[mlir][vector] NFC, move some vector patterns in a separate file

Move patterns related to dropping lead unit dim into their own file.

Differential Revision: https://reviews.llvm.org/D114265
This commit is contained in:
Thomas Raoux 2021-11-19 10:31:52 -08:00
parent 06dbb28569
commit 7cde516513
3 changed files with 260 additions and 238 deletions

View File

@ -1,4 +1,5 @@
add_mlir_dialect_library(MLIRVector
VectorDropLeadUnitDim.cpp
VectorInsertExtractStridedSliceRewritePatterns.cpp
VectorMultiDimReductionTransforms.cpp
VectorOps.cpp

View File

@ -0,0 +1,259 @@
//===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-drop-unit-dim"
using namespace mlir;
using namespace mlir::vector;
// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
ArrayRef<int64_t> oldShape = oldType.getShape();
ArrayRef<int64_t> newShape =
oldShape.drop_while([](int64_t dim) { return dim == 1; });
// Make sure we have at least 1 dimension per vector type requirements.
if (newShape.empty())
newShape = oldShape.take_back();
return VectorType::get(newShape, oldType.getElementType());
}
/// Return a smallVector of size `rank` containing all zeros.
static SmallVector<int64_t> splatZero(int64_t rank) {
return SmallVector<int64_t>(rank, 0);
}
namespace {
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// input by inserting vector.shape_cast.
struct CastAwayExtractStridedSliceLeadingOneDim
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
PatternRewriter &rewriter) const override {
// vector.extract_strided_slice requires the input and output vector to have
// the same rank. Here we drop leading one dimensions from the input vector
// type to make sure we don't cause mismatch.
VectorType oldSrcType = extractOp.getVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
if (newSrcType.getRank() == oldSrcType.getRank())
return failure();
int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
VectorType oldDstType = extractOp.getType();
VectorType newDstType =
VectorType::get(oldDstType.getShape().drop_front(dropCount),
oldDstType.getElementType());
Location loc = extractOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, extractOp.vector(), splatZero(dropCount));
// The offsets/sizes/strides attribute can have a less number of elements
// than the input vector's rank: it is meant for the leading dimensions.
auto newOffsets = rewriter.getArrayAttr(
extractOp.offsets().getValue().drop_front(dropCount));
auto newSizes = rewriter.getArrayAttr(
extractOp.sizes().getValue().drop_front(dropCount));
auto newStrides = rewriter.getArrayAttr(
extractOp.strides().getValue().drop_front(dropCount));
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
newExtractOp);
return success();
}
};
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// inputs by inserting vector.shape_cast.
struct CastAwayInsertStridedSliceLeadingOneDim
: public OpRewritePattern<vector::InsertStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
PatternRewriter &rewriter) const override {
VectorType oldSrcType = insertOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.source(), splatZero(srcDropCount));
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.dest(), splatZero(dstDropCount));
auto newOffsets = rewriter.getArrayAttr(
insertOp.offsets().getValue().take_back(newDstType.getRank()));
auto newStrides = rewriter.getArrayAttr(
insertOp.strides().getValue().take_back(newSrcType.getRank()));
auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Turns vector.transfer_read on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_read on vector without leading
// 1 dimensions.
struct CastAwayTransferReadLeadingOneDim
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
if (read.mask())
return failure();
auto shapedType = read.source().getType().cast<ShapedType>();
if (shapedType.getElementType() != read.getVectorType().getElementType())
return failure();
VectorType oldType = read.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
AffineMap oldMap = read.permutation_map();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBounds;
if (read.in_bounds())
inBounds = rewriter.getArrayAttr(
read.in_boundsAttr().getValue().take_back(newType.getRank()));
auto newRead = rewriter.create<vector::TransferReadOp>(
read.getLoc(), newType, read.source(), read.indices(), newMap,
read.padding(), inBounds);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
return success();
}
};
// Turns vector.transfer_write on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_write on vector without leading
// 1 dimensions.
struct CastAwayTransferWriteLeadingOneDim
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
if (write.mask())
return failure();
auto shapedType = write.source().getType().dyn_cast<ShapedType>();
if (shapedType.getElementType() != write.getVectorType().getElementType())
return failure();
VectorType oldType = write.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
int64_t dropDim = oldType.getRank() - newType.getRank();
AffineMap oldMap = write.permutation_map();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBounds;
if (write.in_bounds())
inBounds = rewriter.getArrayAttr(
write.in_boundsAttr().getValue().take_back(newType.getRank()));
auto newVector = rewriter.create<vector::ExtractOp>(
write.getLoc(), write.vector(), splatZero(dropDim));
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
write, newVector, write.source(), write.indices(), newMap, inBounds);
return success();
}
};
class CastAwayElementwiseLeadingOneDim : public RewritePattern {
public:
CastAwayElementwiseLeadingOneDim(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto vecType = op->getResultTypes()[0].dyn_cast<VectorType>();
if (!vecType)
return failure();
VectorType newVecType = trimLeadingOneDims(vecType);
if (newVecType == vecType)
return failure();
int64_t dropDim = vecType.getRank() - newVecType.getRank();
SmallVector<Value, 4> newOperands;
for (Value operand : op->getOperands()) {
if (auto opVecType = operand.getType().dyn_cast<VectorType>()) {
newOperands.push_back(rewriter.create<vector::ExtractOp>(
op->getLoc(), operand, splatZero(dropDim)));
} else {
newOperands.push_back(operand);
}
}
OperationState state(op->getLoc(), op->getName());
state.addAttributes(op->getAttrs());
state.addOperands(newOperands);
state.addTypes(newVecType);
Operation *newOp = rewriter.createOperation(state);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
newOp->getResult(0));
return success();
}
};
} // namespace
void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
RewritePatternSet &patterns) {
patterns.add<CastAwayExtractStridedSliceLeadingOneDim,
CastAwayInsertStridedSliceLeadingOneDim,
CastAwayTransferReadLeadingOneDim,
CastAwayTransferWriteLeadingOneDim,
CastAwayElementwiseLeadingOneDim>(patterns.getContext());
populateShapeCastFoldingPatterns(patterns);
}

