Add support for undef, unreachable, and function flags

llvm-svn: 17054
This commit is contained in:
Chris Lattner 2004-10-16 18:18:16 +00:00
parent 4ff314968e
commit 770709befe
3 changed files with 99 additions and 36 deletions

View File

@ -68,7 +68,8 @@ inline bool BytecodeReader::moreInBlock() {
/// Throw an error if we've read past the end of the current block
inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
if (At > BlockEnd)
error(std::string("Attempt to read past the end of ") + block_name + " block.");
error(std::string("Attempt to read past the end of ") + block_name +
" block.");
}
/// Align the buffer position to a 32 bit boundary
@ -347,7 +348,8 @@ unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
}
// Check the function level types first...
TypeListTy::iterator I = std::find(FunctionTypes.begin(), FunctionTypes.end(), Ty);
TypeListTy::iterator I = std::find(FunctionTypes.begin(),
FunctionTypes.end(), Ty);
if (I != FunctionTypes.end())
return Type::FirstDerivedTyID + ModuleTypes.size() +
@ -628,6 +630,15 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
// Declare the resulting instruction we'll build.
Instruction *Result = 0;
// If this is a bytecode format that did not include the unreachable
// instruction, bump up all opcodes numbers to make space.
if (hasNoUnreachableInst) {
if (Opcode >= Instruction::Unreachable &&
Opcode < 62) {
++Opcode;
}
}
// Handle binary operators
if (Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
@ -895,10 +906,13 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
break;
}
case Instruction::Unwind:
if (Oprnds.size() != 0)
error("Invalid unwind instruction!");
if (Oprnds.size() != 0) error("Invalid unwind instruction!");
Result = new UnwindInst();
break;
case Instruction::Unreachable:
if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
Result = new UnreachableInst();
break;
} // end switch(Opcode)
unsigned TypeSlot;
@ -1268,12 +1282,20 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint();
if (isExprNumArgs) {
// 'undef' is encoded with 'exprnumargs' == 1.
if (!hasNoUndefValue)
if (--isExprNumArgs == 0)
return UndefValue::get(getType(TypeID));
// FIXME: Encoding of constant exprs could be much more compact!
std::vector<Constant*> ArgVec;
ArgVec.reserve(isExprNumArgs);
unsigned Opcode = read_vbr_uint();
// Bytecode files before LLVM 1.4 need have a missing terminator inst.
if (hasNoUnreachableInst) Opcode++;
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
@ -1834,36 +1856,42 @@ void BytecodeReader::ParseModuleGlobalInfo() {
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature = 0;
if (read_typeid(FnSignature))
error("Invalid function type (type type) found");
unsigned FnSignature = read_vbr_uint();
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (hasNoFlagsForFunctions)
FnSignature = (FnSignature << 5) + 1;
// List is terminated by VoidTy.
while ((FnSignature >> 5) != Type::VoidTyID) {
const Type *Ty = getType(FnSignature >> 5);
if (!isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
error("Function not a pointer to function type! Ty = " +
Ty->getDescription());
// FIXME: what should Ty be if handler continues?
}
// We create functions by passing the underlying FunctionType to create...
const FunctionType* FTy =
cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
// Insert the place hodler
Function* Func = new Function(FTy, GlobalValue::InternalLinkage,
"", TheModule);
insertValue(Func, FnSignature, ModuleValues);
insertValue(Func, FnSignature >> 5, ModuleValues);
// Flags are not used yet.
//unsigned Flags = FnSignature & 31;
// Save this for later so we know type of lazily instantiated functions
FunctionSignatureList.push_back(Func);
if (Handler) Handler->handleFunctionDeclaration(Func);
// Get Next function signature
if (read_typeid(FnSignature))
error("Invalid function type (type type) found");
// Get the next function signature.
FnSignature = read_vbr_uint();
if (hasNoFlagsForFunctions)
FnSignature = (FnSignature << 5) + 1;
}
// Now that the function signature list is set up, reverse it so that we can
@ -1929,6 +1957,9 @@ void BytecodeReader::ParseVersionInfo() {
hasInconsistentBBSlotNums = false;
hasVBRByteTypes = false;
hasUnnecessaryModuleBlockId = false;
hasNoUndefValue = false;
hasNoFlagsForFunctions = false;
hasNoUnreachableInst = false;
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 (Released)
@ -1990,24 +2021,41 @@ void BytecodeReader::ParseVersionInfo() {
// FALL THROUGH
case 4: // 1.3.1 (Not Released)
// In version 4, basic blocks have a minimum index of 0 whereas all the
// In version 4, we did not support the 'undef' constant.
hasNoUndefValue = true;
// In version 4 and above, we did not include space for flags for functions
// in the module info block.
hasNoFlagsForFunctions = true;
// In version 4 and above, we did not include the 'unreachable' instruction
// in the opcode numbering in the bytecode file.
hasNoUnreachableInst = true;
// FALL THROUGH
case 5: // 1.x.x (Not Released)
// FIXME: NONE of this is implemented yet!
break;
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// value. In version 5, we made this consistent.
hasInconsistentBBSlotNums = true;
// In version 4, the types SByte and UByte were encoded as vbr_uint so that
// In version 5, the types SByte and UByte were encoded as vbr_uint so that
// signed values > 63 and unsigned values >127 would be encoded as two
// bytes. In version 5, they are encoded directly in a single byte.
hasVBRByteTypes = true;
// In version 4, modules begin with a "Module Block" which encodes a 4-byte
// In version 5, modules begin with a "Module Block" which encodes a 4-byte
// integer value 0x01 to identify the module block. This is unnecessary and
// removed in version 5.
hasUnnecessaryModuleBlockId = true;
// FALL THROUGH
case 5: // LLVM 1.4 (Released)
case 6: // LLVM 1.4 (Released)
break;
default:
error("Unknown bytecode version number: " + itostr(RevisionNum));

