forked from OSchip/llvm-project
[X86] New and improved VZeroUpperInserter optimization.
- Adds support for inserting vzerouppers before tail-calls. This is enabled implicitly by having MachineInstr::copyImplicitOps preserve regmask operands, which allows VZeroUpperInserter to see where tail-calls use vector registers. - Fixes a bug that caused the previous version of this optimization to miss some vzeroupper insertion points in loops. (Loops-with-vector-code that followed loops-without-vector-code were mistakenly overlooked by the previous version). - New algorithm never revisits instructions. Fixes <rdar://problem/16228798> llvm-svn: 204021
This commit is contained in:
parent
4633727686
commit
7c8189c6d3
|
@ -1434,7 +1434,7 @@ void MachineInstr::copyImplicitOps(MachineFunction &MF,
|
|||
for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
|
||||
i != e; ++i) {
|
||||
const MachineOperand &MO = MI->getOperand(i);
|
||||
if (MO.isReg() && MO.isImplicit())
|
||||
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
|
||||
addOperand(MF, MO);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -31,73 +31,59 @@ using namespace llvm;
|
|||
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
|
||||
|
||||
namespace {
|
||||
struct VZeroUpperInserter : public MachineFunctionPass {
|
||||
static char ID;
|
||||
|
||||
class VZeroUpperInserter : public MachineFunctionPass {
|
||||
public:
|
||||
|
||||
VZeroUpperInserter() : MachineFunctionPass(ID) {}
|
||||
|
||||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||||
|
||||
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
|
||||
|
||||
const char *getPassName() const override {return "X86 vzeroupper inserter";}
|
||||
|
||||
private:
|
||||
const TargetInstrInfo *TII; // Machine instruction info.
|
||||
|
||||
// Any YMM register live-in to this function?
|
||||
bool FnHasLiveInYmm;
|
||||
void processBasicBlock(MachineBasicBlock &MBB);
|
||||
void insertVZeroUpper(MachineBasicBlock::iterator I,
|
||||
MachineBasicBlock &MBB);
|
||||
void addDirtySuccessor(MachineBasicBlock &MBB);
|
||||
|
||||
// BBState - Contains the state of each MBB: unknown, clean, dirty
|
||||
SmallVector<uint8_t, 8> BBState;
|
||||
typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
|
||||
static const char* getBlockExitStateName(BlockExitState ST);
|
||||
|
||||
// BBSolved - Keep track of all MBB which had been already analyzed
|
||||
// and there is no further processing required.
|
||||
BitVector BBSolved;
|
||||
|
||||
// Machine Basic Blocks are classified according this pass:
|
||||
// Core algorithm state:
|
||||
// BlockState - Each block is either:
|
||||
// - PASS_THROUGH: There are neither YMM dirtying instructions nor
|
||||
// vzeroupper instructions in this block.
|
||||
// - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
|
||||
// block that will ensure that YMM is clean on exit.
|
||||
// - EXITS_DIRTY: An instruction in the block dirties YMM and no
|
||||
// subsequent vzeroupper in the block clears it.
|
||||
//
|
||||
// ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
|
||||
// until the MBB exit there isn't a instruction using YMM to change
|
||||
// the state to dirty, or one of the incoming predecessors is unknown
|
||||
// and there's not a dirty predecessor between them.
|
||||
// AddedToDirtySuccessors - This flag is raised when a block is added to the
|
||||
// DirtySuccessors list to ensure that it's not
|
||||
// added multiple times.
|
||||
//
|
||||
// ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
|
||||
// instructions using YMM and be marked ST_CLEAN, as long as the state
|
||||
// is cleaned by a vzeroupper before any call.
|
||||
//
|
||||
// ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
|
||||
// vzeroupper instruction.
|
||||
//
|
||||
// ST_INIT - Placeholder for an empty state set
|
||||
//
|
||||
enum {
|
||||
ST_UNKNOWN = 0,
|
||||
ST_CLEAN = 1,
|
||||
ST_DIRTY = 2,
|
||||
ST_INIT = 3
|
||||
// FirstUnguardedCall - Records the location of the first unguarded call in
|
||||
// each basic block that may need to be guarded by a
|
||||
// vzeroupper. We won't know whether it actually needs
|
||||
// to be guarded until we discover a predecessor that
|
||||
// is DIRTY_OUT.
