forked from OSchip/llvm-project
Revert r153694. It was causing failures in the buildbots.
llvm-svn: 153701
This commit is contained in:
parent
d8af9a5ee1
commit
76fdc4b885
|
@ -45,6 +45,17 @@ public:
|
|||
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
|
||||
unsigned SectionID) = 0;
|
||||
|
||||
// Allocate ActualSize bytes, or more, for the named function. Return
|
||||
// a pointer to the allocated memory and update Size to reflect how much
|
||||
// memory was acutally allocated.
|
||||
virtual uint8_t *startFunctionBody(const char *Name, uintptr_t &Size) = 0;
|
||||
|
||||
// Mark the end of the function, including how much of the allocated
|
||||
// memory was actually used.
|
||||
virtual void endFunctionBody(const char *Name, uint8_t *FunctionStart,
|
||||
uint8_t *FunctionEnd) = 0;
|
||||
|
||||
|
||||
virtual void *getPointerToNamedFunction(const std::string &Name,
|
||||
bool AbortOnFailure = true) = 0;
|
||||
};
|
||||
|
|
|
@ -34,12 +34,12 @@ public:
|
|||
|
||||
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
|
||||
unsigned SectionID) {
|
||||
return JMM->allocateSpace(Size, Alignment);
|
||||
return JMM->allocateDataSection(Size, Alignment, SectionID);
|
||||
}
|
||||
|
||||
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
|
||||
unsigned SectionID) {
|
||||
return JMM->allocateSpace(Size, Alignment);
|
||||
return JMM->allocateCodeSection(Size, Alignment, SectionID);
|
||||
}
|
||||
|
||||
virtual void *getPointerToNamedFunction(const std::string &Name,
|
||||
|
@ -47,6 +47,40 @@ public:
|
|||
return JMM->getPointerToNamedFunction(Name, AbortOnFailure);
|
||||
}
|
||||
|
||||
// Allocate ActualSize bytes, or more, for the named function. Return
|
||||
// a pointer to the allocated memory and update Size to reflect how much
|
||||
// memory was acutally allocated.
|
||||
uint8_t *startFunctionBody(const char *Name, uintptr_t &Size) {
|
||||
// FIXME: This should really reference the MCAsmInfo to get the global
|
||||
// prefix.
|
||||
if (Name[0] == '_') ++Name;
|
||||
Function *F = M->getFunction(Name);
|
||||
// Some ObjC names have a prefixed \01 in the IR. If we failed to find
|
||||
// the symbol and it's of the ObjC conventions (starts with "-" or
|
||||
// "+"), try prepending a \01 and see if we can find it that way.
|
||||
if (!F && (Name[0] == '-' || Name[0] == '+'))
|
||||
F = M->getFunction((Twine("\1") + Name).str());
|
||||
assert(F && "No matching function in JIT IR Module!");
|
||||
return JMM->startFunctionBody(F, Size);
|
||||
}
|
||||
|
||||
// Mark the end of the function, including how much of the allocated
|
||||
// memory was actually used.
|
||||
void endFunctionBody(const char *Name, uint8_t *FunctionStart,
|
||||
uint8_t *FunctionEnd) {
|
||||
// FIXME: This should really reference the MCAsmInfo to get the global
|
||||
// prefix.
|
||||
if (Name[0] == '_') ++Name;
|
||||
Function *F = M->getFunction(Name);
|
||||
// Some ObjC names have a prefixed \01 in the IR. If we failed to find
|
||||
// the symbol and it's of the ObjC conventions (starts with "-" or
|
||||
// "+"), try prepending a \01 and see if we can find it that way.
|
||||
if (!F && (Name[0] == '-' || Name[0] == '+'))
|
||||
F = M->getFunction((Twine("\1") + Name).str());
|
||||
assert(F && "No matching function in JIT IR Module!");
|
||||
JMM->endFunctionBody(F, FunctionStart, FunctionEnd);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
|
|
@ -26,290 +26,45 @@ RuntimeDyldImpl::~RuntimeDyldImpl() {}
|
|||
|
||||
namespace llvm {
|
||||
|
||||
namespace {
|
||||
// Helper for extensive error checking in debug builds.
|
||||
error_code Check(error_code Err) {
|
||||
if (Err) {
|
||||
report_fatal_error(Err.message());
|
||||
}
|
||||
return Err;
|
||||
}
|
||||
} // end anonymous namespace
|
||||
void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
|
||||
uint8_t *EndAddress) {
|
||||
// FIXME: DEPRECATED in favor of by-section allocation.
|
||||
// Allocate memory for the function via the memory manager.
|
||||
uintptr_t Size = EndAddress - StartAddress + 1;
|
||||
uintptr_t AllocSize = Size;
|
||||
uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
|
||||
assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
|
||||
"Memory manager failed to allocate enough memory!");
|
||||
// Copy the function payload into the memory block.
|
||||
memcpy(Mem, StartAddress, Size);
|
||||
MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
|
||||
// Remember where we put it.
|
||||
unsigned SectionID = Sections.size();
|
||||
Sections.push_back(sys::MemoryBlock(Mem, Size));
|
||||
|
||||
// Default the assigned address for this symbol to wherever this
|
||||
// allocated it.
|
||||
SymbolTable[Name] = SymbolLoc(SectionID, 0);
|
||||
DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n");
|
||||
}
|
||||
|
||||
// Resolve the relocations for all symbols we currently know about.
|
||||
void RuntimeDyldImpl::resolveRelocations() {
|
||||
// First, resolve relocations assotiated with external symbols.
|
||||
resolveSymbols();
|
||||
|
||||
// Just iterate over the sections we have and resolve all the relocations
|
||||
// in them. Gross overkill, but it gets the job done.
|
||||
for (int i = 0, e = Sections.size(); i != e; ++i) {
|
||||
reassignSectionAddress(i, Sections[i].LoadAddress);
|
||||
reassignSectionAddress(i, SectionLoadAddress[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
|
||||
uint64_t TargetAddress) {
|
||||
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
|
||||
if (Sections[i].Address == LocalAddress) {
|
||||
reassignSectionAddress(i, TargetAddress);
|
||||
return;
|
||||
}
|
||||
}
|
||||
llvm_unreachable("Attempting to remap address of unknown section!");
|
||||
assert(SectionLocalMemToID.count(LocalAddress) &&
|
||||
"Attempting to remap address of unknown section!");
|
||||
unsigned SectionID = SectionLocalMemToID[LocalAddress];
|
||||
reassignSectionAddress(SectionID, TargetAddress);
|
||||
}
|
||||
|
||||
bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) {
|
||||
// FIXME: ObjectFile don't modify MemoryBuffer.
|
||||
// It should use const MemoryBuffer as parameter.
|
||||
ObjectFile *obj
|
||||
= ObjectFile::createObjectFile(const_cast<MemoryBuffer*>(InputBuffer));
|
||||
|
||||
Arch = (Triple::ArchType)obj->getArch();
|
||||
|
||||
LocalSymbolMap LocalSymbols; // Functions and data symbols from the
|
||||
// object file.
