forked from OSchip/llvm-project
[mlir][scf] NFC: create dedicated files for affine utils
These functions are generic utility functions that operates on affine ops within SCF regions. Moving them to their own files for a better code structure, instead of mixing with loop specialization logic. Reviewed By: nicolasvasilache Differential Revision: https://reviews.llvm.org/D115245
This commit is contained in:
parent
0fc2e6d390
commit
7709b23bef
|
@ -0,0 +1,74 @@
|
|||
//===- AffineCanonicalizationUtils.h ----------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This header file defines utility functions to canonicalize affine ops
|
||||
// within SCF op regions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_DIALECT_SCF_AFFINECANONICALIZATIONUTILS_H_
|
||||
#define MLIR_DIALECT_SCF_AFFINECANONICALIZATIONUTILS_H_
|
||||
|
||||
#include "mlir/Support/LLVM.h"
|
||||
|
||||
namespace mlir {
|
||||
class AffineMap;
|
||||
struct LogicalResult;
|
||||
class Operation;
|
||||
class RewriterBase;
|
||||
class Value;
|
||||
class ValueRange;
|
||||
|
||||
namespace scf {
|
||||
class IfOp;
|
||||
|
||||
/// Match "for loop"-like operations: If the first parameter is an iteration
|
||||
/// variable, return lower/upper bounds via the second/third parameter and the
|
||||
/// step size via the last parameter. The function should return `success` in
|
||||
/// that case. If the first parameter is not an iteration variable, return
|
||||
/// `failure`.
|
||||
using LoopMatcherFn =
|
||||
function_ref<LogicalResult(Value, Value &, Value &, Value &)>;
|
||||
|
||||
/// Try to canonicalize an min/max operations in the context of for `loops` with
|
||||
/// a known range.
|
||||
///
|
||||
/// `map` is the body of the min/max operation and `operands` are the SSA values
|
||||
/// that the dimensions and symbols are bound to; dimensions are listed first.
|
||||
/// If `isMin`, the operation is a min operation; otherwise, a max operation.
|
||||
/// `loopMatcher` is used to retrieve loop bounds and the step size for a given
|
||||
/// iteration variable.
|
||||
///
|
||||
/// Note: `loopMatcher` allows this function to be used with any "for loop"-like
|
||||
/// operation (scf.for, scf.parallel and even ops defined in other dialects).
|
||||
LogicalResult canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, LoopMatcherFn loopMatcher);
|
||||
|
||||
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
||||
/// can simplify min/max operations such as (ub is the previous upper bound of
|
||||
/// the unpeeled loop):
|
||||
/// ```
|
||||
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
||||
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
||||
/// ```
|
||||
/// and rewrites them into (in the case the peeled loop):
|
||||
/// ```
|
||||
/// %r = %step
|
||||
/// ```
|
||||
/// min/max operations inside the partial iteration are rewritten in a similar
|
||||
/// way.
|
||||
LogicalResult rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, Value iv, Value ub, Value step,
|
||||
bool insideLoop);
|
||||
|
||||
} // namespace scf
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_DIALECT_SCF_AFFINECANONICALIZATIONUTILS_H_
|
|
@ -13,6 +13,7 @@
|
|||
#ifndef MLIR_DIALECT_SCF_TRANSFORMS_H_
|
||||
#define MLIR_DIALECT_SCF_TRANSFORMS_H_
|
||||
|
||||
#include "mlir/Dialect/SCF/AffineCanonicalizationUtils.h"
|
||||
#include "mlir/Support/LLVM.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
|
||||
|
@ -38,29 +39,6 @@ class ForOp;
|
|||
class ParallelOp;
|
||||
class ForOp;
|
||||
|
||||
/// Match "for loop"-like operations: If the first parameter is an iteration
|
||||
/// variable, return lower/upper bounds via the second/third parameter and the
|
||||
/// step size via the last parameter. The function should return `success` in
|
||||
/// that case. If the first parameter is not an iteration variable, return
|
||||
/// `failure`.
|
||||
using LoopMatcherFn =
|
||||
function_ref<LogicalResult(Value, Value &, Value &, Value &)>;
|
||||
|
||||
/// Try to canonicalize an min/max operations in the context of for `loops` with
|
||||
/// a known range.
|
||||
///
|
||||
/// `map` is the body of the min/max operation and `operands` are the SSA values
|
||||
/// that the dimensions and symbols are bound to; dimensions are listed first.
|
||||
/// If `isMin`, the operation is a min operation; otherwise, a max operation.
