range of the bit representation) matches.
class RangeSet {
PrimRangeSet ranges; // no need to make const, since it is an
// ImmutableSet - this allows default operator=
// to work.
bool noValues; // if true, no value is possible (should never happen)
static const llvm::APSInt Max(const llvm::APSInt &v) {
return llvm::APSInt::getMaxValue(v.getBitWidth(), v.isUnsigned());
}
static const llvm::APSInt Min(const llvm::APSInt &v) {
return llvm::APSInt::getMinValue(v.getBitWidth(), v.isUnsigned());
}
static const llvm::APSInt One(const llvm::APSInt &v) {
return llvm::APSInt(llvm::APInt(v.getBitWidth(), 1), v.isUnsigned());
}
public:
// Create a RangeSet that allows all possible values.
RangeSet(PrimRangeSet::Factory *factory) : ranges(factory->GetEmptySet()),
noValues(false) {
}
// Note that if the empty set is passed, then there are no possible
// values. To create a RangeSet that covers all values when the
// empty set is passed, use RangeSet(r, false).
RangeSet(const PrimRangeSet &r) : ranges(r), noValues(r.isEmpty()) {
}
// Allow an empty set to be passed meaning "all values" instead of
// "no values".
RangeSet(const PrimRangeSet &r, bool n) : ranges(r), noValues(n) {
assert(!n);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ranges.Profile(ID);
ID.AddBoolean(noValues);
}
const llvm::APSInt *HasConcreteValue() const {
if (!ranges.isSingleton())
return NULL;
return ranges.begin()->HasConcreteValue();
}
bool CouldBeNE(const llvm::APSInt &ne) const {
DOUT << "CouldBeNE(" << ne.toString(10) << ") " << *this << std::endl;
assert(!noValues);
const llvm::APSInt *v = HasConcreteValue();
if (v && *v == ne)
return false;
return true;
}
bool CouldBeEQ(const llvm::APSInt &eq) const {
DOUT << "CouldBeEQ(" << eq.toString(10) << ") " << *this << std::endl;
assert(!noValues);
if (ranges.isEmpty())
return true;
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i)
if (i->Includes(eq))
return true;
return false;
}
bool CouldBeLT(const llvm::APSInt &lt) const {
DOUT << "CouldBeLT(" << lt.toString(10) << ") " << *this << std::endl;
assert(!noValues);
// FIXME: should test if lt == min -> false here, since that's
// impossible to meet.
if (ranges.isEmpty())
return true;
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i)
if (i->From() < lt)
return true;
return false;
}
bool CouldBeLE(const llvm::APSInt &le) const {
DOUT << "CouldBeLE(" << le.toString(10) << ") " << *this << std::endl;
assert(!noValues);
if (ranges.isEmpty())
return true;
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i)
if (i->From() <= le)
return true;
return false;
}
bool CouldBeGT(const llvm::APSInt &gt) const {
DOUT << "CouldBeGT(" << gt.toString(10) << ") " << *this << std::endl;
assert(!noValues);
// FIXME: should we test if gt == max -> false here, since that's
// impossible to meet.
if (ranges.isEmpty())
return true;
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i)
if (i->To() > gt)
return true;
return false;
}
bool CouldBeGE(const llvm::APSInt &ge) const {
DOUT << "CouldBeGE(" << ge.toString(10) << ") " << *this << std::endl;
assert(!noValues);
if (ranges.isEmpty())
return true;
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i)
if (i->To() >= ge)
return true;
return false;
}
// Make all existing ranges fall within this new range
RangeSet Restrict(PrimRangeSet::Factory *factory, const llvm::APSInt &from,
const llvm::APSInt &to) const {
if (ranges.isEmpty())
return factory->Add(ranges, Range(from, to));;
PrimRangeSet newRanges = factory->GetEmptySet();
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
if (i->Includes(from)) {
if (i->Includes(to)) {
newRanges = factory->Add(newRanges, Range(from, to));
} else {
newRanges = factory->Add(newRanges, Range(from, i->To()));
}
} else if (i->Includes(to)) {
newRanges = factory->Add(newRanges, Range(i->From(), to));
}
}
return RangeSet(newRanges);
}
// Create a new RangeSet with the additional constraint that the
// range must be == eq. In other words the range becomes [eq,
// eq]. Note that this RangeSet must have included eq in the first
// place, or we shouldn't be here.