|
||||
ObjSectionToIDMap LocalSections; // Used sections from the object file
|
||||
|
||||
error_code err;
|
||||
// Parse symbols
|
||||
DEBUG(dbgs() << "Parse symbols:\n");
|
||||
for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
|
||||
i != e; i.increment(err)) {
|
||||
Check(err);
|
||||
object::SymbolRef::Type SymType;
|
||||
StringRef Name;
|
||||
Check(i->getType(SymType));
|
||||
Check(i->getName(Name));
|
||||
|
||||
if (SymType == object::SymbolRef::ST_Function ||
|
||||
SymType == object::SymbolRef::ST_Data) {
|
||||
uint64_t FileOffset;
|
||||
uint32_t flags;
|
||||
StringRef sData;
|
||||
section_iterator si = obj->end_sections();
|
||||
Check(i->getFileOffset(FileOffset));
|
||||
Check(i->getFlags(flags));
|
||||
Check(i->getSection(si));
|
||||
if (si == obj->end_sections()) continue;
|
||||
Check(si->getContents(sData));
|
||||
const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
|
||||
(uintptr_t)FileOffset;
|
||||
uintptr_t SectOffset = (uintptr_t)(SymPtr - (const uint8_t*)sData.begin());
|
||||
unsigned SectionID
|
||||
= findOrEmitSection(*si,
|
||||
SymType == object::SymbolRef::ST_Function,
|
||||
LocalSections);
|
||||
bool isGlobal = flags & SymbolRef::SF_Global;
|
||||
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
|
||||
DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
|
||||
<< " flags: " << flags
|
||||
<< " SID: " << SectionID
|
||||
<< " Offset: " << format("%p", SectOffset));
|
||||
if (isGlobal)
|
||||
SymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
|
||||
}
|
||||
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
|
||||
}
|
||||
|
||||
// Parse and proccess relocations
|
||||
DEBUG(dbgs() << "Parse relocations:\n");
|
||||
for (section_iterator si = obj->begin_sections(),
|
||||
se = obj->end_sections(); si != se; si.increment(err)) {
|
||||
Check(err);
|
||||
bool isFirstRelocation = true;
|
||||
unsigned SectionID = 0;
|
||||
StubMap Stubs;
|
||||
|
||||
for (relocation_iterator i = si->begin_relocations(),
|
||||
e = si->end_relocations(); i != e; i.increment(err)) {
|
||||
Check(err);
|
||||
|
||||
// If it's first relocation in this section, find its SectionID
|
||||
if (isFirstRelocation) {
|
||||
SectionID = findOrEmitSection(*si, true, LocalSections);
|
||||
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
|
||||
isFirstRelocation = false;
|
||||
}
|
||||
|
||||
ObjRelocationInfo RI;
|
||||
RI.SectionID = SectionID;
|
||||
Check(i->getAdditionalInfo(RI.AdditionalInfo));
|
||||
Check(i->getOffset(RI.Offset));
|
||||
Check(i->getSymbol(RI.Symbol));
|
||||
Check(i->getType(RI.Type));
|
||||
|
||||
DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
|
||||
<< " Offset: " << format("%p", (uintptr_t)RI.Offset)
|
||||
<< " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
|
||||
<< "\n");
|
||||
processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned RuntimeDyldImpl::emitSection(const SectionRef &Section,
|
||||
bool IsCode) {
|
||||
|
||||
unsigned StubBufSize = 0,
|
||||
StubSize = getMaxStubSize();
|
||||
error_code err;
|
||||
if (StubSize > 0) {
|
||||
for (relocation_iterator i = Section.begin_relocations(),
|
||||
e = Section.end_relocations(); i != e; i.increment(err))
|
||||
StubBufSize += StubSize;
|
||||
}
|
||||
StringRef data;
|
||||
uint64_t Alignment64;
|
||||
Check(Section.getContents(data));
|
||||
Check(Section.getAlignment(Alignment64));
|
||||
|
||||
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
||||
unsigned DataSize = data.size();
|
||||
unsigned Allocate = DataSize + StubBufSize;
|
||||
unsigned SectionID = Sections.size();
|
||||
const char *pData = data.data();
|
||||
uint8_t *Addr = IsCode
|
||||
? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
|
||||
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID);
|
||||
|
||||
memcpy(Addr, pData, DataSize);
|
||||
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
|
||||
<< " obj addr: " << format("%p", pData)
|
||||
<< " new addr: " << format("%p", Addr)
|
||||
<< " DataSize: " << DataSize
|
||||
<< " StubBufSize: " << StubBufSize
|
||||
<< " Allocate: " << Allocate
|
||||
<< "\n");
|
||||
Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
|
||||
return SectionID;
|
||||
}
|
||||
|
||||
unsigned RuntimeDyldImpl::findOrEmitSection(const SectionRef &Section,
|
||||
bool IsCode,
|
||||
ObjSectionToIDMap &LocalSections) {
|
||||
|
||||
unsigned SectionID = 0;
|
||||
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
|
||||
if (i != LocalSections.end())
|
||||
SectionID = i->second;
|
||||
else {
|
||||
SectionID = emitSection(Section, IsCode);
|
||||
LocalSections[Section] = SectionID;
|
||||
}
|
||||
return SectionID;
|
||||
}
|
||||
|
||||
void RuntimeDyldImpl::AddRelocation(const RelocationValueRef &Value,
|
||||
unsigned SectionID, uintptr_t Offset,
|
||||
uint32_t RelType) {
|
||||
DEBUG(dbgs() << "AddRelocation SymNamePtr: " << format("%p", Value.SymbolName)
|
||||
<< " SID: " << Value.SectionID
|
||||
<< " Addend: " << format("%p", Value.Addend)
|
||||
<< " Offset: " << format("%p", Offset)
|
||||
<< " RelType: " << format("%x", RelType)
|
||||
<< "\n");
|
||||
|
||||
if (Value.SymbolName == 0) {
|
||||
Relocations[Value.SectionID].push_back(RelocationEntry(
|
||||
SectionID,
|
||||
Offset,
|
||||
RelType,
|
||||
Value.Addend));
|
||||
} else
|
||||
SymbolRelocations[Value.SymbolName].push_back(RelocationEntry(
|
||||
SectionID,
|
||||
Offset,
|
||||
RelType,
|
||||
Value.Addend));
|
||||
}
|
||||
|
||||
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
|
||||
// TODO: There is only ARM far stub now. We should add the Thumb stub,
|
||||
// and stubs for branches Thumb - ARM and ARM - Thumb.
|
||||
if (Arch == Triple::arm) {
|
||||
uint32_t *StubAddr = (uint32_t*)Addr;
|
||||
*StubAddr = 0xe51ff004; // ldr pc,<label>
|
||||
return (uint8_t*)++StubAddr;
|
||||
}
|
||||
else
|
||||
return Addr;
|
||||
}
|
||||
|
||||
// Assign an address to a symbol name and resolve all the relocations
|
||||
// associated with it.
|
||||
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
|
||||
uint64_t Addr) {
|
||||
// The address to use for relocation resolution is not
|
||||
// the address of the local section buffer. We must be doing
|
||||
// a remote execution environment of some sort. Re-apply any
|
||||
// relocations referencing this section with the given address.
|
||||
//
|
||||
// Addr is a uint64_t because we can't assume the pointer width
|
||||
// of the target is the same as that of the host. Just use a generic
|
||||
// "big enough" type.
|
||||
Sections[SectionID].LoadAddress = Addr;
|
||||
DEBUG(dbgs() << "Resolving relocations Section #" << SectionID
|
||||
<< "\t" << format("%p", (uint8_t *)Addr)
|
||||
<< "\n");
|
||||
resolveRelocationList(Relocations[SectionID], Addr);
|
||||
}
|
||||
|
||||
void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
|
||||
uint64_t Value) {
|
||||
uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset;
|
||||
DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
|
||||
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
|
||||
<< " Data: " << RE.Data
|
||||
<< " Addend: " << RE.Addend
|
||||
<< "\n");
|
||||
|
||||
resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset,
|
||||
Value, RE.Data, RE.Addend);
|
||||
}
|
||||
|
||||
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
|
||||
uint64_t Value) {
|
||||
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
||||
resolveRelocationEntry(Relocs[i], Value);
|
||||
}
|
||||
}
|
||||
|
||||
// resolveSymbols - Resolve any relocations to the specified symbols if
|
||||
// we know where it lives.
