[Dominators] Clean up typedefs in GenericDomTreeConstruction. NFC.

Summary: This patch cleans up GenericDomTreeConstruction by replacing typedefs with usings and replaces `typename GraphT::NodeRef` with `NodePtr` to make the file more readable.

Reviewers: sanjoy, dberlin, chandlerc

Reviewed By: dberlin

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D34254

llvm-svn: 305715
This commit is contained in:
Jakub Kuderski 2017-06-19 17:24:56 +00:00
parent 86360d6902
commit 77d0bb4720
1 changed files with 24 additions and 21 deletions

View File

@ -35,10 +35,10 @@ namespace llvm {
// converting the one argument insert calls.
template <class NodeRef, class InfoType> struct df_iterator_dom_storage {
public:
typedef DenseMap<NodeRef, InfoType> BaseSet;
using BaseSet = DenseMap<NodeRef, InfoType>;
df_iterator_dom_storage(BaseSet &Storage) : Storage(Storage) {}
typedef typename BaseSet::iterator iterator;
using iterator = typename BaseSet::iterator;
std::pair<iterator, bool> insert(NodeRef N) {
return Storage.insert({N, InfoType()});
}
@ -101,20 +101,22 @@ template <class GraphT>
typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
typename GraphT::NodeRef VIn,
unsigned LastLinked) {
using NodePtr = typename GraphT::NodeRef;
auto &VInInfo = DT.Info[VIn];
if (VInInfo.DFSNum < LastLinked)
return VIn;
SmallVector<typename GraphT::NodeRef, 32> Work;
SmallPtrSet<typename GraphT::NodeRef, 32> Visited;
SmallVector<NodePtr, 32> Work;
SmallPtrSet<NodePtr, 32> Visited;
if (VInInfo.Parent >= LastLinked)
Work.push_back(VIn);
while (!Work.empty()) {
typename GraphT::NodeRef V = Work.back();
NodePtr V = Work.back();
auto &VInfo = DT.Info[V];
typename GraphT::NodeRef VAncestor = DT.Vertex[VInfo.Parent];
NodePtr VAncestor = DT.Vertex[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
@ -128,8 +130,8 @@ typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
continue;
auto &VAInfo = DT.Info[VAncestor];
typename GraphT::NodeRef VAncestorLabel = VAInfo.Label;
typename GraphT::NodeRef VLabel = VInfo.Label;
NodePtr VAncestorLabel = VAInfo.Label;
NodePtr VLabel = VInfo.Label;
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Parent = VAInfo.Parent;
@ -141,10 +143,11 @@ typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
template <class FuncT, class NodeT>
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
FuncT &F) {
typedef GraphTraits<NodeT> GraphT;
static_assert(std::is_pointer<typename GraphT::NodeRef>::value,
using GraphT = GraphTraits<NodeT>;
using NodePtr = typename GraphT::NodeRef;
static_assert(std::is_pointer<NodePtr>::value,
"NodeRef should be pointer type");
typedef typename std::remove_pointer<typename GraphT::NodeRef>::type NodeType;
using NodeType = typename std::remove_pointer<NodePtr>::type;
unsigned N = 0;
bool MultipleRoots = (DT.Roots.size() > 1);
@ -186,13 +189,13 @@ void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
Buckets[i] = i;
for (unsigned i = N; i >= 2; --i) {
typename GraphT::NodeRef W = DT.Vertex[i];
NodePtr W = DT.Vertex[i];
auto &WInfo = DT.Info[W];
// Step #2: Implicitly define the immediate dominator of vertices
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
typename GraphT::NodeRef U = Eval<GraphT>(DT, V, i + 1);
NodePtr V = DT.Vertex[Buckets[j]];
NodePtr U = Eval<GraphT>(DT, V, i + 1);
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
}
@ -219,17 +222,17 @@ void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
}
if (N >= 1) {
typename GraphT::NodeRef Root = DT.Vertex[1];
NodePtr Root = DT.Vertex[1];
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
NodePtr V = DT.Vertex[Buckets[j]];
DT.IDoms[V] = Root;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeRef W = DT.Vertex[i];
typename GraphT::NodeRef &WIDom = DT.IDoms[W];
NodePtr W = DT.Vertex[i];
NodePtr &WIDom = DT.IDoms[W];
if (WIDom != DT.Vertex[DT.Info[W].Semi])
WIDom = DT.IDoms[WIDom];
}
@ -240,7 +243,7 @@ void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks, or
// an infinite loop.
typename GraphT::NodeRef Root = !MultipleRoots ? DT.Roots[0] : nullptr;
NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;
DT.RootNode =
(DT.DomTreeNodes[Root] =
@ -249,13 +252,13 @@ void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeRef W = DT.Vertex[i];
NodePtr W = DT.Vertex[i];
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W])
continue; // Haven't calculated this node yet?
typename GraphT::NodeRef ImmDom = DT.getIDom(W);
NodePtr ImmDom = DT.getIDom(W);
assert(ImmDom || DT.DomTreeNodes[nullptr]);