RangeSet AddEQ(PrimRangeSet::Factory *factory, const llvm::APSInt &eq) {
DOUT << "AddEQ(" << eq.toString(10) << ") " << *this << " -> ";
assert(CouldBeEQ(eq));
RangeSet r(factory->Add(factory->GetEmptySet(), Range(eq, eq)));
DOUT << r << std::endl;
return r;
}
RangeSet AddNE(PrimRangeSet::Factory *factory, const llvm::APSInt &ne) {
DOUT << "AddNE(" << ne.toString(10) << ") " << *this << " -> ";
const llvm::APSInt max = Max(ne);
const llvm::APSInt min = Min(ne);
const llvm::APSInt one = One(ne);
PrimRangeSet newRanges = factory->GetEmptySet();
if (ranges.isEmpty()) {
if (ne != max)
newRanges = factory->Add(newRanges, Range(ne + one, max));
if (ne != min)
newRanges = factory->Add(newRanges, Range(min, ne - one));
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
if (i->Includes(ne)) {
if (ne != i->From())
newRanges = factory->Add(newRanges, Range(i->From(), ne - one));
if (ne != i->To())
newRanges = factory->Add(newRanges, Range(ne + one, i->To()));
} else {
newRanges = factory->Add(newRanges, *i);
}
}
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
RangeSet AddLT(PrimRangeSet::Factory *factory, const llvm::APSInt &lt) {
DOUT << "AddLT(" << lt.toString(10) << ") " << *this << " -> ";
const llvm::APSInt min = Min(lt);
const llvm::APSInt one = One(lt);
if (ranges.isEmpty()) {
PrimRangeSet pr = factory->GetEmptySet();
if (lt != min)
pr = factory->Add(pr, Range(min, lt - one));
RangeSet r(pr, false);
DOUT << r << std::endl;
return r;
}
PrimRangeSet newRanges = factory->GetEmptySet();
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
if (i->Includes(lt) && i->From() < lt)
newRanges = factory->Add(newRanges, Range(i->From(), lt - one));
else if (i->To() < lt)
newRanges = factory->Add(newRanges, *i);
}
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
RangeSet AddLE(PrimRangeSet::Factory *factory, const llvm::APSInt &le) {
DOUT << "AddLE(" << le.toString(10) << ") " << *this << " -> ";
const llvm::APSInt min = Min(le);
if (ranges.isEmpty()) {
RangeSet r(factory->Add(ranges, Range(min, le)));
DOUT << r << std::endl;
return r;
}
PrimRangeSet newRanges = factory->GetEmptySet();
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
// Strictly we should test for includes le + 1, but no harm is
// done by this formulation
if (i->Includes(le))
newRanges = factory->Add(newRanges, Range(i->From(), le));
else if (i->To() <= le)
newRanges = factory->Add(newRanges, *i);
}
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
RangeSet AddGT(PrimRangeSet::Factory *factory, const llvm::APSInt &gt) {
DOUT << "AddGT(" << gt.toString(10) << ") " << *this << " -> ";
const llvm::APSInt max = Max(gt);
const llvm::APSInt one = One(gt);
if (ranges.isEmpty()) {
RangeSet r(factory->Add(ranges, Range(gt + one, max)));
DOUT << r << std::endl;
return r;
}
PrimRangeSet newRanges = factory->GetEmptySet();
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
if (i->Includes(gt) && i->To() > gt)
newRanges = factory->Add(newRanges, Range(gt + one, i->To()));
else if (i->From() > gt)
newRanges = factory->Add(newRanges, *i);
}
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
RangeSet AddGE(PrimRangeSet::Factory *factory, const llvm::APSInt &ge) {
DOUT << "AddGE(" << ge.toString(10) << ") " << *this << " -> ";
const llvm::APSInt max = Max(ge);
if (ranges.isEmpty()) {
RangeSet r(factory->Add(ranges, Range(ge, max)));
DOUT << r << std::endl;
return r;
}
PrimRangeSet newRanges = factory->GetEmptySet();
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