|
||||
void RuntimeDyldImpl::resolveSymbols() {
|
||||
StringMap<RelocationList>::iterator i = SymbolRelocations.begin(),
|
||||
e = SymbolRelocations.end();
|
||||
for (; i != e; i++) {
|
||||
StringRef Name = i->first();
|
||||
RelocationList &Relocs = i->second;
|
||||
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
|
||||
if (Loc == SymbolTable.end()) {
|
||||
// This is an external symbol, try to get it address from
|
||||
// MemoryManager.
|
||||
uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
|
||||
true);
|
||||
DEBUG(dbgs() << "Resolving relocations Name: " << Name
|
||||
<< "\t" << format("%p", Addr)
|
||||
<< "\n");
|
||||
resolveRelocationList(Relocs, (uintptr_t)Addr);
|
||||
} else {
|
||||
// Change the relocation to be section relative rather than symbol
|
||||
// relative and move it to the resolved relocation list.
|
||||
DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
|
||||
for (int i = 0, e = Relocs.size(); i != e; ++i) {
|
||||
RelocationEntry Entry = Relocs[i];
|
||||
Entry.Addend += Loc->second.second;
|
||||
Relocations[Loc->second.first].push_back(Entry);
|
||||
}
|
||||
Relocs.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// RuntimeDyld class implementation
|
||||
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
|
||||
|
|
|
@ -25,58 +25,222 @@ using namespace llvm::object;
|
|||
|
||||
namespace llvm {
|
||||
|
||||
namespace {
|
||||
|
||||
void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend) {
|
||||
switch (Type) {
|
||||
default:
|
||||
llvm_unreachable("Relocation type not implemented yet!");
|
||||
break;
|
||||
// FIXME: this function should probably not live here...
|
||||
//
|
||||
// Returns the name and address of an unrelocated symbol in an ELF section
|
||||
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
|
||||
//FIXME: error checking here required to catch corrupt ELF objects...
|
||||
error_code Err = Sym->getName(Name);
|
||||
|
||||
uint64_t AddrInSection;
|
||||
Err = Sym->getAddress(AddrInSection);
|
||||
|
||||
SectionRef empty_section;
|
||||
section_iterator Section(empty_section);
|
||||
Err = Sym->getSection(Section);
|
||||
|
||||
StringRef SectionContents;
|
||||
Section->getContents(SectionContents);
|
||||
|
||||
Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
|
||||
if (!isCompatibleFormat(InputBuffer))
|
||||
return true;
|
||||
|
||||
OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
|
||||
|
||||
Arch = Obj->getArch();
|
||||
|
||||
// Map address in the Object file image to function names
|
||||
IntervalMap<uint64_t, StringRef>::Allocator A;
|
||||
IntervalMap<uint64_t, StringRef> FuncMap(A);
|
||||
|
||||
// This is a bit of a hack. The ObjectFile we've just loaded reports
|
||||
// section addresses as 0 and doesn't provide access to the section
|
||||
// offset (from which we could calculate the address. Instead,
|
||||
// we're storing the address when it comes up in the ST_Debug case
|
||||
// below.
|
||||
//
|
||||
StringMap<uint64_t> DebugSymbolMap;
|
||||
|
||||
symbol_iterator SymEnd = Obj->end_symbols();
|
||||
error_code Err;
|
||||
for (symbol_iterator Sym = Obj->begin_symbols();
|
||||
Sym != SymEnd; Sym.increment(Err)) {
|
||||
SymbolRef::Type Type;
|
||||
Sym->getType(Type);
|
||||
if (Type == SymbolRef::ST_Function) {
|
||||
StringRef Name;
|
||||
uint64_t Addr;
|
||||
getSymbolInfo(Sym, Addr, Name);
|
||||
|
||||
uint64_t Size;
|
||||
Err = Sym->getSize(Size);
|
||||
|
||||
uint8_t *Start;
|
||||
uint8_t *End;
|
||||
Start = reinterpret_cast<uint8_t*>(Addr);
|
||||
End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
|
||||
|
||||
extractFunction(Name, Start, End);
|
||||
FuncMap.insert(Addr, Addr + Size - 1, Name);
|
||||
} else if (Type == SymbolRef::ST_Debug) {
|
||||
// This case helps us find section addresses
|
||||
StringRef Name;
|
||||
uint64_t Addr;
|
||||
getSymbolInfo(Sym, Addr, Name);
|
||||
DebugSymbolMap[Name] = Addr;
|
||||
}
|
||||
}
|
||||
|
||||
// Iterate through the relocations for this object
|
||||
section_iterator SecEnd = Obj->end_sections();
|
||||
for (section_iterator Sec = Obj->begin_sections();
|
||||
Sec != SecEnd; Sec.increment(Err)) {
|
||||
StringRef SecName;
|
||||
uint64_t SecAddr;
|
||||
Sec->getName(SecName);
|
||||
// Ignore sections that aren't in our map
|
||||
if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
|
||||
continue;
|
||||
}
|
||||
SecAddr = DebugSymbolMap[SecName];
|
||||
relocation_iterator RelEnd = Sec->end_relocations();
|
||||
for (relocation_iterator Rel = Sec->begin_relocations();
|
||||
Rel != RelEnd; Rel.increment(Err)) {
|
||||
uint64_t RelOffset;
|
||||
uint64_t RelType;
|
||||
int64_t RelAddend;
|
||||
SymbolRef RelSym;
|
||||
StringRef SymName;
|
||||
uint64_t SymAddr;
|
||||
uint64_t SymOffset;
|
||||
|
||||
Rel->getAddress(RelOffset);
|
||||
Rel->getType(RelType);
|
||||
Rel->getAdditionalInfo(RelAddend);
|
||||
Rel->getSymbol(RelSym);
|
||||
RelSym.getName(SymName);
|
||||
RelSym.getAddress(SymAddr);
|
||||
RelSym.getFileOffset(SymOffset);
|
||||
|
||||
// If this relocation is inside a function, we want to store the
|
||||
// function name and a function-relative offset
|
||||
IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
|
||||
= FuncMap.find(SecAddr + RelOffset);
|
||||
if (ContainingFunc.valid()) {
|
||||
// Re-base the relocation to make it relative to the target function
|
||||
RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
|
||||
Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
|
||||
RelOffset,
|
||||
RelType,
|
||||
RelAddend,
|
||||
true));
|
||||
} else {
|
||||
Relocations[SymName].push_back(RelocationEntry(SecName,
|
||||
RelOffset,
|
||||
RelType,
|
||||
RelAddend,
|
||||
false));
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::resolveRelocations() {
|
||||
// FIXME: deprecated. should be changed to use the by-section
|
||||
// allocation and relocation scheme.
|
||||
|
||||
// Just iterate over the symbols in our symbol table and assign their
|
||||
// addresses.