|
||||
/// `loopMatcher` is used to retrieve loop bounds and the step size for a given
|
||||
/// iteration variable.
|
||||
///
|
||||
/// Note: `loopMatcher` allows this function to be used with any "for loop"-like
|
||||
/// operation (scf.for, scf.parallel and even ops defined in other dialects).
|
||||
LogicalResult canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, LoopMatcherFn loopMatcher);
|
||||
|
||||
/// Fuses all adjacent scf.parallel operations with identical bounds and step
|
||||
/// into one scf.parallel operations. Uses a naive aliasing and dependency
|
||||
/// analysis.
|
||||
|
@ -111,24 +89,6 @@ void naivelyFuseParallelOps(Region ®ion);
|
|||
LogicalResult peelAndCanonicalizeForLoop(RewriterBase &rewriter, ForOp forOp,
|
||||
scf::ForOp &partialIteration);
|
||||
|
||||
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
||||
/// can simplify min/max operations such as (ub is the previous upper bound of
|
||||
/// the unpeeled loop):
|
||||
/// ```
|
||||
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
||||
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
||||
/// ```
|
||||
/// and rewrites them into (in the case the peeled loop):
|
||||
/// ```
|
||||
/// %r = %step
|
||||
/// ```
|
||||
/// min/max operations inside the partial iteration are rewritten in a similar
|
||||
/// way.
|
||||
LogicalResult rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, Value iv, Value ub, Value step,
|
||||
bool insideLoop);
|
||||
|
||||
/// Tile a parallel loop of the form
|
||||
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
||||
/// step (%arg4, %arg5)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
#include "mlir/Dialect/Linalg/Passes.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
||||
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
||||
#include "mlir/Dialect/SCF/AffineCanonicalizationUtils.h"
|
||||
#include "mlir/Dialect/SCF/Transforms.h"
|
||||
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
|
|
|
@ -0,0 +1,325 @@
|
|||
//===- AffineCanonicalizationUtils.cpp - Affine Canonicalization in SCF ---===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Utility functions to canonicalize affine ops within SCF op regions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/SCF/AffineCanonicalizationUtils.h"
|
||||
#include "mlir/Analysis/AffineStructures.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/SCF/SCF.h"
|
||||
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/Matchers.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
|
||||
#define DEBUG_TYPE "mlir-scf-affine-utils"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
static void unpackOptionalValues(ArrayRef<Optional<Value>> source,
|
||||
SmallVector<Value> &target) {
|
||||
target = llvm::to_vector<4>(llvm::map_range(source, [](Optional<Value> val) {
|
||||
return val.hasValue() ? *val : Value();
|
||||
}));
|
||||
}
|
||||
|
||||
/// Bound an identifier `pos` in a given FlatAffineValueConstraints with
|
||||
/// constraints drawn from an affine map. Before adding the constraint, the
|
||||
/// dimensions/symbols of the affine map are aligned with `constraints`.
|
||||
/// `operands` are the SSA Value operands used with the affine map.
|
||||
/// Note: This function adds a new symbol column to the `constraints` for each
|
||||
/// dimension/symbol that exists in the affine map but not in `constraints`.
|
||||
static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
|
||||
FlatAffineConstraints::BoundType type,
|
||||
unsigned pos, AffineMap map,
|
||||
ValueRange operands) {
|
||||
SmallVector<Value> dims, syms, newSyms;
|
||||
unpackOptionalValues(constraints.getMaybeDimValues(), dims);
|
||||
unpackOptionalValues(constraints.getMaybeSymbolValues(), syms);
|
||||
|
||||
AffineMap alignedMap =
|
||||
alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
|
||||
for (unsigned i = syms.size(); i < newSyms.size(); ++i)
|
||||
constraints.appendSymbolId(newSyms[i]);
|
||||
return constraints.addBound(type, pos, alignedMap);
|
||||
}
|
||||
|
||||
/// Add `val` to each result of `map`.
|
||||
static AffineMap addConstToResults(AffineMap map, int64_t val) {
|
||||
SmallVector<AffineExpr> newResults;
|
||||
for (AffineExpr r : map.getResults())
|
||||
newResults.push_back(r + val);
|
||||
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), newResults,
|
||||
map.getContext());
|
||||
}
|
||||
|
||||
/// This function tries to canonicalize min/max operations by proving that their
|
||||
/// value is bounded by the same lower and upper bound. In that case, the
|
||||
/// operation can be folded away.
|
||||
///
|
||||
/// Bounds are computed by FlatAffineValueConstraints. Invariants required for
|
||||
/// finding/proving bounds should be supplied via `constraints`.
