[mlir] [VectorOps] [integration_test] Sparse matrix times vector (DOT version)

Integration test that illustrates the gather operation with a
real-world operation expressed in mostly the Vector dialect.
Uses jagged diagonal storage.

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D84571
This commit is contained in:
aartbik 2020-07-27 11:22:26 -07:00
parent 2a672767cc
commit 7832d0f63d
1 changed files with 270 additions and 0 deletions

View File

@ -0,0 +1,270 @@
// RUN: mlir-opt %s -convert-scf-to-std -convert-vector-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
// Illustrates an 8x8 Sparse Matrix x Vector implemented with only operations
// of the vector dialect (and some std/scf). Essentially, this example performs
// the following multiplication:
//
// 0 1 2 3 4 5 6 7
// +------------------------+
// 0 | 1 0 2 0 0 1 0 1 | | 1 | | 21 |
// 1 | 1 8 0 0 3 0 1 0 | | 2 | | 39 |
// 2 | 0 0 1 0 0 2 6 2 | | 3 | | 73 |
// 3 | 0 3 0 1 0 1 0 1 | x | 4 | = | 24 |
// 4 | 5 0 0 1 1 1 0 0 | | 5 | | 20 |
// 5 | 0 3 0 0 2 1 2 0 | | 6 | | 36 |
// 6 | 4 0 7 0 1 0 1 0 | | 7 | | 37 |
// 7 | 0 3 0 2 0 0 1 1 | | 8 | | 29 |
// +------------------------+
//
// The sparse storage scheme used is an extended column scheme (also referred
// to as jagged diagonal, which is essentially a vector friendly variant of
// the general sparse row-wise scheme (also called compressed row storage),
// using fixed length vectors and no explicit pointer indexing into the
// value array to find the rows.
//
// The extended column storage for the matrix shown above is as follows.
//
// VALUE INDEX
// +---------+ +---------+
// 0 | 1 2 1 1 | | 0 2 5 7 |
// 1 | 1 8 3 1 | | 0 1 4 6 |
// 2 | 1 2 6 2 | | 2 5 6 7 |
// 3 | 3 1 1 1 | | 1 3 5 7 |
// 4 | 5 1 1 1 | | 0 3 4 5 |
// 5 | 3 2 1 2 | | 1 4 5 6 |
// 6 | 4 7 1 1 | | 0 2 4 6 |
// 7 | 3 2 1 1 | | 1 3 6 7 |
// +---------+ +---------+
//
// This example illustrates a DOT version for the operation. Another example
// in this directory illustrates an effective SAXPY version that operates on the
// transposed jagged diagonal storage to obtain higher vector lengths.
#contraction_accesses = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
]
#dot_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["reduction"]
}
func @spmv8x8(%AVAL: memref<8xvector<4xf32>>,
%AIDX: memref<8xvector<4xi32>>, %X: memref<?xf32>, %B: memref<?xf32>) {
%c0 = constant 0 : index
%c1 = constant 1 : index
%cn = constant 8 : index
%f0 = constant 0.0 : f32
%mask = vector.constant_mask [4] : vector<4xi1>
scf.for %i = %c0 to %cn step %c1 {
%aval = load %AVAL[%i] : memref<8xvector<4xf32>>
%aidx = load %AIDX[%i] : memref<8xvector<4xi32>>
%0 = vector.gather %X, %aidx, %mask
: (memref<?xf32>, vector<4xi32>, vector<4xi1>) -> vector<4xf32>
%1 = vector.contract #dot_trait %aval, %0, %f0 : vector<4xf32>, vector<4xf32> into f32
store %1, %B[%i] : memref<?xf32>
}
return
}
func @entry() {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
%c7 = constant 7 : index
%c8 = constant 8 : index
%f0 = constant 0.0 : f32
%f1 = constant 1.0 : f32
%f2 = constant 2.0 : f32
%f3 = constant 3.0 : f32
%f4 = constant 4.0 : f32
%f5 = constant 5.0 : f32
%f6 = constant 6.0 : f32
%f7 = constant 7.0 : f32
%f8 = constant 8.0 : f32
%i0 = constant 0 : i32
%i1 = constant 1 : i32
%i2 = constant 2 : i32
%i3 = constant 3 : i32
%i4 = constant 4 : i32
%i5 = constant 5 : i32
%i6 = constant 6 : i32
%i7 = constant 7 : i32
//
// Allocate.