|
||||
struct BlockState {
|
||||
BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
|
||||
BlockExitState ExitState;
|
||||
bool AddedToDirtySuccessors;
|
||||
MachineBasicBlock::iterator FirstUnguardedCall;
|
||||
};
|
||||
typedef SmallVector<BlockState, 8> BlockStateMap;
|
||||
typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
|
||||
|
||||
// computeState - Given two states, compute the resulting state, in
|
||||
// the following way
|
||||
//
|
||||
// 1) One dirty state yields another dirty state
|
||||
// 2) All states must be clean for the result to be clean
|
||||
// 3) If none above and one unknown, the result state is also unknown
|
||||
//
|
||||
static unsigned computeState(unsigned PrevState, unsigned CurState) {
|
||||
if (PrevState == ST_INIT)
|
||||
return CurState;
|
||||
|
||||
if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
|
||||
return ST_DIRTY;
|
||||
|
||||
if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
|
||||
return ST_CLEAN;
|
||||
|
||||
return ST_UNKNOWN;
|
||||
}
|
||||
BlockStateMap BlockStates;
|
||||
DirtySuccessorsWorkList DirtySuccessors;
|
||||
bool EverMadeChange;
|
||||
const TargetInstrInfo *TII;
|
||||
|
||||
static char ID;
|
||||
};
|
||||
|
||||
char VZeroUpperInserter::ID = 0;
|
||||
}
|
||||
|
||||
|
@ -105,6 +91,15 @@ FunctionPass *llvm::createX86IssueVZeroUpperPass() {
|
|||
return new VZeroUpperInserter();
|
||||
}
|
||||
|
||||
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
|
||||
switch (ST) {
|
||||
case PASS_THROUGH: return "Pass-through";
|
||||
case EXITS_DIRTY: return "Exits-dirty";
|
||||
case EXITS_CLEAN: return "Exits-clean";
|
||||
}
|
||||
llvm_unreachable("Invalid block exit state.");
|
||||
}
|
||||
|
||||
static bool isYmmReg(unsigned Reg) {
|
||||
return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
|
||||
}
|
||||
|
@ -143,7 +138,8 @@ static bool hasYmmReg(MachineInstr *MI) {
|
|||
|
||||
/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
|
||||
/// instruction.
|
||||
static bool clobbersAnyYmmReg(MachineInstr *MI) {
|
||||
static bool callClobbersAnyYmmReg(MachineInstr *MI) {
|
||||
assert(MI->isCall() && "Can only be called on call instructions.");
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
const MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isRegMask())
|
||||
|
@ -156,104 +152,44 @@ static bool clobbersAnyYmmReg(MachineInstr *MI) {
|
|||
return false;
|
||||
}
|
||||
|
||||
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
|
||||
/// vzero upper instructions before function calls.
|
||||
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
||||
if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
|
||||
return false;
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||||
bool EverMadeChange = false;
|
||||
// Insert a vzeroupper instruction before I.
|
||||
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
|
||||
MachineBasicBlock &MBB) {
|
||||
DebugLoc dl = I->getDebugLoc();
|
||||
BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
|
||||
++NumVZU;
|
||||
EverMadeChange = true;
|
||||
}
|
||||
|
||||
// Fast check: if the function doesn't use any ymm registers, we don't need
|
||||
// to insert any VZEROUPPER instructions. This is constant-time, so it is
|
||||
// cheap in the common case of no ymm use.
|
||||
bool YMMUsed = false;
|
||||
const TargetRegisterClass *RC = &X86::VR256RegClass;
|
||||
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
|
||||
i != e; i++) {
|
||||
if (!MRI.reg_nodbg_empty(*i)) {
|
||||
YMMUsed = true;
|
||||
break;
|
||||
}
|
||||
// Add MBB to the DirtySuccessors list if it hasn't already been added.
|
||||
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
|
||||
if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
|
||||
DirtySuccessors.push_back(&MBB);
|
||||
BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
|
||||
}
|
||||
if (!YMMUsed)
|
||||
return EverMadeChange;
|
||||
|
||||
// Pre-compute the existence of any live-in YMM registers to this function
|
||||
FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
|
||||
|
||||
assert(BBState.empty());
|
||||
BBState.resize(MF.getNumBlockIDs(), 0);
|
||||
BBSolved.resize(MF.getNumBlockIDs(), 0);
|
||||
|
||||
// Each BB state depends on all predecessors, loop over until everything
|
||||
// converges. (Once we converge, we can implicitly mark everything that is
|
||||
// still ST_UNKNOWN as ST_CLEAN.)
|
||||
while (1) {
|
||||
bool MadeChange = false;
|
||||
|
||||
// Process all basic blocks.