|
||||
StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
|
||||
StringMap<SymbolLoc>::iterator e = SymbolTable.end();
|
||||
for (;i != e; ++i) {
|
||||
assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
|
||||
reassignSymbolAddress(i->getKey(),
|
||||
(uint8_t*)Sections[i->getValue().first].base());
|
||||
}
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE) {
|
||||
uint8_t *TargetAddr;
|
||||
if (RE.IsFunctionRelative) {
|
||||
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
|
||||
assert(Loc != SymbolTable.end() && "Function for relocation not found");
|
||||
TargetAddr =
|
||||
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
|
||||
Loc->second.second + RE.Offset;
|
||||
} else {
|
||||
// FIXME: Get the address of the target section and add that to RE.Offset
|
||||
llvm_unreachable("Non-function relocation not implemented yet!");
|
||||
}
|
||||
|
||||
switch (RE.Type) {
|
||||
default: llvm_unreachable("Relocation type not implemented yet!");
|
||||
case ELF::R_X86_64_64: {
|
||||
uint64_t *Target = (uint64_t*)(LocalAddress);
|
||||
*Target = Value + Addend;
|
||||
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
|
||||
*Target = Addr + RE.Addend;
|
||||
break;
|
||||
}
|
||||
case ELF::R_X86_64_32:
|
||||
case ELF::R_X86_64_32S: {
|
||||
Value += Addend;
|
||||
uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
|
||||
// FIXME: Handle the possibility of this assertion failing
|
||||
assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
|
||||
(Type == ELF::R_X86_64_32S &&
|
||||
assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
|
||||
(RE.Type == ELF::R_X86_64_32S &&
|
||||
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
|
||||
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
|
||||
uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
|
||||
uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
|
||||
*Target = TruncatedAddr;
|
||||
break;
|
||||
}
|
||||
case ELF::R_X86_64_PC32: {
|
||||
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
|
||||
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
|
||||
assert(RealOffset <= 214783647 && RealOffset >= -214783648);
|
||||
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
|
||||
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
|
||||
uint64_t RealOffset = *Placeholder +
|
||||
reinterpret_cast<uint64_t>(Addr) +
|
||||
RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
|
||||
assert((RealOffset & 0xFFFFFFFF) == RealOffset);
|
||||
uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
|
||||
*Placeholder = TruncOffset;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
|
||||
uint32_t FinalAddress,
|
||||
uint32_t Value,
|
||||
uint32_t Type,
|
||||
int32_t Addend) {
|
||||
switch (Type) {
|
||||
void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE) {
|
||||
uint8_t *TargetAddr;
|
||||
if (RE.IsFunctionRelative) {
|
||||
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
|
||||
assert(Loc != SymbolTable.end() && "Function for relocation not found");
|
||||
TargetAddr =
|
||||
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
|
||||
Loc->second.second + RE.Offset;
|
||||
} else {
|
||||
// FIXME: Get the address of the target section and add that to RE.Offset
|
||||
llvm_unreachable("Non-function relocation not implemented yet!");
|
||||
}
|
||||
|
||||
switch (RE.Type) {
|
||||
case ELF::R_386_32: {
|
||||
uint32_t *Target = (uint32_t*)(LocalAddress);
|
||||
*Target = Value + Addend;
|
||||
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
|
||||
*Target = Addr + RE.Addend;
|
||||
break;
|
||||
}
|
||||
case ELF::R_386_PC32: {
|
||||
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
|
||||
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
|
||||
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
|
||||
uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
|
||||
RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
|
||||
*Placeholder = RealOffset;
|
||||
break;
|
||||
}
|
||||
|
@ -84,174 +248,57 @@ void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
|
|||
// There are other relocation types, but it appears these are the
|
||||
// only ones currently used by the LLVM ELF object writer
|
||||
llvm_unreachable("Relocation type not implemented yet!");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
|
||||
uint32_t FinalAddress,
|
||||
uint32_t Value,
|
||||
uint32_t Type,
|
||||
int32_t Addend) {
|
||||
// TODO: Add Thumb relocations.
|
||||
uint32_t* TargetPtr = (uint32_t*)LocalAddress;
|
||||
Value += Addend;
|
||||
|
||||
DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
|
||||
<< " FinalAddress: " << format("%p",FinalAddress)
|
||||
<< " Value: " << format("%x",Value)
|
||||
<< " Type: " << format("%x",Type)
|
||||
<< " Addend: " << format("%x",Addend)
|
||||
<< "\n");
|
||||
|
||||
switch(Type) {
|
||||
default:
|
||||
llvm_unreachable("Not implemented relocation type!");
|
||||
|
||||
// Just write 32bit value to relocation address
|
||||
case ELF::R_ARM_ABS32 :
|
||||
*TargetPtr = Value;
|
||||
break;
|
||||
|
||||
// Write first 16 bit of 32 bit value to the mov instruction.
|
||||
// Last 4 bit should be shifted.
|
||||
case ELF::R_ARM_MOVW_ABS_NC :
|
||||
Value = Value & 0xFFFF;
|
||||
*TargetPtr |= Value & 0xFFF;
|
||||
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
|
||||
break;
|
||||
|
||||
// Write last 16 bit of 32 bit value to the mov instruction.
|
||||
// Last 4 bit should be shifted.
|
||||
case ELF::R_ARM_MOVT_ABS :
|
||||
Value = (Value >> 16) & 0xFFFF;
|
||||
*TargetPtr |= Value & 0xFFF;
|
||||
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
|
||||
break;
|
||||
|
||||
// Write 24 bit relative value to the branch instruction.
|
||||
case ELF::R_ARM_PC24 : // Fall through.
|
||||
case ELF::R_ARM_CALL : // Fall through.
|
||||
case ELF::R_ARM_JUMP24 :
|
||||
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
|
||||
RelValue = (RelValue & 0x03FFFFFC) >> 2;
|
||||
*TargetPtr &= 0xFF000000;
|
||||
*TargetPtr |= RelValue;
|
||||
break;
|
||||
}
|
||||
void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE) {
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend) {
|
||||
void RuntimeDyldELF::resolveRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE) {
|
||||
switch (Arch) {
|
||||
case Triple::x86_64:
|
||||
resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
|
||||
resolveX86_64Relocation(Name, Addr, RE);
|
||||
break;
|
||||
case Triple::x86:
|
||||
resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
|
||||
(uint32_t)(Value & 0xffffffffL), Type,
|
||||
(uint32_t)(Addend & 0xffffffffL));
|
||||
resolveX86Relocation(Name, Addr, RE);
|
||||
break;
|
||||
case Triple::arm: // Fall through.
|
||||
case Triple::thumb:
|
||||
resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
|
||||
(uint32_t)(Value & 0xffffffffL), Type,
|
||||
(uint32_t)(Addend & 0xffffffffL));
|
||||
case Triple::arm:
|
||||
resolveArmRelocation(Name, Addr, RE);
|
||||
break;
|
||||
default: llvm_unreachable("Unsupported CPU type!");
|
||||
}
|
||||
}
|
||||
|
||||
void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
|
||||
const ObjectFile &Obj,
|
||||
ObjSectionToIDMap &ObjSectionToID,
|
||||
LocalSymbolMap &Symbols,
|
||||
StubMap &Stubs) {
|
||||
void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
|
||||
// FIXME: deprecated. switch to reassignSectionAddress() instead.
|
||||
//
|
||||
// Actually moving the symbol address requires by-section mapping.
|
||||
assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
|
||||
"Unable to relocate section in by-function JIT allocation model!");
|
||||
|
||||
uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
|
||||
intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
|
||||
RelocationValueRef Value;
|
||||
StringRef TargetName;
|
||||
const SymbolRef &Symbol = Rel.Symbol;
|
||||
Symbol.getName(TargetName);
|
||||
DEBUG(dbgs() << "\t\tRelType: " << RelType
|
||||
<< " Addend: " << Addend
|
||||
<< " TargetName: " << TargetName
|
||||
<< "\n");
|
||||
// First look the symbol in object file symbols.