|
||||
///
|
||||
/// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
|
||||
/// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
|
||||
/// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
|
||||
/// `op` but are not part of `constraints`, are added as extra symbols.
|
||||
/// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
|
||||
/// * If `isMin`: r_i >= opBound
|
||||
/// * If `isMax`: r_i <= opBound
|
||||
/// If this is the case, ub(op) == lb(op).
|
||||
/// 4. Replace `op` with `opBound`.
|
||||
///
|
||||
/// In summary, the following constraints are added throughout this function.
|
||||
/// Note: `invar` are dimensions added by the caller to express the invariants.
|
||||
/// (Showing only the case where `isMin`.)
|
||||
///
|
||||
/// invar | op | opBound | r_i | extra syms... | const | eq/ineq
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various eq./ineq. constraining `invar`, added by the caller)
|
||||
/// ... | 0 | 0 | 0 | 0 | ... | ...
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various ineq. constraining `op` in terms of `op` operands (`invar` and
|
||||
/// extra `op` operands "extra syms" that are not in `invar`)).
|
||||
/// ... | -1 | 0 | 0 | ... | ... | >= 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
|
||||
/// ... | 0 | -1 | 0 | ... | ... | = 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (for each `op` map result r_i: set r_i to corresponding map result,
|
||||
/// prove that r_i >= minOpUb via contradiction)
|
||||
/// ... | 0 | 0 | -1 | ... | ... | = 0
|
||||
/// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
|
||||
///
|
||||
static LogicalResult
|
||||
canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
FlatAffineValueConstraints constraints) {
|
||||
RewriterBase::InsertionGuard guard(rewriter);
|
||||
unsigned numResults = map.getNumResults();
|
||||
|
||||
// Add a few extra dimensions.
|
||||
unsigned dimOp = constraints.appendDimId(); // `op`
|
||||
unsigned dimOpBound = constraints.appendDimId(); // `op` lower/upper bound
|
||||
unsigned resultDimStart = constraints.appendDimId(/*num=*/numResults);
|
||||
|
||||
// Add an inequality for each result expr_i of map:
|
||||
// isMin: op <= expr_i, !isMin: op >= expr_i
|
||||
auto boundType =
|
||||
isMin ? FlatAffineConstraints::UB : FlatAffineConstraints::LB;
|
||||
// Upper bounds are exclusive, so add 1. (`affine.min` ops are inclusive.)
|
||||
AffineMap mapLbUb = isMin ? addConstToResults(map, 1) : map;
|
||||
if (failed(
|
||||
alignAndAddBound(constraints, boundType, dimOp, mapLbUb, operands)))
|
||||
return failure();
|
||||
|
||||
// Try to compute a lower/upper bound for op, expressed in terms of the other
|
||||
// `dims` and extra symbols.
|
||||
SmallVector<AffineMap> opLb(1), opUb(1);
|
||||
constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb);
|
||||
AffineMap sliceBound = isMin ? opUb[0] : opLb[0];
|
||||
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
|
||||
// a TODO of `getSliceBounds` and not handled here.
|
||||
if (!sliceBound || sliceBound.getNumResults() != 1)
|
||||
return failure(); // No or multiple bounds found.
|
||||
// Recover the inclusive UB in the case of an `affine.min`.
|
||||
AffineMap boundMap = isMin ? addConstToResults(sliceBound, -1) : sliceBound;
|
||||
|
||||
// Add an equality: Set dimOpBound to computed bound.
|
||||
// Add back dimension for op. (Was removed by `getSliceBounds`.)
|
||||
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
|
||||
if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimOpBound,
|
||||
alignedBoundMap)))
|
||||
return failure();
|
||||
|
||||
// If the constraint system is empty, there is an inconsistency. (E.g., this
|
||||
// can happen if loop lb > ub.)
|
||||
if (constraints.isEmpty())
|
||||
return failure();
|
||||
|
||||
// In the case of `isMin` (`!isMin` is inversed):
|
||||
// Prove that each result of `map` has a lower bound that is equal to (or
|
||||
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
|
||||
// can be replaced with the bound. I.e., prove that for each result
|
||||
// expr_i (represented by dimension r_i):
|
||||
//
|
||||
// r_i >= opBound
|
||||
//
|
||||
// To prove this inequality, add its negation to the constraint set and prove
|
||||
// that the constraint set is empty.
|
||||
for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
|
||||
FlatAffineValueConstraints newConstr(constraints);
|
||||
|
||||
// Add an equality: r_i = expr_i
|
||||
// Note: These equalities could have been added earlier and used to express
|
||||
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
|
||||
// computes minOpUb in terms of r_i dims, which is not desired.