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
||||
MadeChange |= processBasicBlock(MF, *I);
|
||||
|
||||
// If this iteration over the code changed anything, keep iterating.
|
||||
if (!MadeChange) break;
|
||||
EverMadeChange = true;
|
||||
}
|
||||
|
||||
BBState.clear();
|
||||
BBSolved.clear();
|
||||
return EverMadeChange;
|
||||
}
|
||||
|
||||
/// processBasicBlock - Loop over all of the instructions in the basic block,
|
||||
/// inserting vzero upper instructions before function calls.
|
||||
bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
|
||||
MachineBasicBlock &BB) {
|
||||
bool Changed = false;
|
||||
unsigned BBNum = BB.getNumber();
|
||||
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
|
||||
|
||||
// Don't process already solved BBs
|
||||
if (BBSolved[BBNum])
|
||||
return false; // No changes
|
||||
// Start by assuming that the block PASS_THROUGH, which implies no unguarded
|
||||
// calls.
|
||||
BlockExitState CurState = PASS_THROUGH;
|
||||
BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
|
||||
|
||||
// Check the state of all predecessors
|
||||
unsigned EntryState = ST_INIT;
|
||||
for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
|
||||
PE = BB.pred_end(); PI != PE; ++PI) {
|
||||
EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
|
||||
if (EntryState == ST_DIRTY)
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
// The entry MBB for the function may set the initial state to dirty if
|
||||
// the function receives any YMM incoming arguments
|
||||
if (&BB == MF.begin()) {
|
||||
EntryState = ST_CLEAN;
|
||||
if (FnHasLiveInYmm)
|
||||
EntryState = ST_DIRTY;
|
||||
}
|
||||
|
||||
// The current state is initialized according to the predecessors
|
||||
unsigned CurState = EntryState;
|
||||
bool BBHasCall = false;
|
||||
|
||||
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
|
||||
DebugLoc dl = I->getDebugLoc();
|
||||
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
|
||||
MachineInstr *MI = I;
|
||||
|
||||
bool isControlFlow = MI->isCall() || MI->isReturn();
|
||||
|
||||
// Shortcut: don't need to check regular instructions in dirty state.
|
||||
if (!isControlFlow && CurState == ST_DIRTY)
|
||||
if (!isControlFlow && CurState == EXITS_DIRTY)
|
||||
continue;
|
||||
|
||||
if (hasYmmReg(MI)) {
|
||||
// We found a ymm-using instruction; this could be an AVX instruction,
|
||||
// or it could be control flow.
|
||||
CurState = ST_DIRTY;
|
||||
CurState = EXITS_DIRTY;
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -267,11 +203,9 @@ bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
|
|||
// standard calling convention is not used (RegMask is not used to mark
|
||||
// register clobbered and register usage (def/imp-def/use) is well-dfined
|
||||
// and explicitly specified.
|
||||
if (MI->isCall() && !clobbersAnyYmmReg(MI))
|
||||
if (MI->isCall() && !callClobbersAnyYmmReg(MI))
|
||||
continue;
|
||||
|
||||
BBHasCall = true;
|
||||
|
||||
// The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
|
||||
// registers. This instruction has zero latency. In addition, the processor
|
||||
// changes back to Clean state, after which execution of Intel SSE
|
||||
|
@ -280,38 +214,101 @@ bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
|
|||
// execute SSE code.
|
||||
// FIXME: In some cases, we may want to move the VZEROUPPER into a
|
||||
// predecessor block.
|
||||
if (CurState == ST_DIRTY) {
|
||||
// Only insert the VZEROUPPER in case the entry state isn't unknown.