// Strictly we should test for includes ge - 1, but no harm is
// done by this formulation
if (i->Includes(ge))
newRanges = factory->Add(newRanges, Range(ge, i->To()));
else if (i->From() >= ge)
newRanges = factory->Add(newRanges, *i);
}
RangeSet r(newRanges);
DOUT << r << std::endl;
return r;
}
void Print(std::ostream &os) const {
os << "{ ";
if (noValues) {
os << "**no values** }";
return;
}
for (PrimRangeSet::iterator i = ranges.begin() ; i != ranges.end() ; ++i) {
if (i != ranges.begin())
os << ", ";
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
<< ']';
}
os << " }";
}
bool operator==(const RangeSet &other) const {
return ranges == other.ranges;
}
};
std::ostream &operator<<(std::ostream &os, const RangeSet &r) {
r.Print(os);
return os;
}
typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstRangeTy;
namespace clang {
template<>
struct GRStateTrait<ConstRange> : public GRStatePartialTrait<ConstRangeTy> {
static inline void* GDMIndex() { return &ConstRangeIndex; }
};
}
namespace {
class VISIBILITY_HIDDEN RangeConstraintManager
: public SimpleConstraintManager {
public:
RangeConstraintManager(GRStateManager& statemgr)
: SimpleConstraintManager(statemgr) {}
const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AddEQ(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddNE(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddLT(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddLE(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddGT(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddGE(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
// FIXME: these two are required because they are pure virtual, but
// are they useful with ranges? Neither is used in this file.
const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeEQ(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeNE(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeLT(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeLE(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeGT(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool CouldBeGE(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper);
void print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep);
private:
PrimRangeSet::Factory factory;
BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
};
} // end anonymous namespace
ConstraintManager* clang::CreateRangeConstraintManager(GRStateManager& StateMgr)
{
return new RangeConstraintManager(StateMgr);
}
RegisterConstraintManager X(CreateRangeConstraintManager);
const GRState*
RangeConstraintManager::AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
isFeasible = CouldBeNE(St, sym, V);
if (isFeasible)
return AddNE(St, sym, V);
return St;
}
const GRState*
RangeConstraintManager::AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
isFeasible = CouldBeEQ(St, sym, V);
if (isFeasible)
return AddEQ(St, sym, V);
return St;
}
const GRState*
RangeConstraintManager::AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Is 'V' the smallest possible value?
if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
// sym cannot be any value less than 'V'. This path is infeasible.
isFeasible = false;
return St;
}
isFeasible = CouldBeLT(St, sym, V);
if (isFeasible)
return AddLT(St, sym, V);
return St;
}
const GRState*
RangeConstraintManager::AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Is 'V' the largest possible value?
if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
// sym cannot be any value greater than 'V'. This path is infeasible.