|
||||
LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
|
||||
if (lsi != Symbols.end()) {
|
||||
Value.SectionID = lsi->second.first;
|
||||
Value.Addend = lsi->second.second;
|
||||
} else {
|
||||
// Second look the symbol in global symbol table.
|
||||
StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
|
||||
if (gsi != SymbolTable.end()) {
|
||||
Value.SectionID = gsi->second.first;
|
||||
Value.Addend = gsi->second.second;
|
||||
} else {
|
||||
SymbolRef::Type SymType;
|
||||
Symbol.getType(SymType);
|
||||
switch (SymType) {
|
||||
case SymbolRef::ST_Debug: {
|
||||
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
|
||||
// and can be changed by another developers. Maybe best way is add
|
||||
// a new symbol type ST_Section to SymbolRef and use it.
|
||||
section_iterator si = Obj.end_sections();
|
||||
Symbol.getSection(si);
|
||||
if (si == Obj.end_sections())
|
||||
llvm_unreachable("Symbol section not found, bad object file format!");
|
||||
DEBUG(dbgs() << "\t\tThis is section symbol\n");
|
||||
Value.SectionID = findOrEmitSection((*si), true, ObjSectionToID);
|
||||
Value.Addend = Addend;
|
||||
break;
|
||||
}
|
||||
case SymbolRef::ST_Unknown: {
|
||||
Value.SymbolName = TargetName.data();
|
||||
Value.Addend = Addend;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
llvm_unreachable("Unresolved symbol type!");
|
||||
break;
|
||||
}
|
||||
}
|
||||
RelocationList &Relocs = Relocations[Name];
|
||||
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
||||
RelocationEntry &RE = Relocs[i];
|
||||
resolveRelocation(Name, Addr, RE);
|
||||
}
|
||||
DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
|
||||
<< " Rel.Offset: " << Rel.Offset
|
||||
<< "\n");
|
||||
if (Arch == Triple::arm &&
|
||||
(RelType == ELF::R_ARM_PC24 ||
|
||||
RelType == ELF::R_ARM_CALL ||
|
||||
RelType == ELF::R_ARM_JUMP24)) {
|
||||
// This is an ARM branch relocation, need to use a stub function.
|
||||
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
|
||||
SectionEntry &Section = Sections[Rel.SectionID];
|
||||
uint8_t *Target = Section.Address + Rel.Offset;
|
||||
}
|
||||
|
||||
// Look up for existing stub.
|
||||
StubMap::const_iterator i = Stubs.find(Value);
|
||||
if (i != Stubs.end()) {
|
||||
resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
|
||||
i->second, RelType, 0);
|
||||
DEBUG(dbgs() << " Stub function found\n");
|
||||
} else {
|
||||
// Create a new stub function.
|
||||
DEBUG(dbgs() << " Create a new stub function\n");
|
||||
Stubs[Value] = Section.StubOffset;
|
||||
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
||||
Section.StubOffset);
|
||||
AddRelocation(Value, Rel.SectionID,
|
||||
StubTargetAddr - Section.Address, ELF::R_ARM_ABS32);
|
||||
resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
|
||||
Section.StubOffset, RelType, 0);
|
||||
Section.StubOffset += getMaxStubSize();
|
||||
}
|
||||
} else
|
||||
AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
|
||||
// Assign an address to a symbol name and resolve all the relocations
|
||||
// associated with it.
|
||||
void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
|
||||
// The address to use for relocation resolution is not
|
||||
// the address of the local section buffer. We must be doing
|
||||
// a remote execution environment of some sort. Re-apply any
|
||||
// relocations referencing this section with the given address.
|
||||
//
|
||||
// Addr is a uint64_t because we can't assume the pointer width
|
||||
// of the target is the same as that of the host. Just use a generic
|
||||
// "big enough" type.
|
||||
assert(0);
|
||||
}
|
||||
|
||||
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
|
||||
|
|
|
@ -21,42 +21,158 @@ using namespace llvm;
|
|||
|
||||
namespace llvm {
|
||||
class RuntimeDyldELF : public RuntimeDyldImpl {
|
||||
protected:
|
||||
void resolveX86_64Relocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend);
|
||||
// For each symbol, keep a list of relocations based on it. Anytime
|
||||
// its address is reassigned (the JIT re-compiled the function, e.g.),
|
||||
// the relocations get re-resolved.
|
||||
struct RelocationEntry {
|
||||
// Function or section this relocation is contained in.
|
||||
std::string Target;
|
||||
// Offset into the target function or section for the relocation.
|
||||
uint32_t Offset;
|
||||
// Relocation type
|
||||
uint32_t Type;
|
||||
// Addend encoded in the instruction itself, if any.
|
||||
int32_t Addend;
|
||||
// Has the relocation been recalcuated as an offset within a function?
|
||||
bool IsFunctionRelative;
|
||||
// Has this relocation been resolved previously?
|
||||
bool isResolved;
|
||||
|
||||
void resolveX86Relocation(uint8_t *LocalAddress,
|
||||
uint32_t FinalAddress,
|
||||
uint32_t Value,
|
||||
uint32_t Type,
|
||||
int32_t Addend);
|
||||
RelocationEntry(StringRef t,
|
||||
uint32_t offset,
|
||||
uint32_t type,
|
||||
int32_t addend,
|
||||
bool isFunctionRelative)
|
||||
: Target(t)
|
||||
, Offset(offset)
|
||||
, Type(type)
|
||||
, Addend(addend)
|
||||
, IsFunctionRelative(isFunctionRelative)
|
||||
, isResolved(false) { }
|
||||
};
|
||||
typedef SmallVector<RelocationEntry, 4> RelocationList;
|
||||
StringMap<RelocationList> Relocations;
|
||||
unsigned Arch;
|
||||
|
||||
void resolveARMRelocation(uint8_t *LocalAddress,
|
||||
uint32_t FinalAddress,
|
||||
uint32_t Value,
|
||||
uint32_t Type,
|
||||
int32_t Addend);
|
||||
void resolveRelocations();
|
||||
|
||||
virtual void resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend);
|
||||
void resolveX86_64Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
|
||||
const ObjectFile &Obj,
|
||||
ObjSectionToIDMap &ObjSectionToID,
|
||||
LocalSymbolMap &Symbols, StubMap &Stubs);
|
||||
void resolveX86Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
void resolveArmRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
void resolveRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
public:
|
||||
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
|
||||
|
||||
bool loadObject(MemoryBuffer *InputBuffer);
|
||||
|
||||
void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
|
||||
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
|
||||
|
||||
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// ELF support for MC-JIT runtime dynamic linker.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_RUNTIME_DYLD_ELF_H
|
||||
#define LLVM_RUNTIME_DYLD_ELF_H
|
||||
|
||||
#include "RuntimeDyldImpl.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
|
||||
namespace llvm {
|
||||
class RuntimeDyldELF : public RuntimeDyldImpl {
|
||||
// For each symbol, keep a list of relocations based on it. Anytime
|
||||
// its address is reassigned (the JIT re-compiled the function, e.g.),
|
||||
// the relocations get re-resolved.
|
||||
struct RelocationEntry {
|
||||
// Function or section this relocation is contained in.
|
||||
std::string Target;
|
||||
// Offset into the target function or section for the relocation.
|
||||
uint32_t Offset;
|
||||
// Relocation type
|
||||
uint32_t Type;
|
||||
// Addend encoded in the instruction itself, if any.
|
||||
int32_t Addend;
|
||||
// Has the relocation been recalcuated as an offset within a function?