|
||||
// When unknown, only compute the information within the block to have
|
||||
// it available in the exit if possible, but don't change the block.
|
||||
if (EntryState != ST_UNKNOWN) {
|
||||
BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
|
||||
++NumVZU;
|
||||
}
|
||||
|
||||
if (CurState == EXITS_DIRTY) {
|
||||
// After the inserted VZEROUPPER the state becomes clean again, but
|
||||
// other YMM may appear before other subsequent calls or even before
|
||||
// the end of the BB.
|
||||
CurState = ST_CLEAN;
|
||||
insertVZeroUpper(I, MBB);
|
||||
CurState = EXITS_CLEAN;
|
||||
} else if (CurState == PASS_THROUGH) {
|
||||
// If this block is currently in pass-through state and we encounter a
|
||||
// call then whether we need a vzeroupper or not depends on whether this
|
||||
// block has successors that exit dirty. Record the location of the call,
|
||||
// and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
|
||||
// It will be inserted later if necessary.
|
||||
BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
|
||||
CurState = EXITS_CLEAN;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "MBB #" << BBNum
|
||||
<< ", current state: " << CurState << '\n');
|
||||
DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
|
||||
<< getBlockExitStateName(CurState) << '\n');
|
||||
|
||||
// A BB can only be considered solved when we both have done all the
|
||||
// necessary transformations, and have computed the exit state. This happens
|
||||
// in two cases:
|
||||
// 1) We know the entry state: this immediately implies the exit state and
|
||||
// all the necessary transformations.
|
||||
// 2) There are no calls, and and a non-call instruction marks this block:
|
||||
// no transformations are necessary, and we know the exit state.
|
||||
if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
|
||||
BBSolved[BBNum] = true;
|
||||
if (CurState == EXITS_DIRTY)
|
||||
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
||||
SE = MBB.succ_end();
|
||||
SI != SE; ++SI)
|
||||
addDirtySuccessor(**SI);
|
||||
|
||||
if (CurState != BBState[BBNum])
|
||||
Changed = true;
|
||||
|
||||
BBState[BBNum] = CurState;
|
||||
return Changed;
|
||||
BlockStates[MBB.getNumber()].ExitState = CurState;
|
||||
}
|
||||
|
||||
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
|
||||
/// vzero upper instructions before function calls.
|
||||
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
||||
if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
|
||||
return false;
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||||
EverMadeChange = false;
|
||||
|
||||
// Fast check: if the function doesn't use any ymm registers, we don't need
|
||||
// to insert any VZEROUPPER instructions. This is constant-time, so it is
|
||||
// cheap in the common case of no ymm use.
|
||||
bool YMMUsed = false;
|
||||
const TargetRegisterClass *RC = &X86::VR256RegClass;
|
||||
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
|
||||
i != e; i++) {
|
||||
if (!MRI.reg_nodbg_empty(*i)) {
|
||||
YMMUsed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!YMMUsed) {
|
||||
return false;
|
||||
}
|
||||
|
||||
assert(BlockStates.empty() && DirtySuccessors.empty() &&
|
||||
"X86VZeroUpper state should be clear");
|
||||
BlockStates.resize(MF.getNumBlockIDs());
|
||||
|
||||
// Process all blocks. This will compute block exit states, record the first
|
||||
// unguarded call in each block, and add successors of dirty blocks to the
|
||||
// DirtySuccessors list.
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
||||
processBasicBlock(*I);
|
||||
|
||||
// If any YMM regs are live in to this function, add the entry block to the
|
||||
// DirtySuccessors list
|
||||
if (checkFnHasLiveInYmm(MRI))
|
||||
addDirtySuccessor(MF.front());
|
||||
|
||||
// Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
|
||||
// vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
|
||||
// through PASS_THROUGH blocks.
|
||||
while (!DirtySuccessors.empty()) {
|
||||
MachineBasicBlock &MBB = *DirtySuccessors.back();
|
||||
DirtySuccessors.pop_back();
|
||||
BlockState &BBState = BlockStates[MBB.getNumber()];
|
||||
|
||||
// MBB is a successor of a dirty block, so its first call needs to be
|
||||
// guarded.
