[SystemZ] Support all TLS access models - MC part

The current SystemZ back-end only supports the local-exec TLS access model.
This patch adds all required MC support for the other TLS models, which
means in particular:

- Support additional relocation types for
  Initial-exec model: R_390_TLS_IEENT
  Local-dynamic-model: R_390_TLS_LDO32, R_390_TLS_LDO64,
                       R_390_TLS_LDM32, R_390_TLS_LDM64, R_390_TLS_LDCALL
  General-dynamic model: R_390_TLS_GD32, R_390_TLS_GD64, R_390_TLS_GDCALL

- Support assembler syntax to generate additional relocations
  for use with __tls_get_offset calls:
    :tls_gdcall:
    :tls_ldcall:

The patch also adds a new test to verify fixups and relocations,
and removes the (already unused) FK_390_PLT16DBL/FK_390_PLT32DBL
fixup kinds.

llvm-svn: 229652
This commit is contained in:
Ulrich Weigand 2015-02-18 09:11:36 +00:00
parent a250484c4c
commit 7bdd7c2346
10 changed files with 344 additions and 21 deletions

View File

@ -57,6 +57,7 @@ private:
KindReg,
KindAccessReg,
KindImm,
KindImmTLS,
KindMem
};
@ -96,11 +97,19 @@ private:
const MCExpr *Length;
};
// Imm is an immediate operand, and Sym is an optional TLS symbol
// for use with a __tls_get_offset marker relocation.
struct ImmTLSOp {
const MCExpr *Imm;
const MCExpr *Sym;
};
union {
TokenOp Token;
RegOp Reg;
unsigned AccessReg;
const MCExpr *Imm;
ImmTLSOp ImmTLS;
MemOp Mem;
};
@ -160,6 +169,14 @@ public:
Op->Mem.Length = Length;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
Op->ImmTLS.Imm = Imm;
Op->ImmTLS.Sym = Sym;
return Op;
}
// Token operands
bool isToken() const override {
@ -200,6 +217,11 @@ public:
return Imm;
}
// Immediate operands with optional TLS symbol.
bool isImmTLS() const {
return Kind == KindImmTLS;
}
// Memory operands.
bool isMem() const override {
return Kind == KindMem;
@ -260,6 +282,13 @@ public:
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length);
}
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindImmTLS && "Invalid operand type");
addExpr(Inst, ImmTLS.Imm);
if (ImmTLS.Sym)
addExpr(Inst, ImmTLS.Sym);
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
@ -325,6 +354,9 @@ private:
const unsigned *Regs, RegisterKind RegKind,
MemoryKind MemKind);
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
@ -395,13 +427,17 @@ public:
return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDLMem);
}
OperandMatchResultTy parseAccessReg(OperandVector &Operands);
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal);
OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1);
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
}
OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1);
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
}
OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
}
OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
}
};
} // end anonymous namespace
@ -743,7 +779,7 @@ SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal) {
int64_t MaxVal, bool AllowTLS) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
@ -766,9 +802,54 @@ SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx);
}
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
const MCExpr *Sym = nullptr;
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
StringRef Name = Parser.getTok().getString();
if (Name == "tls_gdcall")
Kind = MCSymbolRefExpr::VK_TLSGD;
else if (Name == "tls_ldcall")
Kind = MCSymbolRefExpr::VK_TLSLDM;
else {
Error(Parser.getTok().getLoc(), "unknown TLS tag");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
StringRef Identifier = Parser.getTok().getString();
Sym = MCSymbolRefExpr::Create(Ctx.GetOrCreateSymbol(Identifier),
Kind, Ctx);
Parser.Lex();
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
if (AllowTLS)
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return MatchOperand_Success;
}

View File

@ -10,6 +10,7 @@
#include "SystemZInstPrinter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@ -124,6 +125,29 @@ void SystemZInstPrinter::printPCRelOperand(const MCInst *MI, int OpNum,
O << *MO.getExpr();
}
void SystemZInstPrinter::printPCRelTLSOperand(const MCInst *MI, int OpNum,
raw_ostream &O) {
// Output the PC-relative operand.
printPCRelOperand(MI, OpNum, O);
// Output the TLS marker if present.
if ((unsigned)OpNum + 1 < MI->getNumOperands()) {
const MCOperand &MO = MI->getOperand(OpNum + 1);
const MCSymbolRefExpr &refExp = cast<MCSymbolRefExpr>(*MO.getExpr());
switch (refExp.getKind()) {
case MCSymbolRefExpr::VK_TLSGD:
O << ":tls_gdcall:";
break;
case MCSymbolRefExpr::VK_TLSLDM:
O << ":tls_ldcall:";
break;
default:
llvm_unreachable("Unexpected symbol kind");
}
O << refExp.getSymbol().getName();
}
}
void SystemZInstPrinter::printOperand(const MCInst *MI, int OpNum,
raw_ostream &O) {
printOperand(MI->getOperand(OpNum), O);

View File

@ -56,6 +56,7 @@ private:
void printS32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printU32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printPCRelOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printPCRelTLSOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printAccessRegOperand(const MCInst *MI, int OpNum, raw_ostream &O);
// Print the mnemonic for a condition-code mask ("ne", "lh", etc.)