|
||||
bool IsFunctionRelative;
|
||||
// Has this relocation been resolved previously?
|
||||
bool isResolved;
|
||||
|
||||
RelocationEntry(StringRef t,
|
||||
uint32_t offset,
|
||||
uint32_t type,
|
||||
int32_t addend,
|
||||
bool isFunctionRelative)
|
||||
: Target(t)
|
||||
, Offset(offset)
|
||||
, Type(type)
|
||||
, Addend(addend)
|
||||
, IsFunctionRelative(isFunctionRelative)
|
||||
, isResolved(false) { }
|
||||
};
|
||||
typedef SmallVector<RelocationEntry, 4> RelocationList;
|
||||
StringMap<RelocationList> Relocations;
|
||||
unsigned Arch;
|
||||
|
||||
void resolveRelocations();
|
||||
|
||||
void resolveX86_64Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
void resolveX86Relocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
void resolveArmRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
void resolveRelocation(StringRef Name,
|
||||
uint8_t *Addr,
|
||||
const RelocationEntry &RE);
|
||||
|
||||
public:
|
||||
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
|
||||
|
||||
bool loadObject(MemoryBuffer *InputBuffer);
|
||||
|
||||
void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
|
||||
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
|
||||
|
||||
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -15,125 +15,45 @@
|
|||
#define LLVM_RUNTIME_DYLD_IMPL_H
|
||||
|
||||
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
||||
#include "llvm/Object/ObjectFile.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/StringMap.h"
|
||||
#include "llvm/ADT/Twine.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
||||
#include "llvm/Support/Memory.h"
|
||||
#include "llvm/Support/MemoryBuffer.h"
|
||||
#include "llvm/Support/system_error.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/ADT/Triple.h"
|
||||
#include <map>
|
||||
#include "llvm/Support/Format.h"
|
||||
|
||||
using namespace llvm;
|
||||
using namespace llvm::object;
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class SectionEntry {
|
||||
public:
|
||||
uint8_t* Address;
|
||||
size_t Size;
|
||||
uint64_t LoadAddress; // For each section, the address it will be
|
||||
// considered to live at for relocations. The same
|
||||
// as the pointer to the above memory block for
|
||||
// hosted JITs.
|
||||
uintptr_t StubOffset; // It's used for architecturies with stub
|
||||
// functions for far relocations like ARM.
|
||||
uintptr_t ObjAddress; // Section address in object file. It's use for
|
||||
// calculate MachO relocation addend
|
||||
SectionEntry(uint8_t* address, size_t size, uintptr_t stubOffset,
|
||||
uintptr_t objAddress)
|
||||
: Address(address), Size(size), LoadAddress((uintptr_t)address),
|
||||
StubOffset(stubOffset), ObjAddress(objAddress) {}
|
||||
};
|
||||
|
||||
class RelocationEntry {
|
||||
public:
|
||||
unsigned SectionID; // Section the relocation is contained in.
|
||||
uintptr_t Offset; // Offset into the section for the relocation.
|
||||
uint32_t Data; // Relocatino data. Including type of relocation
|
||||
// and another flags and parameners from
|
||||
intptr_t Addend; // Addend encoded in the instruction itself, if any,
|
||||
// plus the offset into the source section for
|
||||
// the symbol once the relocation is resolvable.
|
||||
RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
|
||||
: SectionID(id), Offset(offset), Data(data), Addend(addend) {}
|
||||
};
|
||||
|
||||
// Raw relocation data from object file
|
||||
class ObjRelocationInfo {
|
||||
public:
|
||||
unsigned SectionID;
|
||||
uint64_t Offset;
|
||||
SymbolRef Symbol;
|
||||
uint64_t Type;
|
||||
int64_t AdditionalInfo;
|
||||
};
|
||||
|
||||
class RelocationValueRef {
|
||||
public:
|
||||
unsigned SectionID;
|
||||
intptr_t Addend;
|
||||
const char *SymbolName;
|
||||
RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {}
|
||||
|
||||
inline bool operator==(const RelocationValueRef &Other) const {
|
||||
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0;
|
||||
}
|
||||
inline bool operator <(const RelocationValueRef &Other) const {
|
||||
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0;
|
||||
}
|
||||
};
|
||||
|
||||
class RuntimeDyldImpl {
|
||||
protected:
|
||||
unsigned CPUType;
|
||||
unsigned CPUSubtype;
|
||||
|
||||
// The MemoryManager to load objects into.
|
||||
RTDyldMemoryManager *MemMgr;
|
||||
|
||||
// A list of emmitted sections.
|
||||
typedef SmallVector<SectionEntry, 64> SectionList;
|
||||
SectionList Sections;
|
||||
// For each section, we have a MemoryBlock of it's data.
|
||||
// Indexed by SectionID.
|
||||
SmallVector<sys::MemoryBlock, 32> Sections;
|
||||
// For each section, the address it will be considered to live at for
|
||||
// relocations. The same as the pointer to the above memory block for hosted
|
||||
// JITs. Indexed by SectionID.
|
||||
SmallVector<uint64_t, 32> SectionLoadAddress;
|
||||
|
||||
// Keep a map of sections from object file to the SectionID which
|
||||
// references it.
|
||||
typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
|
||||
// Keep a map of starting local address to the SectionID which references it.
|
||||
// Lookup function for when we assign virtual addresses.
|
||||
DenseMap<void *, unsigned> SectionLocalMemToID;
|
||||
|
||||
// Master symbol table. As modules are loaded and external symbols are
|
||||
// resolved, their addresses are stored here as a SectionID/Offset pair.
|
||||
typedef std::pair<unsigned, uintptr_t> SymbolLoc;
|
||||
typedef std::pair<unsigned, uint64_t> SymbolLoc;
|
||||
StringMap<SymbolLoc> SymbolTable;
|
||||
typedef DenseMap<const char*, SymbolLoc> LocalSymbolMap;
|
||||
|
||||
// For each symbol, keep a list of relocations based on it. Anytime
|
||||
// its address is reassigned (the JIT re-compiled the function, e.g.),
|
||||
// the relocations get re-resolved.
|
||||
// The symbol (or section) the relocation is sourced from is the Key
|
||||
// in the relocation list where it's stored.
|
||||
typedef SmallVector<RelocationEntry, 64> RelocationList;
|
||||
// Relocations to sections already loaded. Indexed by SectionID which is the
|
||||
// source of the address. The target where the address will be writen is
|
||||
// SectionID/Offset in the relocation itself.
|
||||
DenseMap<unsigned, RelocationList> Relocations;
|
||||
// Relocations to external symbols that are not yet resolved.
|
||||
// Indexed by symbol name.
|
||||
StringMap<RelocationList> SymbolRelocations;
|
||||
|
||||
typedef std::map<RelocationValueRef, uintptr_t> StubMap;
|
||||
|
||||
Triple::ArchType Arch;
|
||||
|
||||
inline unsigned getMaxStubSize() {
|
||||
if (Arch == Triple::arm || Arch == Triple::thumb)
|
||||
return 8; // 32-bit instruction and 32-bit address
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool HasError;
|
||||
std::string ErrorStr;
|
||||
|
@ -146,62 +66,17 @@ protected:
|
|||
}
|
||||
|
||||
uint8_t *getSectionAddress(unsigned SectionID) {
|
||||
return (uint8_t*)Sections[SectionID].Address;
|
||||
return (uint8_t*)Sections[SectionID].base();
|
||||
}
|
||||
void extractFunction(StringRef Name, uint8_t *StartAddress,
|
||||
uint8_t *EndAddress);
|
||||
|
||||
/// \brief Emits section data from the object file to the MemoryManager.