isFeasible = false;
return St;
}
isFeasible = CouldBeGT(St, sym, V);
if (isFeasible)
return AddGT(St, sym, V);
return St;
}
const GRState*
RangeConstraintManager::AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
isFeasible = CouldBeGE(St, sym, V);
if (isFeasible)
return AddGE(St, sym, V);
return St;
}
const GRState*
RangeConstraintManager::AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
isFeasible = CouldBeLT(St, sym, V);
if (isFeasible)
return AddLE(St, sym, V);
return St;
}
const GRState* RangeConstraintManager::AddEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
GRStateRef state(St, StateMgr);
RangeSet R(&factory);
R = R.AddEQ(&factory, V);
return state.set<ConstRange>(sym, R);
}
const GRState* RangeConstraintManager::AddNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
ConstRangeTy::data_type* T = state.get<ConstRange>(sym);
RangeSet R(&factory);
if (T)
R = *T;
R = R.AddNE(&factory, V);
return state.set<ConstRange>(sym, R);
}
const GRState* RangeConstraintManager::AddLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
ConstRangeTy::data_type* T = state.get<ConstRange>(sym);
RangeSet R(&factory);
if (T)
R = *T;
R = R.AddLT(&factory, V);
return state.set<ConstRange>(sym, R);
}
const GRState* RangeConstraintManager::AddLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
ConstRangeTy::data_type* T = state.get<ConstRange>(sym);
RangeSet R(&factory);
if (T)
R = *T;
R = R.AddLE(&factory, V);
return state.set<ConstRange>(sym, R);
}
const GRState* RangeConstraintManager::AddGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
ConstRangeTy::data_type* T = state.get<ConstRange>(sym);
RangeSet R(&factory);
if (T)
R = *T;
R = R.AddGT(&factory, V);
return state.set<ConstRange>(sym, R);
}
const GRState* RangeConstraintManager::AddGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
ConstRangeTy::data_type* T = state.get<ConstRange>(sym);
RangeSet R(&factory);
if (T)
R = *T;
R = R.AddGE(&factory, V);
return state.set<ConstRange>(sym, R);
}
const llvm::APSInt* RangeConstraintManager::getSymVal(const GRState* St,
SymbolRef sym) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->HasConcreteValue() : NULL;
}
bool RangeConstraintManager::CouldBeLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeLT(V) : true;
}
bool RangeConstraintManager::CouldBeLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeLE(V) : true;
}
bool RangeConstraintManager::CouldBeGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeGT(V) : true;
}
bool RangeConstraintManager::CouldBeGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeGE(V) : true;
}
bool RangeConstraintManager::CouldBeNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeNE(V) : true;
}
bool RangeConstraintManager::CouldBeEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const ConstRangeTy::data_type *T = St->get<ConstRange>(sym);
return T ? T->CouldBeEQ(V) : true;
}
bool RangeConstraintManager::isEqual(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
const llvm::APSInt *i = getSymVal(St, sym);
return i ? *i == V : false;
}
/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
const GRState*
RangeConstraintManager::RemoveDeadBindings(const GRState* St,
SymbolReaper& SymReaper) {
GRStateRef state(St, StateMgr);
ConstRangeTy CR = state.get<ConstRange>();
ConstRangeTy::Factory& CRFactory = state.get_context<ConstRange>();
for (ConstRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
SymbolRef sym = I.getKey();
if (SymReaper.maybeDead(sym))
CR = CRFactory.Remove(CR, sym);
}
return state.set<ConstRange>(CR);
}
void RangeConstraintManager::print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep) {
#if 0
// Print equality constraints.
ConstEqTy CE = St->get<ConstEq>();
if (!CE.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey();
llvm::raw_os_ostream OS(Out);
OS << " : " << *I.getData();
}
}
// Print != constraints.
ConstNotEqTy CNE = St->get<ConstNotEq>();
if (!CNE.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
bool isFirst = true;
GRState::IntSetTy::iterator J = I.getData().begin(),
EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
}
}
}
#endif // 0
Out << nl << "Implement range printing";
}

View File

@ -0,0 +1,230 @@
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SimpleConstraintManager, a class that holds code shared
// between BasicConstraintManager and RangeConstraintManager.