View File

@ -27,9 +27,10 @@ static uint64_t extractBitsForFixup(MCFixupKind Kind, uint64_t Value) {
switch (unsigned(Kind)) {
case SystemZ::FK_390_PC16DBL:
case SystemZ::FK_390_PC32DBL:
case SystemZ::FK_390_PLT16DBL:
case SystemZ::FK_390_PLT32DBL:
return (int64_t)Value / 2;
case SystemZ::FK_390_TLS_CALL:
return 0;
}
llvm_unreachable("Unknown fixup kind!");
@ -72,8 +73,7 @@ SystemZMCAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[SystemZ::NumTargetFixupKinds] = {
{ "FK_390_PC16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "FK_390_PC32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
{ "FK_390_PLT16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "FK_390_PLT32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel }
{ "FK_390_TLS_CALL", 0, 0, 0 }
};
if (Kind < FirstTargetFixupKind)

View File

@ -74,20 +74,36 @@ private:
// Operand OpNum of MI needs a PC-relative fixup of kind Kind at
// Offset bytes from the start of MI. Add the fixup to Fixups
// and return the in-place addend, which since we're a RELA target
// is always 0.
// is always 0. If AllowTLS is true and optional operand OpNum + 1
// is present, also emit a TLS call fixup for it.
uint64_t getPCRelEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
unsigned Kind, int64_t Offset) const;
unsigned Kind, int64_t Offset,
bool AllowTLS) const;
uint64_t getPC16DBLEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC16DBL, 2);
return getPCRelEncoding(MI, OpNum, Fixups,
SystemZ::FK_390_PC16DBL, 2, false);
}
uint64_t getPC32DBLEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC32DBL, 2);
return getPCRelEncoding(MI, OpNum, Fixups,
SystemZ::FK_390_PC32DBL, 2, false);
}
uint64_t getPC16DBLTLSEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getPCRelEncoding(MI, OpNum, Fixups,
SystemZ::FK_390_PC16DBL, 2, true);
}
uint64_t getPC32DBLTLSEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getPCRelEncoding(MI, OpNum, Fixups,
SystemZ::FK_390_PC32DBL, 2, true);
}
};
} // end anonymous namespace
@ -181,7 +197,8 @@ getBDLAddr12Len8Encoding(const MCInst &MI, unsigned OpNum,
uint64_t
SystemZMCCodeEmitter::getPCRelEncoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
unsigned Kind, int64_t Offset) const {
unsigned Kind, int64_t Offset,
bool AllowTLS) const {
const MCOperand &MO = MI.getOperand(OpNum);
const MCExpr *Expr;
if (MO.isImm())
@ -198,6 +215,13 @@ SystemZMCCodeEmitter::getPCRelEncoding(const MCInst &MI, unsigned OpNum,
}
}
Fixups.push_back(MCFixup::Create(Offset, Expr, (MCFixupKind)Kind));
// Output the fixup for the TLS marker if present.
if (AllowTLS && OpNum + 1 < MI.getNumOperands()) {
const MCOperand &MOTLS = MI.getOperand(OpNum + 1);
Fixups.push_back(MCFixup::Create(0, MOTLS.getExpr(),
(MCFixupKind)SystemZ::FK_390_TLS_CALL));
}
return 0;
}

View File

@ -18,8 +18,7 @@ enum FixupKind {
// These correspond directly to R_390_* relocations.
FK_390_PC16DBL = FirstTargetFixupKind,
FK_390_PC32DBL,
FK_390_PLT16DBL,
FK_390_PLT32DBL,
FK_390_TLS_CALL,
// Marker
LastTargetFixupKind,