|
||||
if (failed(alignAndAddBound(newConstr, FlatAffineConstraints::EQ, i,
|
||||
map.getSubMap({i - resultDimStart}), operands)))
|
||||
return failure();
|
||||
|
||||
// If `isMin`: Add inequality: r_i < opBound
|
||||
// equiv.: opBound - r_i - 1 >= 0
|
||||
// If `!isMin`: Add inequality: r_i > opBound
|
||||
// equiv.: -opBound + r_i - 1 >= 0
|
||||
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
|
||||
ineq[dimOpBound] = isMin ? 1 : -1;
|
||||
ineq[i] = isMin ? -1 : 1;
|
||||
ineq[newConstr.getNumCols() - 1] = -1;
|
||||
newConstr.addInequality(ineq);
|
||||
if (!newConstr.isEmpty())
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
|
||||
AffineMap newMap = alignedBoundMap;
|
||||
SmallVector<Value> newOperands;
|
||||
unpackOptionalValues(constraints.getMaybeDimAndSymbolValues(), newOperands);
|
||||
mlir::canonicalizeMapAndOperands(&newMap, &newOperands);
|
||||
rewriter.setInsertionPoint(op);
|
||||
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands);
|
||||
return success();
|
||||
}
|
||||
|
||||
static LogicalResult
|
||||
addLoopRangeConstraints(FlatAffineValueConstraints &constraints, Value iv,
|
||||
Value lb, Value ub, Value step,
|
||||
RewriterBase &rewriter) {
|
||||
// FlatAffineConstraints does not support semi-affine expressions.
|
||||
// Therefore, only constant step values are supported.
|
||||
auto stepInt = getConstantIntValue(step);
|
||||
if (!stepInt)
|
||||
return failure();
|
||||
|
||||
unsigned dimIv = constraints.appendDimId(iv);
|
||||
unsigned dimLb = constraints.appendDimId(lb);
|
||||
unsigned dimUb = constraints.appendDimId(ub);
|
||||
|
||||
// If loop lower/upper bounds are constant: Add EQ constraint.
|
||||
Optional<int64_t> lbInt = getConstantIntValue(lb);
|
||||
Optional<int64_t> ubInt = getConstantIntValue(ub);
|
||||
if (lbInt)
|
||||
constraints.addBound(FlatAffineConstraints::EQ, dimLb, *lbInt);
|
||||
if (ubInt)
|
||||
constraints.addBound(FlatAffineConstraints::EQ, dimUb, *ubInt);
|
||||
|
||||
// iv >= lb (equiv.: iv - lb >= 0)
|
||||
SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0);
|
||||
ineqLb[dimIv] = 1;
|
||||
ineqLb[dimLb] = -1;
|
||||
constraints.addInequality(ineqLb);
|
||||
|
||||
// iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
||||
AffineExpr exprLb = lbInt ? rewriter.getAffineConstantExpr(*lbInt)
|
||||
: rewriter.getAffineDimExpr(dimLb);
|
||||
AffineExpr exprUb = ubInt ? rewriter.getAffineConstantExpr(*ubInt)
|
||||
: rewriter.getAffineDimExpr(dimUb);
|
||||
AffineExpr ivUb =
|
||||
exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt)));
|
||||
auto map = AffineMap::get(
|
||||
/*dimCount=*/constraints.getNumDimIds(),
|
||||
/*symbolCount=*/constraints.getNumSymbolIds(), /*result=*/ivUb);
|
||||
|
||||
return constraints.addBound(FlatAffineConstraints::UB, dimIv, map);
|
||||
}
|
||||
|
||||
/// Canonicalize min/max operations in the context of for loops with a known
|
||||
/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
|
||||
/// the constraint system (along with the missing dimensions):
|
||||
///
|
||||
/// * iv >= lb
|
||||
/// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
||||
///
|
||||
/// Note: Due to limitations of FlatAffineConstraints, only constant step sizes
|
||||
/// are currently supported.
|
||||
LogicalResult scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter,
|
||||
Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
LoopMatcherFn loopMatcher) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
DenseSet<Value> allIvs;
|
||||
|
||||
// Find all iteration variables among `minOp`'s operands add constrain them.
|
||||
for (Value operand : operands) {
|
||||
// Skip duplicate ivs.
|
||||
if (llvm::find(allIvs, operand) != allIvs.end())
|
||||
continue;
|
||||
|
||||
// If `operand` is an iteration variable: Find corresponding loop
|
||||
// bounds and step.