View File

@ -298,17 +298,29 @@ private:
/// alignment of bytecode fields was done away with completely.
bool hasAlignment;
// In version 4, basic blocks have a minimum index of 0 whereas all the
// In version 4 and earlier, the bytecode format did not support the 'undef'
// constant.
bool hasNoUndefValue;
// In version 4 and earlier, the bytecode format did not save space for flags
// in the global info block for functions.
bool hasNoFlagsForFunctions;
// In version 4 and earlier, there was no opcode space reserved for the
// unreachable instruction.
bool hasNoUnreachableInst;
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// value. In version 5, we made this consistent.
bool hasInconsistentBBSlotNums;
// In version 4, the types SByte and UByte were encoded as vbr_uint so that
// In version 5, the types SByte and UByte were encoded as vbr_uint so that
// signed values > 63 and unsigned values >127 would be encoded as two
// bytes. In version 5, they are encoded directly in a single byte.
bool hasVBRByteTypes;
// In version 4, modules begin with a "Module Block" which encodes a 4-byte
// In version 5, modules begin with a "Module Block" which encodes a 4-byte
// integer value 0x01 to identify the module block. This is unnecessary and
// removed in version 5.
bool hasUnnecessaryModuleBlockId;

View File

@ -35,7 +35,7 @@ using namespace llvm;
/// so that the reader can distinguish which format of the bytecode file has
/// been written.
/// @brief The bytecode version number
const unsigned BCVersionNum = 4;
const unsigned BCVersionNum = 5;
static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
@ -294,7 +294,7 @@ void BytecodeWriter::outputConstant(const Constant *CPV) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
// FIXME: Encoding of constant exprs could be much more compact!
assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
output_vbr(CE->getNumOperands()); // flags as an expr
output_vbr(1+CE->getNumOperands()); // flags as an expr
output_vbr(CE->getOpcode()); // flags as an expr
for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
@ -305,6 +305,9 @@ void BytecodeWriter::outputConstant(const Constant *CPV) {
output_typeid((unsigned)Slot);
}
return;
} else if (isa<UndefValue>(CPV)) {
output_vbr(1U); // 1 -> UndefValue constant.
return;
} else {
output_vbr(0U); // flag as not a ConstantExpr
}
@ -752,8 +755,7 @@ BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M)
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
// Output the version identifier... we are currently on bytecode version #2,
// which corresponds to LLVM v1.3.
// Output the version identifier and other information.
unsigned Version = (BCVersionNum << 4) |
(unsigned)isBigEndian | (hasLongPointers << 1) |
(hasNoEndianness << 2) |
@ -851,7 +853,7 @@ void BytecodeWriter::outputConstants(bool isFunction) {
if (isFunction)
// Output the type plane before any constants!
outputTypes( Table.getModuleTypeLevel() );
outputTypes(Table.getModuleTypeLevel());
else
// Output module-level string constants before any other constants.
outputConstantStrings();
@ -898,7 +900,7 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
// bit5+ = Slot # for type
unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
(I->hasInitializer() << 1) | (unsigned)I->isConstant();
output_vbr(oSlot );
output_vbr(oSlot);
// If we have an initializer, output it now.
if (I->hasInitializer()) {
@ -909,22 +911,23 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
}
output_typeid((unsigned)Table.getSlot(Type::VoidTy));
// Output the types of the functions in this module...
// Output the types of the functions in this module.
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Module const pool is broken!");
assert(Slot != -1 && "Module slot calculator is broken!");
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
output_typeid((unsigned)Slot);
assert(((Slot << 5) >> 5) == Slot && "Slot # too big!");
unsigned ID = (Slot << 5) + 1;
output_vbr(ID);
}
output_typeid((unsigned)Table.getSlot(Type::VoidTy));
output_vbr((unsigned)Table.getSlot(Type::VoidTy) << 5);
// Put out the list of dependent libraries for the Module
// Emit the list of dependent libraries for the Module.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
output_vbr( unsigned(LE - LI) ); // Put out the number of dependent libraries
for ( ; LI != LE; ++LI ) {
output_vbr(unsigned(LE - LI)); // Emit the number of dependent libraries.
for (; LI != LE; ++LI)
output(*LI);
}
// Output the target triple from the module
output(M->getTargetTriple());