//
%AVAL = alloc() {alignment = 64} : memref<8xvector<4xf32>>
%AIDX = alloc() {alignment = 64} : memref<8xvector<4xi32>>
%X = alloc(%c8) {alignment = 64} : memref<?xf32>
%B = alloc(%c8) {alignment = 64} : memref<?xf32>
//
// Initialize.
//
%vf1 = vector.broadcast %f1 : f32 to vector<4xf32>
%0 = vector.insert %f2, %vf1[1] : f32 into vector<4xf32>
store %0, %AVAL[%c0] : memref<8xvector<4xf32>>
%1 = vector.insert %f8, %vf1[1] : f32 into vector<4xf32>
%2 = vector.insert %f3, %1[2] : f32 into vector<4xf32>
store %2, %AVAL[%c1] : memref<8xvector<4xf32>>
%3 = vector.insert %f2, %vf1[1] : f32 into vector<4xf32>
%4 = vector.insert %f6, %3[2] : f32 into vector<4xf32>
%5 = vector.insert %f2, %4[3] : f32 into vector<4xf32>
store %5, %AVAL[%c2] : memref<8xvector<4xf32>>
%6 = vector.insert %f3, %vf1[0] : f32 into vector<4xf32>
store %6, %AVAL[%c3] : memref<8xvector<4xf32>>
%7 = vector.insert %f5, %vf1[0] : f32 into vector<4xf32>
store %7, %AVAL[%c4] : memref<8xvector<4xf32>>
%8 = vector.insert %f3, %vf1[0] : f32 into vector<4xf32>
%9 = vector.insert %f2, %8[1] : f32 into vector<4xf32>
%10 = vector.insert %f2, %9[3] : f32 into vector<4xf32>
store %10, %AVAL[%c5] : memref<8xvector<4xf32>>
%11 = vector.insert %f4, %vf1[0] : f32 into vector<4xf32>
%12 = vector.insert %f7, %11[1] : f32 into vector<4xf32>
store %12, %AVAL[%c6] : memref<8xvector<4xf32>>
%13 = vector.insert %f3, %vf1[0] : f32 into vector<4xf32>
%14 = vector.insert %f2, %13[1] : f32 into vector<4xf32>
store %14, %AVAL[%c7] : memref<8xvector<4xf32>>
%vi0 = vector.broadcast %i0 : i32 to vector<4xi32>
%20 = vector.insert %i2, %vi0[1] : i32 into vector<4xi32>
%21 = vector.insert %i5, %20[2] : i32 into vector<4xi32>
%22 = vector.insert %i7, %21[3] : i32 into vector<4xi32>
store %22, %AIDX[%c0] : memref<8xvector<4xi32>>
%23 = vector.insert %i1, %vi0[1] : i32 into vector<4xi32>
%24 = vector.insert %i4, %23[2] : i32 into vector<4xi32>
%25 = vector.insert %i6, %24[3] : i32 into vector<4xi32>
store %25, %AIDX[%c1] : memref<8xvector<4xi32>>
%26 = vector.insert %i2, %vi0[0] : i32 into vector<4xi32>
%27 = vector.insert %i5, %26[1] : i32 into vector<4xi32>
%28 = vector.insert %i6, %27[2] : i32 into vector<4xi32>
%29 = vector.insert %i7, %28[3] : i32 into vector<4xi32>
store %29, %AIDX[%c2] : memref<8xvector<4xi32>>
%30 = vector.insert %i1, %vi0[0] : i32 into vector<4xi32>
%31 = vector.insert %i3, %30[1] : i32 into vector<4xi32>
%32 = vector.insert %i5, %31[2] : i32 into vector<4xi32>
%33 = vector.insert %i7, %32[3] : i32 into vector<4xi32>