|
||||
Value iv = operand;
|
||||
Value lb, ub, step;
|
||||
if (failed(loopMatcher(operand, lb, ub, step)))
|
||||
continue;
|
||||
allIvs.insert(iv);
|
||||
|
||||
if (failed(
|
||||
addLoopRangeConstraints(constraints, iv, lb, ub, step, rewriter)))
|
||||
return failure();
|
||||
}
|
||||
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
||||
|
||||
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
||||
/// can simplify min/max operations such as (ub is the previous upper bound of
|
||||
/// the unpeeled loop):
|
||||
/// ```
|
||||
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
||||
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
||||
/// ```
|
||||
/// and rewrites them into (in the case the peeled loop):
|
||||
/// ```
|
||||
/// %r = %step
|
||||
/// ```
|
||||
/// min/max operations inside the partial iteration are rewritten in a similar
|
||||
/// way.
|
||||
///
|
||||
/// This function builds up a set of constraints, capable of proving that:
|
||||
/// * Inside the peeled loop: min(step, ub - iv) == step
|
||||
/// * Inside the partial iteration: min(step, ub - iv) == ub - iv
|
||||
///
|
||||
/// Returns `success` if the given operation was replaced by a new operation;
|
||||
/// `failure` otherwise.
|
||||
///
|
||||
/// Note: `ub` is the previous upper bound of the loop (before peeling).
|
||||
/// `insideLoop` must be true for min/max ops inside the loop and false for
|
||||
/// affine.min ops inside the partial iteration. For an explanation of the other
|
||||
/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
|
||||
LogicalResult scf::rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, Value iv, Value ub,
|
||||
Value step, bool insideLoop) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
constraints.appendDimId({iv, ub, step});
|
||||
if (auto constUb = getConstantIntValue(ub))
|
||||
constraints.addBound(FlatAffineConstraints::EQ, 1, *constUb);
|
||||
if (auto constStep = getConstantIntValue(step))
|
||||
constraints.addBound(FlatAffineConstraints::EQ, 2, *constStep);
|
||||
|
||||
// Add loop peeling invariant. This is the main piece of knowledge that
|
||||
// enables AffineMinOp simplification.
|
||||
if (insideLoop) {
|
||||
// ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
|
||||
// Intuitively: Inside the peeled loop, every iteration is a "full"
|
||||
// iteration, i.e., step divides the iteration space `ub - lb` evenly.
|
||||
constraints.addInequality({-1, 1, -1, 0});
|
||||
} else {
|
||||
// ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
|
||||
// Intuitively: `iv` is the split bound here, i.e., the iteration variable
|
||||
// value of the very last iteration (in the unpeeled loop). At that point,
|
||||
// there are less than `step` elements remaining. (Otherwise, the peeled
|
||||
// loop would run for at least one more iteration.)
|
||||
constraints.addInequality({1, -1, 1, -1});
|
||||
}
|
||||
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
|
@ -1,4 +1,5 @@
|
|||
add_mlir_dialect_library(MLIRSCFTransforms
|
||||
AffineCanonicalizationUtils.cpp
|
||||
Bufferize.cpp
|
||||
ForToWhile.cpp
|
||||
LoopCanonicalization.cpp
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
#include "PassDetail.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/SCF/AffineCanonicalizationUtils.h"
|
||||
#include "mlir/Dialect/SCF/Passes.h"
|
||||
#include "mlir/Dialect/SCF/SCF.h"
|
||||
#include "mlir/Dialect/SCF/Transforms.h"
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
#include "mlir/Analysis/AffineStructures.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
||||
#include "mlir/Dialect/SCF/AffineCanonicalizationUtils.h"
|
||||
#include "mlir/Dialect/SCF/Passes.h"
|
||||
#include "mlir/Dialect/SCF/SCF.h"
|
||||
#include "mlir/Dialect/SCF/Transforms.h"
|
||||
|
@ -146,227 +147,6 @@ static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
|
|||
return success();
|
||||
}
|
||||
|
||||
static void unpackOptionalValues(ArrayRef<Optional<Value>> source,
|
||||
SmallVector<Value> &target) {
|
||||
target = llvm::to_vector<4>(llvm::map_range(source, [](Optional<Value> val) {
|
||||
return val.hasValue() ? *val : Value();
|
||||
}));
|
||||
}
|
||||
|
||||
/// Bound an identifier `pos` in a given FlatAffineValueConstraints with
|
||||
/// constraints drawn from an affine map. Before adding the constraint, the
|
||||
/// dimensions/symbols of the affine map are aligned with `constraints`.