|
||||
if (BBState.FirstUnguardedCall != MBB.end())
|
||||
insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
|
||||
|
||||
// If this successor was a pass-through block then it is now dirty, and its
|
||||
// successors need to be added to the worklist (if they haven't been
|
||||
// already).
|
||||
if (BBState.ExitState == PASS_THROUGH) {
|
||||
DEBUG(dbgs() << "MBB #" << MBB.getNumber()
|
||||
<< " was Pass-through, is now Dirty-out.\n");
|
||||
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
||||
SE = MBB.succ_end();
|
||||
SI != SE; ++SI)
|
||||
addDirtySuccessor(**SI);
|
||||
}
|
||||
}
|
||||
|
||||
BlockStates.clear();
|
||||
return EverMadeChange;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
; RUN: llc < %s -x86-use-vzeroupper -mtriple=x86_64-apple-darwin -mcpu=corei7-avx -mattr=+avx | FileCheck %s
|
||||
|
||||
declare i32 @foo()
|
||||
declare <4 x float> @do_sse(<4 x float>)
|
||||
declare <8 x float> @do_avx(<8 x float>)
|
||||
declare <4 x float> @llvm.x86.avx.vextractf128.ps.256(<8 x float>, i8) nounwind readnone
|
||||
|
@ -36,20 +37,38 @@ entry:
|
|||
ret <8 x float> %c
|
||||
}
|
||||
|
||||
;; Check that vzeroupper is emitted for tail calls.
|
||||
|
||||
; CHECK: _test02
|
||||
define <4 x float> @test02(<8 x float> %a, <8 x float> %b) nounwind uwtable ssp {
|
||||
entry:
|
||||
%add.i = fadd <8 x float> %a, %b
|
||||
%add.low = call <4 x float> @llvm.x86.avx.vextractf128.ps.256(<8 x float> %add.i, i8 0)
|
||||
; CHECK: vzeroupper
|
||||
; CHECK: jmp _do_sse
|
||||
%call3 = tail call <4 x float> @do_sse(<4 x float> %add.low) nounwind
|
||||
ret <4 x float> %call3
|
||||
}
|
||||
|
||||
;; Test the pass convergence and also that vzeroupper is only issued when necessary,
|
||||
;; for this function it should be only once
|
||||
|
||||
; CHECK: _test02
|
||||
define <4 x float> @test02(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
|
||||
; CHECK: _test03
|
||||
define <4 x float> @test03(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
|
||||
entry:
|
||||
%add.i = fadd <4 x float> %a, %b
|
||||
br label %for.body
|
||||
br label %while.cond
|
||||
|
||||
for.body: ; preds = %for.body, %entry
|
||||
while.cond:
|
||||
%call = tail call i32 @foo()
|
||||
%tobool = icmp eq i32 %call, 0
|
||||
br i1 %tobool, label %for.body, label %while.cond
|
||||
|
||||
for.body:
|
||||
; CHECK: LBB
|
||||
; CHECK-NOT: vzeroupper
|
||||
%i.018 = phi i32 [ 0, %entry ], [ %1, %for.body ]
|
||||
%c.017 = phi <4 x float> [ %add.i, %entry ], [ %call14, %for.body ]
|
||||
%i.018 = phi i32 [ 0, %while.cond ], [ %1, %for.body ]
|
||||
%c.017 = phi <4 x float> [ %add.i, %while.cond ], [ %call14, %for.body ]
|
||||
; CHECK: callq _do_sse
|
||||
%call5 = tail call <4 x float> @do_sse(<4 x float> %c.017) nounwind
|
||||
; CHECK-NEXT: callq _do_sse
|
||||
|
@ -63,14 +82,14 @@ for.body: ; preds = %for.body, %entry
|
|||
%exitcond = icmp eq i32 %1, 4
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body
|
||||
for.end:
|
||||
ret <4 x float> %call14
|
||||
}
|
||||
|
||||
;; Check that we also perform vzeroupper when we return from a function.
|
||||
|
||||
; CHECK: _test03
|
||||
define <4 x float> @test03(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
|
||||
; CHECK: _test04
|
||||
define <4 x float> @test04(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
|
||||
entry:
|
||||
%shuf = shufflevector <4 x float> %a, <4 x float> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
||||
; CHECK-NOT: vzeroupper
|
||||
|
|
Loading…
Reference in New Issue