|
||||
/// \param IsCode if it's true then allocateCodeSection() will be
|
||||
/// used for emmits, else allocateDataSection() will be used.
|
||||
/// \return SectionID.
|
||||
unsigned emitSection(const SectionRef &Section, bool IsCode);
|
||||
|
||||
/// \brief Find Section in LocalSections. If the secton is not found - emit
|
||||
/// it and store in LocalSections.
|
||||
/// \param IsCode if it's true then allocateCodeSection() will be
|
||||
/// used for emmits, else allocateDataSection() will be used.
|
||||
/// \return SectionID.
|
||||
unsigned findOrEmitSection(const SectionRef &Section, bool IsCode,
|
||||
ObjSectionToIDMap &LocalSections);
|
||||
|
||||
/// \brief If Value.SymbolName is NULL then store relocation to the
|
||||
/// Relocations, else store it in the SymbolRelocations.
|
||||
void AddRelocation(const RelocationValueRef &Value, unsigned SectionID,
|
||||
uintptr_t Offset, uint32_t RelType);
|
||||
|
||||
/// \brief Emits long jump instruction to Addr.
|
||||
/// \return Pointer to the memory area for emitting target address.
|
||||
uint8_t* createStubFunction(uint8_t *Addr);
|
||||
|
||||
/// \brief Resolves relocations from Relocs list with address from Value.
|
||||
void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
|
||||
void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
|
||||
|
||||
/// \brief A object file specific relocation resolver
|
||||
/// \param Address Address to apply the relocation action
|
||||
/// \param Value Target symbol address to apply the relocation action
|
||||
/// \param Type object file specific relocation type
|
||||
/// \param Addend A constant addend used to compute the value to be stored
|
||||
/// into the relocatable field
|
||||
virtual void resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend) = 0;
|
||||
|
||||
/// \brief Parses the object file relocation and store it to Relocations
|
||||
/// or SymbolRelocations. Its depend from object file type.
|
||||
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
|
||||
const ObjectFile &Obj,
|
||||
ObjSectionToIDMap &ObjSectionToID,
|
||||
LocalSymbolMap &Symbols, StubMap &Stubs) = 0;
|
||||
|
||||
void resolveSymbols();
|
||||
public:
|
||||
RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
|
||||
|
||||
virtual ~RuntimeDyldImpl();
|
||||
|
||||
bool loadObject(const MemoryBuffer *InputBuffer);
|
||||
virtual bool loadObject(MemoryBuffer *InputBuffer) = 0;
|
||||
|
||||
void *getSymbolAddress(StringRef Name) {
|
||||
// FIXME: Just look up as a function for now. Overly simple of course.
|
||||
|
@ -212,9 +87,9 @@ public:
|
|||
return getSectionAddress(Loc.first) + Loc.second;
|
||||
}
|
||||
|
||||
void resolveRelocations();
|
||||
virtual void resolveRelocations();
|
||||
|
||||
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
|
||||
virtual void reassignSectionAddress(unsigned SectionID, uint64_t Addr) = 0;
|
||||
|
||||
void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress);
|
||||
|
||||
|
@ -228,7 +103,6 @@ public:
|
|||
StringRef getErrorString() { return ErrorStr; }
|
||||
|
||||
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
|
||||
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
|
|
@ -21,55 +21,41 @@ using namespace llvm::object;
|
|||
|
||||
namespace llvm {
|
||||
|
||||
void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend) {
|
||||
bool isPCRel = (Type >> 24) & 1;
|
||||
unsigned MachoType = (Type >> 28) & 0xf;
|
||||
unsigned Size = 1 << ((Type >> 25) & 3);
|
||||
|
||||
DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress)
|
||||
<< " FinalAddress: " << format("%p", FinalAddress)
|
||||
<< " Value: " << format("%p", Value)
|
||||
<< " Addend: " << Addend
|
||||
<< " isPCRel: " << isPCRel
|
||||
<< " MachoType: " << MachoType
|
||||
<< " Size: " << Size
|
||||
<< "\n");
|
||||
|
||||
bool RuntimeDyldMachO::
|
||||
resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
bool isPCRel,
|
||||
unsigned Type,
|
||||
unsigned Size,
|
||||
int64_t Addend) {
|
||||
// This just dispatches to the proper target specific routine.
|
||||
switch (Arch) {
|
||||
switch (CPUType) {
|
||||
default: llvm_unreachable("Unsupported CPU type!");
|
||||
case Triple::x86_64:
|
||||
resolveX86_64Relocation(LocalAddress,
|
||||
FinalAddress,
|
||||
(uintptr_t)Value,
|
||||
isPCRel,
|
||||
MachoType,
|
||||
Size,
|
||||
Addend);
|
||||
break;
|
||||
case Triple::x86:
|
||||
resolveI386Relocation(LocalAddress,
|
||||
case mach::CTM_i386:
|
||||
return resolveI386Relocation(LocalAddress,
|
||||
FinalAddress,
|
||||
(uintptr_t)Value,
|
||||
isPCRel,
|
||||
Type,
|
||||
Size,
|
||||
Addend);
|
||||
break;
|
||||
case Triple::arm: // Fall through.
|
||||
case Triple::thumb:
|
||||
resolveARMRelocation(LocalAddress,
|
||||
FinalAddress,
|
||||
(uintptr_t)Value,
|
||||
isPCRel,
|
||||
MachoType,
|
||||
Size,
|
||||
Addend);
|
||||
break;
|
||||
case mach::CTM_x86_64:
|
||||
return resolveX86_64Relocation(LocalAddress,
|
||||
FinalAddress,
|
||||
(uintptr_t)Value,
|
||||
isPCRel,
|
||||
Type,
|
||||
Size,
|
||||
Addend);
|
||||
case mach::CTM_ARM:
|
||||
return resolveARMRelocation(LocalAddress,
|
||||
FinalAddress,
|
||||
(uintptr_t)Value,
|
||||
isPCRel,
|
||||
Type,
|
||||
Size,
|
||||
Addend);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -204,84 +190,503 @@ resolveARMRelocation(uint8_t *LocalAddress,
|
|||
return false;
|
||||
}
|
||||
|
||||
void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
|
||||
const ObjectFile &Obj,
|
||||
ObjSectionToIDMap &ObjSectionToID,
|
||||
LocalSymbolMap &Symbols,
|
||||
StubMap &Stubs) {
|
||||
bool RuntimeDyldMachO::
|
||||
loadSegment32(const MachOObject *Obj,
|
||||
const MachOObject::LoadCommandInfo *SegmentLCI,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
||||
// FIXME: This should really be combined w/ loadSegment64. Templatized
|
||||
// function on the 32/64 datatypes maybe?
|
||||
InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
|
||||
Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
|
||||
if (!SegmentLC)
|
||||
return Error("unable to load segment load command");
|
||||
|
||||
uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
|
||||
RelocationValueRef Value;
|
||||
SectionEntry &Section = Sections[Rel.SectionID];
|
||||
uint8_t *Target = Section.Address + Rel.Offset;
|
||||
|
||||
bool isExtern = (RelType >> 27) & 1;
|
||||
if (isExtern) {
|
||||
StringRef TargetName;
|
||||
const SymbolRef &Symbol = Rel.Symbol;
|
||||
Symbol.getName(TargetName);
|
||||
// First look the symbol in object file symbols.
|
||||
LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
|
||||
if (lsi != Symbols.end()) {
|
||||
Value.SectionID = lsi->second.first;
|
||||
Value.Addend = lsi->second.second;
|
||||
} else {
|
||||
// Second look the symbol in global symbol table.