View File

@ -2931,234 +2931,6 @@ struct TransferWriteToVectorStoreLowering
llvm::Optional<unsigned> maxTransferRank;
};
// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
ArrayRef<int64_t> oldShape = oldType.getShape();
ArrayRef<int64_t> newShape =
oldShape.drop_while([](int64_t dim) { return dim == 1; });
// Make sure we have at least 1 dimension per vector type requirements.
if (newShape.empty())
newShape = oldShape.take_back();
return VectorType::get(newShape, oldType.getElementType());
}
/// Return a smallVector of size `rank` containing all zeros.
static SmallVector<int64_t> splatZero(int64_t rank) {
return SmallVector<int64_t>(rank, 0);
}
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// input by inserting vector.shape_cast.
struct CastAwayExtractStridedSliceLeadingOneDim
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
PatternRewriter &rewriter) const override {
// vector.extract_strided_slice requires the input and output vector to have
// the same rank. Here we drop leading one dimensions from the input vector
// type to make sure we don't cause mismatch.
VectorType oldSrcType = extractOp.getVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
if (newSrcType.getRank() == oldSrcType.getRank())
return failure();
int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
VectorType oldDstType = extractOp.getType();
VectorType newDstType =
VectorType::get(oldDstType.getShape().drop_front(dropCount),
oldDstType.getElementType());
Location loc = extractOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, extractOp.vector(), splatZero(dropCount));
// The offsets/sizes/strides attribute can have a less number of elements
// than the input vector's rank: it is meant for the leading dimensions.
auto newOffsets = rewriter.getArrayAttr(
extractOp.offsets().getValue().drop_front(dropCount));
auto newSizes = rewriter.getArrayAttr(
extractOp.sizes().getValue().drop_front(dropCount));
auto newStrides = rewriter.getArrayAttr(
extractOp.strides().getValue().drop_front(dropCount));
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
newExtractOp);
return success();
}
};
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// inputs by inserting vector.shape_cast.
struct CastAwayInsertStridedSliceLeadingOneDim
: public OpRewritePattern<vector::InsertStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
PatternRewriter &rewriter) const override {
VectorType oldSrcType = insertOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.source(), splatZero(srcDropCount));
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.dest(), splatZero(dstDropCount));
auto newOffsets = rewriter.getArrayAttr(
insertOp.offsets().getValue().take_back(newDstType.getRank()));
auto newStrides = rewriter.getArrayAttr(
insertOp.strides().getValue().take_back(newSrcType.getRank()));
auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Turns vector.transfer_read on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_read on vector without leading
// 1 dimensions.
struct CastAwayTransferReadLeadingOneDim
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
if (read.mask())
return failure();
auto shapedType = read.source().getType().cast<ShapedType>();
if (shapedType.getElementType() != read.getVectorType().getElementType())
return failure();
VectorType oldType = read.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
AffineMap oldMap = read.permutation_map();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBounds;
if (read.in_bounds())
inBounds = rewriter.getArrayAttr(
read.in_boundsAttr().getValue().take_back(newType.getRank()));
auto newRead = rewriter.create<vector::TransferReadOp>(
read.getLoc(), newType, read.source(), read.indices(), newMap,
read.padding(), inBounds);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
return success();
}
};
// Turns vector.transfer_write on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_write on vector without leading
// 1 dimensions.
struct CastAwayTransferWriteLeadingOneDim
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
if (write.mask())
return failure();
auto shapedType = write.source().getType().dyn_cast<ShapedType>();
if (shapedType.getElementType() != write.getVectorType().getElementType())
return failure();
VectorType oldType = write.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
int64_t dropDim = oldType.getRank() - newType.getRank();
AffineMap oldMap = write.permutation_map();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBounds;
if (write.in_bounds())
inBounds = rewriter.getArrayAttr(
write.in_boundsAttr().getValue().take_back(newType.getRank()));
auto newVector = rewriter.create<vector::ExtractOp>(
write.getLoc(), write.vector(), splatZero(dropDim));
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
write, newVector, write.source(), write.indices(), newMap, inBounds);
return success();
}
};
class CastAwayElementwiseLeadingOneDim : public RewritePattern {
public:
CastAwayElementwiseLeadingOneDim(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto vecType = op->getResultTypes()[0].dyn_cast<VectorType>();
if (!vecType)
return failure();
VectorType newVecType = trimLeadingOneDims(vecType);
if (newVecType == vecType)
return failure();
int64_t dropDim = vecType.getRank() - newVecType.getRank();
SmallVector<Value, 4> newOperands;
for (Value operand : op->getOperands()) {
if (auto opVecType = operand.getType().dyn_cast<VectorType>()) {
newOperands.push_back(rewriter.create<vector::ExtractOp>(
op->getLoc(), operand, splatZero(dropDim)));
} else {
newOperands.push_back(operand);
}
}
OperationState state(op->getLoc(), op->getName());
state.addAttributes(op->getAttrs());
state.addOperands(newOperands);
state.addTypes(newVecType);
Operation *newOp = rewriter.createOperation(state);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
newOp->getResult(0));
return success();
}
};
// Returns the values in `arrayAttr` as an integer vector.
static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
return llvm::to_vector<4>(
@ -3638,16 +3410,6 @@ void mlir::vector::populateShapeCastFoldingPatterns(
patterns.add<ShapeCastOpFolder>(patterns.getContext());
}
void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
RewritePatternSet &patterns) {
patterns.add<CastAwayExtractStridedSliceLeadingOneDim,
CastAwayInsertStridedSliceLeadingOneDim,
CastAwayTransferReadLeadingOneDim,
CastAwayTransferWriteLeadingOneDim,
CastAwayElementwiseLeadingOneDim>(patterns.getContext());
populateShapeCastFoldingPatterns(patterns);
}
void mlir::vector::populateBubbleVectorBitCastOpPatterns(
RewritePatternSet &patterns) {
patterns.add<BubbleDownVectorBitCastForExtract,