|
||||
/// `operands` are the SSA Value operands used with the affine map.
|
||||
/// Note: This function adds a new symbol column to the `constraints` for each
|
||||
/// dimension/symbol that exists in the affine map but not in `constraints`.
|
||||
static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
|
||||
FlatAffineConstraints::BoundType type,
|
||||
unsigned pos, AffineMap map,
|
||||
ValueRange operands) {
|
||||
SmallVector<Value> dims, syms, newSyms;
|
||||
unpackOptionalValues(constraints.getMaybeDimValues(), dims);
|
||||
unpackOptionalValues(constraints.getMaybeSymbolValues(), syms);
|
||||
|
||||
AffineMap alignedMap =
|
||||
alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
|
||||
for (unsigned i = syms.size(); i < newSyms.size(); ++i)
|
||||
constraints.appendSymbolId(newSyms[i]);
|
||||
return constraints.addBound(type, pos, alignedMap);
|
||||
}
|
||||
|
||||
/// Add `val` to each result of `map`.
|
||||
static AffineMap addConstToResults(AffineMap map, int64_t val) {
|
||||
SmallVector<AffineExpr> newResults;
|
||||
for (AffineExpr r : map.getResults())
|
||||
newResults.push_back(r + val);
|
||||
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), newResults,
|
||||
map.getContext());
|
||||
}
|
||||
|
||||
/// This function tries to canonicalize min/max operations by proving that their
|
||||
/// value is bounded by the same lower and upper bound. In that case, the
|
||||
/// operation can be folded away.
|
||||
///
|
||||
/// Bounds are computed by FlatAffineValueConstraints. Invariants required for
|
||||
/// finding/proving bounds should be supplied via `constraints`.
|
||||
///
|
||||
/// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
|
||||
/// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
|
||||
/// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
|
||||
/// `op` but are not part of `constraints`, are added as extra symbols.
|
||||
/// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
|
||||
/// * If `isMin`: r_i >= opBound
|
||||
/// * If `isMax`: r_i <= opBound
|
||||
/// If this is the case, ub(op) == lb(op).
|
||||
/// 4. Replace `op` with `opBound`.
|
||||
///
|
||||
/// In summary, the following constraints are added throughout this function.
|
||||
/// Note: `invar` are dimensions added by the caller to express the invariants.
|
||||
/// (Showing only the case where `isMin`.)
|
||||
///
|
||||
/// invar | op | opBound | r_i | extra syms... | const | eq/ineq
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various eq./ineq. constraining `invar`, added by the caller)
|
||||
/// ... | 0 | 0 | 0 | 0 | ... | ...
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various ineq. constraining `op` in terms of `op` operands (`invar` and
|
||||
/// extra `op` operands "extra syms" that are not in `invar`)).
|
||||
/// ... | -1 | 0 | 0 | ... | ... | >= 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
|
||||
/// ... | 0 | -1 | 0 | ... | ... | = 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (for each `op` map result r_i: set r_i to corresponding map result,
|
||||
/// prove that r_i >= minOpUb via contradiction)
|
||||
/// ... | 0 | 0 | -1 | ... | ... | = 0
|
||||
/// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
|
||||
///
|
||||
static LogicalResult
|
||||
canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
FlatAffineValueConstraints constraints) {
|
||||
RewriterBase::InsertionGuard guard(rewriter);
|
||||
unsigned numResults = map.getNumResults();
|
||||
|
||||
// Add a few extra dimensions.
|
||||
unsigned dimOp = constraints.appendDimId(); // `op`
|
||||
unsigned dimOpBound = constraints.appendDimId(); // `op` lower/upper bound
|
||||
unsigned resultDimStart = constraints.appendDimId(/*num=*/numResults);
|
||||
|
||||
// Add an inequality for each result expr_i of map:
|
||||
// isMin: op <= expr_i, !isMin: op >= expr_i
|
||||
auto boundType =
|
||||
isMin ? FlatAffineConstraints::UB : FlatAffineConstraints::LB;
|
||||
// Upper bounds are exclusive, so add 1. (`affine.min` ops are inclusive.)
|
||||
AffineMap mapLbUb = isMin ? addConstToResults(map, 1) : map;
|
||||
if (failed(
|
||||
alignAndAddBound(constraints, boundType, dimOp, mapLbUb, operands)))
|
||||
return failure();
|
||||
|
||||
// Try to compute a lower/upper bound for op, expressed in terms of the other
|
||||
// `dims` and extra symbols.
