[JumpThreading] Dont RAUW condition incorrectly

Summary:
We have a bug when RAUWing the condition if experimental.guard or assumes is a use of that
condition. This is because LazyValueInfo may have used the guards/assumes to identify the
value of the condition at the end of the block. RAUW replaces the uses
at the guard/assume as well as uses before the guard/assume. Both of
these are incorrect.
For now, disable RAUW for conditions and fix the logic as a next
step: https://reviews.llvm.org/D33257

Reviewers: sanjoy, reames, trentxintong

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D33279

llvm-svn: 303349
This commit is contained in:
Anna Thomas 2017-05-18 13:12:18 +00:00
parent a24a3a30d0
commit 7bca59152a
4 changed files with 154 additions and 19 deletions

View File

@ -833,15 +833,13 @@ bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
CondBr->eraseFromParent();
if (CondCmp->use_empty())
CondCmp->eraseFromParent();
else if (CondCmp->getParent() == BB) {
// If the fact we just learned is true for all uses of the
// condition, replace it with a constant value
auto *CI = Ret == LazyValueInfo::True ?
ConstantInt::getTrue(CondCmp->getType()) :
ConstantInt::getFalse(CondCmp->getType());
CondCmp->replaceAllUsesWith(CI);
CondCmp->eraseFromParent();
}
// TODO: We can safely replace *some* uses of the CondInst if it has
// exactly one value as returned by LVI. RAUW is incorrect in the
// presence of guards and assumes, that have the `Cond` as the use. This
// is because we use the guards/assume to reason about the `Cond` value
// at the end of block, but RAUW unconditionally replaces all uses
// including the guards/assumes themselves and the uses before the
// guard/assume.
return true;
}
@ -1327,14 +1325,13 @@ bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
CondInst->eraseFromParent();
else if (OnlyVal && OnlyVal != MultipleVal &&
CondInst->getParent() == BB) {
// If we just learned Cond is the same value for all uses of the
// condition, replace it with a constant value
CondInst->replaceAllUsesWith(OnlyVal);
if (!CondInst->mayHaveSideEffects())
CondInst->eraseFromParent();
}
// TODO: We can safely replace *some* uses of the CondInst if it has
// exactly one value as returned by LVI. RAUW is incorrect in the
// presence of guards and assumes, that have the `Cond` as the use. This
// is because we use the guards/assume to reason about the `Cond` value
// at the end of block, but RAUW unconditionally replaces all uses
// including the guards/assumes themselves and the uses before the
// guard/assume.
}
return true;
}

View File

@ -56,6 +56,50 @@ return: ; preds = %entry, %if.then
ret i32 %retval.0
}
@g = external global i32
; Check that we do prove a fact using an assume within the block.
; FIXME: We can fold the assume based on the semantics of assume.
; CHECK-LABEL: @can_fold_assume
; CHECK: %notnull = icmp ne i32* %array, null
; CHECK-NEXT: call void @llvm.assume(i1 %notnull)
; CHECK-NEXT: ret void
define void @can_fold_assume(i32* %array) {
%notnull = icmp ne i32* %array, null
call void @llvm.assume(i1 %notnull)
br i1 %notnull, label %normal, label %error
normal:
ret void
error:
store atomic i32 0, i32* @g unordered, align 4
ret void
}
declare void @f(i1)
declare void @exit()
; We can fold the assume but not the uses before the assume.
define void @dont_fold_incorrectly(i32* %array) {
; CHECK-LABEL:@dont_fold_incorrectly
; CHECK: @f(i1 %notnull)
; CHECK-NEXT: exit()
; CHECK-NEXT: assume(i1 %notnull)
; CHECK-NEXT: ret void
%notnull = icmp ne i32* %array, null
call void @f(i1 %notnull)
call void @exit()
call void @llvm.assume(i1 %notnull)
br i1 %notnull, label %normal, label %error
normal:
ret void
error:
store atomic i32 0, i32* @g unordered, align 4
ret void
}
; Function Attrs: nounwind
declare void @llvm.assume(i1) #1

View File

@ -133,10 +133,10 @@ L3:
ret void
}
; Make sure we can do the RAUW for %add...
; FIXME: Make sure we can do the RAUW for %add...
;
; CHECK-LABEL: @rauw_if_possible(
; CHECK: call void @f4(i32 96)
; CHECK: call void @f4(i32 %add)
define void @rauw_if_possible(i32 %value) nounwind {
entry:
%cmp = icmp eq i32 %value, 32

View File

@ -181,3 +181,97 @@ Exit:
; CHECK-NEXT: ret void
ret void
}
declare void @never_called()
; Assume the guard is always taken and we deoptimize, so we never reach the
; branch below that guard. We should *never* change the behaviour of a guard from
; `must deoptimize` to `may deoptimize`, since this affects the program
; semantics.
define void @dont_fold_guard(i8* %addr, i32 %i, i32 %length) {
; CHECK-LABEL: dont_fold_guard
; CHECK: experimental.guard(i1 %wide.chk)
entry:
br label %BBPred
BBPred:
%cond = icmp eq i8* %addr, null
br i1 %cond, label %zero, label %not_zero
zero:
unreachable
not_zero:
%c1 = icmp ult i32 %i, %length
%c2 = icmp eq i32 %i, 0
%wide.chk = and i1 %c1, %c2
call void(i1, ...) @llvm.experimental.guard(i1 %wide.chk) [ "deopt"() ]
br i1 %c2, label %unreachedBB2, label %unreachedBB1
unreachedBB2:
call void @never_called()
ret void
unreachedBB1:
ret void
}
; same as dont_fold_guard1 but condition %cmp is not an instruction.
; We cannot fold the guard under any circumstance.
; FIXME: We can merge unreachableBB2 into not_zero.
define void @dont_fold_guard2(i8* %addr, i1 %cmp, i32 %i, i32 %length) {
; CHECK-LABEL: dont_fold_guard2
; CHECK: guard(i1 %cmp)
entry:
br label %BBPred
BBPred:
%cond = icmp eq i8* %addr, null
br i1 %cond, label %zero, label %not_zero
zero:
unreachable
not_zero:
call void(i1, ...) @llvm.experimental.guard(i1 %cmp) [ "deopt"() ]
br i1 %cmp, label %unreachedBB2, label %unreachedBB1
unreachedBB2:
call void @never_called()
ret void
unreachedBB1:
ret void
}
; Same as dont_fold_guard1 but use switch instead of branch.
; triggers source code `ProcessThreadableEdges`.
declare void @f(i1)
define void @dont_fold_guard3(i1 %cmp1, i32 %i) nounwind {
; CHECK-LABEL: dont_fold_guard3
; CHECK-LABEL: L2:
; CHECK-NEXT: %cmp = icmp eq i32 %i, 0
; CHECK-NEXT: guard(i1 %cmp)
; CHECK-NEXT: @f(i1 %cmp)
; CHECK-NEXT: ret void
entry:
br i1 %cmp1, label %L0, label %L3
L0:
%cmp = icmp eq i32 %i, 0
call void(i1, ...) @llvm.experimental.guard(i1 %cmp) [ "deopt"() ]
switch i1 %cmp, label %L3 [
i1 false, label %L1
i1 true, label %L2
]
L1:
ret void
L2:
call void @f(i1 %cmp)
ret void
L3:
ret void
}