Code Cleanup.

Removed inverted flag form MaximumSpanningTree, also do not handle so much
information to MaximumSpanningTree.

llvm-svn: 80911
This commit is contained in:
Andreas Neustifter 2009-09-03 08:52:52 +00:00
parent 213f8f4860
commit 7e86c3856b
3 changed files with 14 additions and 18 deletions

View File

@ -14,8 +14,6 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "maximum-spanning-tree"
#include "MaximumSpanningTree.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
@ -64,12 +62,9 @@ static void inline printMSTEdge(ProfileInfo::EdgeWeight E,
// MaximumSpanningTree() - Takes a function and returns a spanning tree
// according to the currently active profiling information, the leaf edges are
// NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal.
MaximumSpanningTree::MaximumSpanningTree(Function *F, ProfileInfo *PI,
bool inverted = false) {
MaximumSpanningTree::MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>
&EdgeVector) {
// Copy edges to vector, sort them biggest first.
ProfileInfo::EdgeWeights ECs = PI->getEdgeWeights(F);
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
// Create spanning tree, Forest contains a special data structure
@ -92,12 +87,11 @@ MaximumSpanningTree::MaximumSpanningTree(Function *F, ProfileInfo *PI,
Forest.unionSets(e.first, e.second);
// So we know now that the edge is not already in a subtree (and not
// (0,entry)), so we push the edge to the MST if it has some successors.
if (!inverted) { MST.push_back(e); }
MST.push_back(e);
printMSTEdge(*bbi,"in MST");
} else {
// This edge is either (0,entry) or (BB,0) or would create a circle in a
// subtree.
if (inverted) { MST.push_back(e); }
printMSTEdge(*bbi,"*not* in MST");
}
}

View File

@ -37,7 +37,7 @@ namespace llvm {
// special also all leaf edges of the MST are not included, this makes it
// easier for the OptimalEdgeProfileInstrumentation to use this MST to do
// an optimal profiling.
MaximumSpanningTree(Function *F, ProfileInfo *PI, bool invert);
MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>&);
virtual ~MaximumSpanningTree() {}
virtual MaxSpanTree::iterator begin();

View File

@ -22,6 +22,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Statistic.h"
#include "MaximumSpanningTree.h"
#include <set>
@ -32,7 +33,6 @@ STATISTIC(NumEdgesInserted, "The # of edges inserted.");
namespace {
class VISIBILITY_HIDDEN OptimalEdgeProfiler : public ModulePass {
bool runOnModule(Module &M);
ProfileInfo *PI;
public:
static char ID; // Pass identification, replacement for typeid
OptimalEdgeProfiler() : ModulePass(&ID) {}
@ -128,8 +128,10 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
// The third parameter of MaximumSpanningTree() has the effect that not the
// actual MST is returned but the edges _not_ in the MST.
PI = &getAnalysisID<ProfileInfo>(ProfileEstimatorPassID, *F);
MaximumSpanningTree MST = MaximumSpanningTree(&(*F), PI, true);
ProfileInfo::EdgeWeights ECs =
getAnalysisID<ProfileInfo>(ProfileEstimatorPassID, *F).getEdgeWeights(F);
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
MaximumSpanningTree MST = MaximumSpanningTree(EdgeVector);
// Check if (0,entry) not in the MST. If not, instrument edge
// (IncrementCounterInBlock()) and set the counter initially to zero, if
@ -137,7 +139,7 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
BasicBlock *entry = &(F->getEntryBlock());
ProfileInfo::Edge edge = ProfileInfo::getEdge(0,entry);
if (std::binary_search(MST.begin(), MST.end(), edge)) {
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
printEdgeCounter(edge,entry,i);
IncrementCounterInBlock(entry, i, Counters); NumEdgesInserted++;
Initializer[i++] = (zeroc);
@ -147,7 +149,7 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
// InsertedBlocks contains all blocks that were inserted for splitting an
// edge, this blocks do not have to be instrumented.
std::set<BasicBlock*> InsertedBlocks;
DenseSet<BasicBlock*> InsertedBlocks;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
// Check if block was not inserted and thus does not have to be
// instrumented.
@ -160,7 +162,7 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,0);
if (std::binary_search(MST.begin(), MST.end(), edge)) {
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
printEdgeCounter(edge,BB,i);
IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++;
Initializer[i++] = (zeroc);
@ -171,12 +173,12 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
BasicBlock *Succ = TI->getSuccessor(s);
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
if (std::binary_search(MST.begin(), MST.end(), edge)) {
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
// If the edge is critical, split it.
bool wasInserted = SplitCriticalEdge(TI, s, this);
Succ = TI->getSuccessor(s);
if(wasInserted)
if (wasInserted)
InsertedBlocks.insert(Succ);
// Okay, we are guaranteed that the edge is no longer critical. If