|
||||
SmallVector<AffineMap> opLb(1), opUb(1);
|
||||
constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb);
|
||||
AffineMap sliceBound = isMin ? opUb[0] : opLb[0];
|
||||
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
|
||||
// a TODO of `getSliceBounds` and not handled here.
|
||||
if (!sliceBound || sliceBound.getNumResults() != 1)
|
||||
return failure(); // No or multiple bounds found.
|
||||
// Recover the inclusive UB in the case of an `affine.min`.
|
||||
AffineMap boundMap = isMin ? addConstToResults(sliceBound, -1) : sliceBound;
|
||||
|
||||
// Add an equality: Set dimOpBound to computed bound.
|
||||
// Add back dimension for op. (Was removed by `getSliceBounds`.)
|
||||
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
|
||||
if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimOpBound,
|
||||
alignedBoundMap)))
|
||||
return failure();
|
||||
|
||||
// If the constraint system is empty, there is an inconsistency. (E.g., this
|
||||
// can happen if loop lb > ub.)
|
||||
if (constraints.isEmpty())
|
||||
return failure();
|
||||
|
||||
// In the case of `isMin` (`!isMin` is inversed):
|
||||
// Prove that each result of `map` has a lower bound that is equal to (or
|
||||
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
|
||||
// can be replaced with the bound. I.e., prove that for each result
|
||||
// expr_i (represented by dimension r_i):
|
||||
//
|
||||
// r_i >= opBound
|
||||
//
|
||||
// To prove this inequality, add its negation to the constraint set and prove
|
||||
// that the constraint set is empty.
|
||||
for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
|
||||
FlatAffineValueConstraints newConstr(constraints);
|
||||
|
||||
// Add an equality: r_i = expr_i
|
||||
// Note: These equalities could have been added earlier and used to express
|
||||
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
|
||||
// computes minOpUb in terms of r_i dims, which is not desired.
|
||||
if (failed(alignAndAddBound(newConstr, FlatAffineConstraints::EQ, i,
|
||||
map.getSubMap({i - resultDimStart}), operands)))
|
||||
return failure();
|
||||
|
||||
// If `isMin`: Add inequality: r_i < opBound
|
||||
// equiv.: opBound - r_i - 1 >= 0
|
||||
// If `!isMin`: Add inequality: r_i > opBound
|
||||
// equiv.: -opBound + r_i - 1 >= 0
|
||||
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
|
||||
ineq[dimOpBound] = isMin ? 1 : -1;
|
||||
ineq[i] = isMin ? -1 : 1;
|
||||
ineq[newConstr.getNumCols() - 1] = -1;
|
||||
newConstr.addInequality(ineq);
|
||||
if (!newConstr.isEmpty())
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
|
||||
AffineMap newMap = alignedBoundMap;
|
||||
SmallVector<Value> newOperands;
|
||||
unpackOptionalValues(constraints.getMaybeDimAndSymbolValues(), newOperands);
|
||||
mlir::canonicalizeMapAndOperands(&newMap, &newOperands);
|
||||
rewriter.setInsertionPoint(op);
|
||||
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
||||
/// can simplify min/max operations such as (ub is the previous upper bound of
|
||||
/// the unpeeled loop):
|
||||
/// ```
|
||||
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
||||
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
||||
/// ```
|
||||
/// and rewrites them into (in the case the peeled loop):
|
||||
/// ```
|
||||
/// %r = %step
|
||||
/// ```
|
||||
/// min/max operations inside the partial iteration are rewritten in a similar
|
||||
/// way.
|
||||
///
|
||||
/// This function builds up a set of constraints, capable of proving that:
|
||||
/// * Inside the peeled loop: min(step, ub - iv) == step
|
||||
/// * Inside the partial iteration: min(step, ub - iv) == ub - iv
|
||||
///
|
||||
/// Returns `success` if the given operation was replaced by a new operation;
|
||||
/// `failure` otherwise.
|
||||
///
|
||||
/// Note: `ub` is the previous upper bound of the loop (before peeling).
|
||||
/// `insideLoop` must be true for min/max ops inside the loop and false for
|
||||
/// affine.min ops inside the partial iteration. For an explanation of the other
|
||||
/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
|
||||
LogicalResult mlir::scf::rewritePeeledMinMaxOp(RewriterBase &rewriter,
|
||||
Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
Value iv, Value ub, Value step,
|
||||
bool insideLoop) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
constraints.appendDimId({iv, ub, step});
|
||||
if (auto constUb = getConstantIntValue(ub))
|
||||
constraints.addBound(FlatAffineConstraints::EQ, 1, *constUb);
|
||||
if (auto constStep = getConstantIntValue(step))
|
||||
constraints.addBound(FlatAffineConstraints::EQ, 2, *constStep);
|
||||
|
||||
// Add loop peeling invariant. This is the main piece of knowledge that
|
||||
// enables AffineMinOp simplification.