store %33, %AIDX[%c3] : memref<8xvector<4xi32>>
%34 = vector.insert %i3, %vi0[1] : i32 into vector<4xi32>
%35 = vector.insert %i4, %34[2] : i32 into vector<4xi32>
%36 = vector.insert %i5, %35[3] : i32 into vector<4xi32>
store %36, %AIDX[%c4] : memref<8xvector<4xi32>>
%37 = vector.insert %i1, %vi0[0] : i32 into vector<4xi32>
%38 = vector.insert %i4, %37[1] : i32 into vector<4xi32>
%39 = vector.insert %i5, %38[2] : i32 into vector<4xi32>
%40 = vector.insert %i6, %39[3] : i32 into vector<4xi32>
store %40, %AIDX[%c5] : memref<8xvector<4xi32>>
%41 = vector.insert %i2, %vi0[1] : i32 into vector<4xi32>
%42 = vector.insert %i4, %41[2] : i32 into vector<4xi32>
%43 = vector.insert %i6, %42[3] : i32 into vector<4xi32>
store %43, %AIDX[%c6] : memref<8xvector<4xi32>>
%44 = vector.insert %i1, %vi0[0] : i32 into vector<4xi32>
%45 = vector.insert %i3, %44[1] : i32 into vector<4xi32>
%46 = vector.insert %i6, %45[2] : i32 into vector<4xi32>
%47 = vector.insert %i7, %46[3] : i32 into vector<4xi32>
store %47, %AIDX[%c7] : memref<8xvector<4xi32>>
scf.for %i = %c0 to %c8 step %c1 {
%ix = addi %i, %c1 : index
%kx = index_cast %ix : index to i32
%fx = sitofp %kx : i32 to f32
store %fx, %X[%i] : memref<?xf32>
store %f0, %B[%i] : memref<?xf32>
}
//
// Multiply.
//
call @spmv8x8(%AVAL, %AIDX, %X, %B) : (memref<8xvector<4xf32>>,
memref<8xvector<4xi32>>,
memref<?xf32>, memref<?xf32>) -> ()
//
// Print and verify.
//
scf.for %i = %c0 to %c8 step %c1 {
%aval = load %AVAL[%i] : memref<8xvector<4xf32>>
vector.print %aval : vector<4xf32>
}
scf.for %i = %c0 to %c8 step %c1 {
%aidx = load %AIDX[%i] : memref<8xvector<4xi32>>
vector.print %aidx : vector<4xi32>
}
scf.for %i = %c0 to %c8 step %c1 {
%ldb = load %B[%i] : memref<?xf32>
vector.print %ldb : f32
}
//
// CHECK: ( 1, 2, 1, 1 )
// CHECK-NEXT: ( 1, 8, 3, 1 )
// CHECK-NEXT: ( 1, 2, 6, 2 )
// CHECK-NEXT: ( 3, 1, 1, 1 )
// CHECK-NEXT: ( 5, 1, 1, 1 )
// CHECK-NEXT: ( 3, 2, 1, 2 )
// CHECK-NEXT: ( 4, 7, 1, 1 )
// CHECK-NEXT: ( 3, 2, 1, 1 )
//
// CHECK-NEXT: ( 0, 2, 5, 7 )
// CHECK-NEXT: ( 0, 1, 4, 6 )
// CHECK-NEXT: ( 2, 5, 6, 7 )
// CHECK-NEXT: ( 1, 3, 5, 7 )
// CHECK-NEXT: ( 0, 3, 4, 5 )
// CHECK-NEXT: ( 1, 4, 5, 6 )
// CHECK-NEXT: ( 0, 2, 4, 6 )
// CHECK-NEXT: ( 1, 3, 6, 7 )
//
// CHECK-NEXT: 21
// CHECK-NEXT: 39
// CHECK-NEXT: 73
// CHECK-NEXT: 24
// CHECK-NEXT: 20
// CHECK-NEXT: 36
// CHECK-NEXT: 37
// CHECK-NEXT: 29
//
//
// Free.
//
dealloc %AVAL : memref<8xvector<4xf32>>
dealloc %AIDX : memref<8xvector<4xi32>>
dealloc %X : memref<?xf32>
dealloc %B : memref<?xf32>
return
}