View File

@ -55,8 +55,6 @@ static unsigned getPCRelReloc(unsigned Kind) {
case FK_Data_8: return ELF::R_390_PC64;
case SystemZ::FK_390_PC16DBL: return ELF::R_390_PC16DBL;
case SystemZ::FK_390_PC32DBL: return ELF::R_390_PC32DBL;
case SystemZ::FK_390_PLT16DBL: return ELF::R_390_PLT16DBL;
case SystemZ::FK_390_PLT32DBL: return ELF::R_390_PLT32DBL;
}
llvm_unreachable("Unsupported PC-relative address");
}
@ -70,6 +68,35 @@ static unsigned getTLSLEReloc(unsigned Kind) {
llvm_unreachable("Unsupported absolute address");
}
// Return the R_390_TLS_LDO* relocation type for MCFixupKind Kind.
static unsigned getTLSLDOReloc(unsigned Kind) {
switch (Kind) {
case FK_Data_4: return ELF::R_390_TLS_LDO32;
case FK_Data_8: return ELF::R_390_TLS_LDO64;
}
llvm_unreachable("Unsupported absolute address");
}
// Return the R_390_TLS_LDM* relocation type for MCFixupKind Kind.
static unsigned getTLSLDMReloc(unsigned Kind) {
switch (Kind) {
case FK_Data_4: return ELF::R_390_TLS_LDM32;
case FK_Data_8: return ELF::R_390_TLS_LDM64;
case SystemZ::FK_390_TLS_CALL: return ELF::R_390_TLS_LDCALL;
}
llvm_unreachable("Unsupported absolute address");
}
// Return the R_390_TLS_GD* relocation type for MCFixupKind Kind.
static unsigned getTLSGDReloc(unsigned Kind) {
switch (Kind) {
case FK_Data_4: return ELF::R_390_TLS_GD32;
case FK_Data_8: return ELF::R_390_TLS_GD64;
case SystemZ::FK_390_TLS_CALL: return ELF::R_390_TLS_GDCALL;
}
llvm_unreachable("Unsupported absolute address");
}
// Return the PLT relocation counterpart of MCFixupKind Kind.
static unsigned getPLTReloc(unsigned Kind) {
switch (Kind) {
@ -94,6 +121,23 @@ unsigned SystemZObjectWriter::GetRelocType(const MCValue &Target,
assert(!IsPCRel && "NTPOFF shouldn't be PC-relative");
return getTLSLEReloc(Kind);
case MCSymbolRefExpr::VK_INDNTPOFF:
if (IsPCRel && Kind == SystemZ::FK_390_PC32DBL)
return ELF::R_390_TLS_IEENT;
llvm_unreachable("Only PC-relative INDNTPOFF accesses are supported for now");
case MCSymbolRefExpr::VK_DTPOFF:
assert(!IsPCRel && "DTPOFF shouldn't be PC-relative");
return getTLSLDOReloc(Kind);
case MCSymbolRefExpr::VK_TLSLDM:
assert(!IsPCRel && "TLSLDM shouldn't be PC-relative");
return getTLSLDMReloc(Kind);
case MCSymbolRefExpr::VK_TLSGD:
assert(!IsPCRel && "TLSGD shouldn't be PC-relative");
return getTLSGDReloc(Kind);
case MCSymbolRefExpr::VK_GOT:
if (IsPCRel && Kind == SystemZ::FK_390_PC32DBL)
return ELF::R_390_GOTENT;

View File

@ -251,9 +251,10 @@ let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
def BRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
// Allow an optional TLS marker symbol to generate TLS call relocations.
def BRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16tls:$I2),
"bras\t$R1, $I2", []>;
def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32tls:$I2),
"brasl\t$R1, $I2", []>;
def BASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
"basr\t$R1, $R2", []>;

View File

@ -16,6 +16,11 @@ class ImmediateAsmOperand<string name>
let Name = name;
let RenderMethod = "addImmOperands";
}
class ImmediateTLSAsmOperand<string name>
: AsmOperandClass {
let Name = name;
let RenderMethod = "addImmTLSOperands";
}
// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT. PRED returns true if a node is acceptable and XFORM returns
@ -34,6 +39,11 @@ class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
let PredicateMethod = "isImm";
let ParserMethod = "parsePCRel"##size;
}
class PCRelTLSAsmOperand<string size>
: ImmediateTLSAsmOperand<"PCRelTLS"##size> {
let PredicateMethod = "isImmTLS";
let ParserMethod = "parsePCRelTLS"##size;
}
// Constructs an operand for a PC-relative address with address type VT.
// ASMOP is the associated asm operand.
@ -41,6 +51,10 @@ class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
let PrintMethod = "printPCRelOperand";
let ParserMatchClass = asmop;
}
class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
let PrintMethod = "printPCRelTLSOperand";
let ParserMatchClass = asmop;
}
// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT. SELF is the name of the operand and
@ -370,6 +384,8 @@ def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
// PC-relative asm operands.
def PCRel16 : PCRelAsmOperand<"16">;
def PCRel32 : PCRelAsmOperand<"32">;
def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
// PC-relative offsets of a basic block. The offset is sign-extended
// and multiplied by 2.
@ -382,6 +398,20 @@ def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
let DecoderMethod = "decodePC32DBLOperand";
}
// Variants of brtarget16/32 with an optional additional TLS symbol.
// These are used to annotate calls to __tls_get_offset.
def tlssym : Operand<i64> { }
def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
let EncoderMethod = "getPC16DBLTLSEncoding";
let DecoderMethod = "decodePC16DBLOperand";
}
def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
let EncoderMethod = "getPC32DBLTLSEncoding";
let DecoderMethod = "decodePC32DBLOperand";
}
// A PC-relative offset of a global value. The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {

View File

@ -0,0 +1,119 @@
# RUN: llvm-mc -triple s390x-unknown-unknown --show-encoding %s | FileCheck %s
# RUN: llvm-mc -triple s390x-unknown-unknown -filetype=obj %s | \
# RUN: llvm-readobj -r | FileCheck %s -check-prefix=CHECK-REL
# CHECK: larl %r14, target # encoding: [0xc0,0xe0,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target+2, kind: FK_390_PC32DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PC32DBL target 0x2
.align 16
larl %r14, target
# CHECK: larl %r14, target@GOT # encoding: [0xc0,0xe0,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@GOT+2, kind: FK_390_PC32DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_GOTENT target 0x2
.align 16
larl %r14, target@got
# CHECK: larl %r14, target@INDNTPOFF # encoding: [0xc0,0xe0,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@INDNTPOFF+2, kind: FK_390_PC32DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_TLS_IEENT target 0x2
.align 16
larl %r14, target@indntpoff
# CHECK: brasl %r14, target # encoding: [0xc0,0xe5,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target+2, kind: FK_390_PC32DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PC32DBL target 0x2
.align 16
brasl %r14, target
# CHECK: brasl %r14, target@PLT # encoding: [0xc0,0xe5,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC32DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT32DBL target 0x2
.align 16
brasl %r14, target@plt
# CHECK: brasl %r14, target@PLT:tls_gdcall:sym # encoding: [0xc0,0xe5,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC32DBL
# CHECK-NEXT: # fixup B - offset: 0, value: sym@TLSGD, kind: FK_390_TLS_CALL
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_GDCALL sym 0x0
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT32DBL target 0x2
.align 16
brasl %r14, target@plt:tls_gdcall:sym
# CHECK: brasl %r14, target@PLT:tls_ldcall:sym # encoding: [0xc0,0xe5,A,A,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC32DBL
# CHECK-NEXT: # fixup B - offset: 0, value: sym@TLSLDM, kind: FK_390_TLS_CALL
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDCALL sym 0x0
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT32DBL target 0x2
.align 16
brasl %r14, target@plt:tls_ldcall:sym
# CHECK: bras %r14, target # encoding: [0xa7,0xe5,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target+2, kind: FK_390_PC16DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PC16DBL target 0x2
.align 16
bras %r14, target
# CHECK: bras %r14, target@PLT # encoding: [0xa7,0xe5,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC16DBL
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT16DBL target 0x2
.align 16
bras %r14, target@plt
# CHECK: bras %r14, target@PLT:tls_gdcall:sym # encoding: [0xa7,0xe5,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC16DBL
# CHECK-NEXT: # fixup B - offset: 0, value: sym@TLSGD, kind: FK_390_TLS_CALL
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_GDCALL sym 0x0
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT16DBL target 0x2
.align 16
bras %r14, target@plt:tls_gdcall:sym
# CHECK: bras %r14, target@PLT:tls_ldcall:sym # encoding: [0xa7,0xe5,A,A]
# CHECK-NEXT: # fixup A - offset: 2, value: target@PLT+2, kind: FK_390_PC16DBL
# CHECK-NEXT: # fixup B - offset: 0, value: sym@TLSLDM, kind: FK_390_TLS_CALL
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDCALL sym 0x0
# CHECK-REL: 0x{{[0-9A-F]*2}} R_390_PLT16DBL target 0x2
.align 16
bras %r14, target@plt:tls_ldcall:sym
# Data relocs
# llvm-mc does not show any "encoding" string for data, so we just check the relocs
# CHECK-REL: .rela.data
.data
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LE64 target 0x0
.align 16
.quad target@ntpoff
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDO64 target 0x0
.align 16
.quad target@dtpoff
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDM64 target 0x0
.align 16
.quad target@tlsldm
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_GD64 target 0x0
.align 16
.quad target@tlsgd
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LE32 target 0x0
.align 16
.long target@ntpoff
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDO32 target 0x0
.align 16
.long target@dtpoff
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_LDM32 target 0x0
.align 16
.long target@tlsldm
# CHECK-REL: 0x{{[0-9A-F]*0}} R_390_TLS_GD32 target 0x0
.align 16
.long target@tlsgd