//
//===----------------------------------------------------------------------===//
#include "SimpleConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathSensitive/GRState.h"
namespace clang {
SimpleConstraintManager::~SimpleConstraintManager() {}
const GRState*
SimpleConstraintManager::Assume(const GRState* St, SVal Cond, bool Assumption,
bool& isFeasible) {
if (Cond.isUnknown()) {
isFeasible = true;
return St;
}
if (isa<NonLoc>(Cond))
return Assume(St, cast<NonLoc>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<Loc>(Cond), Assumption, isFeasible);
}
const GRState*
SimpleConstraintManager::Assume(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState*
SimpleConstraintManager::AssumeAux(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this Loc.");
return St;
case loc::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case loc::MemRegionKind: {
// FIXME: Should this go into the storemanager?
const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion();
const SubRegion* SubR = dyn_cast<SubRegion>(R);
while (SubR) {
// FIXME: now we only find the first symbolic region.
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(SubR))
return AssumeAux(St, loc::SymbolVal(SymR->getSymbol()), Assumption,
isFeasible);
SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
}
// FALL-THROUGH.
}
case loc::FuncValKind:
case loc::GotoLabelKind:
isFeasible = Assumption;
return St;
case loc::ConcreteIntKind: {
bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
} // end switch
}
const GRState*
SimpleConstraintManager::Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState*
SimpleConstraintManager::AssumeAux(const GRState* St,NonLoc Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SymbolManager& SymMgr = StateMgr.getSymbolManager();
switch (Cond.getSubKind()) {
default:
assert(false && "'Assume' not implemented for this NonLoc");
case nonloc::SymbolValKind: {
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
SymbolRef sym = SV.getSymbol();
QualType T = SymMgr.getType(sym);
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible);
}
case nonloc::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonloc::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonloc::ConcreteIntKind: {
bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonloc::LocAsIntegerKind:
return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(),
Assumption, isFeasible);
} // end switch
}
const GRState*
SimpleConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C,
bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GT:
if (Assumption)
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LT:
if (Assumption)
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
} // end switch
}
const GRState*
SimpleConstraintManager::AssumeInBound(const GRState* St, SVal Idx,
SVal UpperBound, bool Assumption,
bool& isFeasible) {
// Only support ConcreteInt for now.
if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))){
isFeasible = true;
return St;
}
const llvm::APSInt& Zero = getBasicVals().getZeroWithPtrWidth(false);
llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue();
// IdxV might be too narrow.
if (IdxV.getBitWidth() < Zero.getBitWidth())
IdxV.extend(Zero.getBitWidth());
// UBV might be too narrow, too.
llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue();
if (UBV.getBitWidth() < Zero.getBitWidth())
UBV.extend(Zero.getBitWidth());
bool InBound = (Zero <= IdxV) && (IdxV < UBV);
isFeasible = Assumption ? InBound : !InBound;
return St;
}
} // end of namespace clang

View File

@ -0,0 +1,160 @@
//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Code shared between BasicConstraintManager and RangeConstraintManager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H
#define LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
namespace clang {
class SimpleConstraintManager : public ConstraintManager {
protected:
GRStateManager& StateMgr;
public:
SimpleConstraintManager(GRStateManager& statemgr)
: StateMgr(statemgr) {}
virtual ~SimpleConstraintManager();
virtual const GRState* Assume(const GRState* St, SVal Cond, bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, Loc Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
virtual const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound,
bool Assumption, bool& isFeasible);
private:
BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
};
} // end clang namespace
#endif // ndef LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H
//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Code shared between BasicConstraintManager and RangeConstraintManager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H
#define LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
namespace clang {
class SimpleConstraintManager : public ConstraintManager {
protected:
GRStateManager& StateMgr;
public:
SimpleConstraintManager(GRStateManager& statemgr)
: StateMgr(statemgr) {}
virtual ~SimpleConstraintManager();
virtual const GRState* Assume(const GRState* St, SVal Cond, bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, Loc Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
virtual const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
virtual const GRState* AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V,
bool& isFeasible) = 0;
const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound,
bool Assumption, bool& isFeasible);
private:
BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
};
} // end clang namespace
#endif // ndef LLVM_CLANG_ANALYSIS_SIMPLE_CONSTRAINT_MANAGER_H