|
||||
if (insideLoop) {
|
||||
// ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
|
||||
// Intuitively: Inside the peeled loop, every iteration is a "full"
|
||||
// iteration, i.e., step divides the iteration space `ub - lb` evenly.
|
||||
constraints.addInequality({-1, 1, -1, 0});
|
||||
} else {
|
||||
// ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
|
||||
// Intuitively: `iv` is the split bound here, i.e., the iteration variable
|
||||
// value of the very last iteration (in the unpeeled loop). At that point,
|
||||
// there are less than `step` elements remaining. (Otherwise, the peeled
|
||||
// loop would run for at least one more iteration.)
|
||||
constraints.addInequality({1, -1, 1, -1});
|
||||
}
|
||||
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
||||
|
||||
template <typename OpTy, bool IsMin>
|
||||
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
|
||||
ForOp partialIteration,
|
||||
|
@ -409,78 +189,6 @@ LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
|||
return success();
|
||||
}
|
||||
|
||||
/// Canonicalize min/max operations in the context of for loops with a known
|
||||
/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
|
||||
/// the constraint system (along with the missing dimensions):
|
||||
///
|
||||
/// * iv >= lb
|
||||
/// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
||||
///
|
||||
/// Note: Due to limitations of FlatAffineConstraints, only constant step sizes
|
||||
/// are currently supported.
|
||||
LogicalResult
|
||||
mlir::scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, LoopMatcherFn loopMatcher) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
DenseSet<Value> allIvs;
|
||||
|
||||
// Find all iteration variables among `minOp`'s operands add constrain them.
|
||||
for (Value operand : operands) {
|
||||
// Skip duplicate ivs.
|
||||
if (llvm::find(allIvs, operand) != allIvs.end())
|
||||
continue;
|
||||
|
||||
// If `operand` is an iteration variable: Find corresponding loop
|
||||
// bounds and step.
|
||||
Value iv = operand;
|
||||
Value lb, ub, step;
|
||||
if (failed(loopMatcher(operand, lb, ub, step)))
|
||||
continue;
|
||||
allIvs.insert(iv);
|
||||
|
||||
// FlatAffineConstraints does not support semi-affine expressions.
|
||||
// Therefore, only constant step values are supported.
|
||||
auto stepInt = getConstantIntValue(step);
|
||||
if (!stepInt)
|
||||
continue;
|
||||
|
||||
unsigned dimIv = constraints.appendDimId(iv);
|
||||
unsigned dimLb = constraints.appendDimId(lb);
|
||||
unsigned dimUb = constraints.appendDimId(ub);
|
||||
|
||||
// If loop lower/upper bounds are constant: Add EQ constraint.
|
||||
Optional<int64_t> lbInt = getConstantIntValue(lb);
|
||||
Optional<int64_t> ubInt = getConstantIntValue(ub);
|
||||
if (lbInt)
|
||||
constraints.addBound(FlatAffineConstraints::EQ, dimLb, *lbInt);
|
||||
if (ubInt)
|
||||
constraints.addBound(FlatAffineConstraints::EQ, dimUb, *ubInt);
|
||||
|
||||
// iv >= lb (equiv.: iv - lb >= 0)
|
||||
SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0);
|
||||
ineqLb[dimIv] = 1;
|
||||
ineqLb[dimLb] = -1;
|
||||
constraints.addInequality(ineqLb);
|
||||
|
||||
// iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
|
||||
AffineExpr exprLb = lbInt ? rewriter.getAffineConstantExpr(*lbInt)
|
||||
: rewriter.getAffineDimExpr(dimLb);
|
||||
AffineExpr exprUb = ubInt ? rewriter.getAffineConstantExpr(*ubInt)
|
||||
: rewriter.getAffineDimExpr(dimUb);
|
||||
AffineExpr ivUb =
|
||||
exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt)));
|
||||
auto map = AffineMap::get(
|
||||
/*dimCount=*/constraints.getNumDimIds(),
|
||||
/*symbolCount=*/constraints.getNumSymbolIds(), /*result=*/ivUb);
|
||||
|
||||
if (failed(constraints.addBound(FlatAffineConstraints::UB, dimIv, map)))
|
||||
return failure();
|
||||
}
|
||||
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
||||
|
||||
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
|
||||
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
|
||||
|
||||
|
|
Loading…
Reference in New Issue