|
||||
StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
|
||||
if (gsi != SymbolTable.end()) {
|
||||
Value.SectionID = gsi->second.first;
|
||||
Value.Addend = gsi->second.second;
|
||||
} else
|
||||
Value.SymbolName = TargetName.data();
|
||||
}
|
||||
} else {
|
||||
error_code err;
|
||||
uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
|
||||
section_iterator si = Obj.begin_sections(),
|
||||
se = Obj.end_sections();
|
||||
for (uint8_t i = 1; i < sectionIndex; i++) {
|
||||
error_code err;
|
||||
si.increment(err);
|
||||
if (si == se)
|
||||
break;
|
||||
}
|
||||
assert(si != se && "No section containing relocation!");
|
||||
Value.SectionID = findOrEmitSection(*si, true, ObjSectionToID);
|
||||
Value.Addend = *(const intptr_t *)Target;
|
||||
if (Value.Addend) {
|
||||
// The MachO addend is offset from the current section, we need set it
|
||||
// as offset from destination section
|
||||
Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
|
||||
SmallVector<unsigned, 16> SectionMap;
|
||||
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
|
||||
InMemoryStruct<macho::Section> Sect;
|
||||
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
|
||||
if (!Sect)
|
||||
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
||||
|
||||
// Allocate memory via the MM for the section.
|
||||
uint8_t *Buffer;
|
||||
uint32_t SectionID = Sections.size();
|
||||
if (Sect->Flags == 0x80000400)
|
||||
Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
|
||||
else
|
||||
Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);
|
||||
|
||||
DEBUG(dbgs() << "Loading "
|
||||
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
|
||||
<< " (ID #" << SectionID << ")"
|
||||
<< " '" << Sect->SegmentName << ","
|
||||
<< Sect->Name << "' of size " << Sect->Size
|
||||
<< " to address " << Buffer << ".\n");
|
||||
|
||||
// Copy the payload from the object file into the allocated buffer.
|
||||
uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
|
||||
SegmentLC->FileSize).data();
|
||||
memcpy(Buffer, Base + Sect->Address, Sect->Size);
|
||||
|
||||
// Remember what got allocated for this SectionID.
|
||||
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
|
||||
SectionLocalMemToID[Buffer] = SectionID;
|
||||
|
||||
// By default, the load address of a section is its memory buffer.
|
||||
SectionLoadAddress.push_back((uint64_t)Buffer);
|
||||
|
||||
// Keep a map of object file section numbers to corresponding SectionIDs
|
||||
// while processing the file.
|
||||
SectionMap.push_back(SectionID);
|
||||
}
|
||||
|
||||
// Process the symbol table.
|
||||
SmallVector<StringRef, 64> SymbolNames;
|
||||
processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);
|
||||
|
||||
// Process the relocations for each section we're loading.
|
||||
Relocations.grow(Relocations.size() + SegmentLC->NumSections);
|
||||
Referrers.grow(Referrers.size() + SegmentLC->NumSections);
|
||||
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
|
||||
InMemoryStruct<macho::Section> Sect;
|
||||
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
|
||||
if (!Sect)
|
||||
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
||||
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
|
||||
InMemoryStruct<macho::RelocationEntry> RE;
|
||||
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
|
||||
if (RE->Word0 & macho::RF_Scattered)
|
||||
return Error("NOT YET IMPLEMENTED: scattered relocations.");
|
||||
// Word0 of the relocation is the offset into the section where the
|
||||
// relocation should be applied. We need to translate that into an
|
||||
// offset into a function since that's our atom.
|
||||
uint32_t Offset = RE->Word0;
|
||||
bool isExtern = (RE->Word1 >> 27) & 1;
|
||||
|
||||
// FIXME: Get the relocation addend from the target address.
|
||||
// FIXME: VERY imporant for internal relocations.
|
||||
|
||||
// Figure out the source symbol of the relocation. If isExtern is true,
|
||||
// this relocation references the symbol table, otherwise it references
|
||||
// a section in the same object, numbered from 1 through NumSections
|
||||
// (SectionBases is [0, NumSections-1]).
|
||||
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
|
||||
if (!isExtern) {
|
||||
assert(SourceNum > 0 && "Invalid relocation section number!");
|
||||
unsigned SectionID = SectionMap[SourceNum - 1];
|
||||
unsigned TargetID = SectionMap[SectNum];
|
||||
DEBUG(dbgs() << "Internal relocation at Section #"
|
||||
<< TargetID << " + " << Offset
|
||||
<< " from Section #"
|
||||
<< SectionID << " (Word1: "
|
||||
<< format("0x%x", RE->Word1) << ")\n");
|
||||
|
||||
// Store the relocation information. It will get resolved when
|
||||
// the section addresses are assigned.
|
||||
uint32_t RelocationIndex = Relocations[SectionID].size();
|
||||
Relocations[SectionID].push_back(RelocationEntry(TargetID,
|
||||
Offset,
|
||||
RE->Word1,
|
||||
0 /*Addend*/));
|
||||
Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
|
||||
} else {
|
||||
StringRef SourceName = SymbolNames[SourceNum];
|
||||
|
||||
// Now store the relocation information. Associate it with the source
|
||||
// symbol. Just add it to the unresolved list and let the general
|
||||
// path post-load resolve it if we know where the symbol is.
|
||||
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
|
||||
Offset,
|
||||
RE->Word1,
|
||||
0 /*Addend*/));
|
||||
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
|
||||
<< " from '" << SourceName << "(Word1: "
|
||||
<< format("0x%x", RE->Word1) << ")\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) {
|
||||
// This is an ARM branch relocation, need to use a stub function.
|
||||
// Resolve the addresses of any symbols that were defined in this segment.
|
||||
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
|
||||
resolveSymbol(SymbolNames[i]);
|
||||
|
||||
// Look up for existing stub.
|
||||
StubMap::const_iterator i = Stubs.find(Value);
|
||||
if (i != Stubs.end())
|
||||
resolveRelocation(Target, (uint64_t)Target,
|
||||
(uint64_t)Section.Address + i->second,
|
||||
RelType, 0);
|
||||
else {
|
||||
// Create a new stub function.
|
||||
Stubs[Value] = Section.StubOffset;
|
||||
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
||||
Section.StubOffset);
|
||||
AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address,
|
||||
macho::RIT_Vanilla);
|
||||
resolveRelocation(Target, (uint64_t)Target,
|
||||
(uint64_t)Section.Address + Section.StubOffset,
|
||||
RelType, 0);
|
||||
Section.StubOffset += getMaxStubSize();
|
||||
}
|
||||
} else
|
||||
AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
|
||||
bool RuntimeDyldMachO::
|
||||
loadSegment64(const MachOObject *Obj,
|
||||
const MachOObject::LoadCommandInfo *SegmentLCI,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
||||
InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
|
||||
Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
|
||||
if (!Segment64LC)
|
||||
return Error("unable to load segment load command");
|
||||
|
||||
|
||||
SmallVector<unsigned, 16> SectionMap;
|
||||
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
|
||||
InMemoryStruct<macho::Section64> Sect;
|
||||
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
|
||||
if (!Sect)
|
||||
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
||||
|
||||
// Allocate memory via the MM for the section.
|
||||
uint8_t *Buffer;
|
||||
uint32_t SectionID = Sections.size();
|
||||
unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
|
||||
if (Sect->Flags == 0x80000400)
|
||||
Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
|
||||
else
|
||||
Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);
|
||||
|
||||
DEBUG(dbgs() << "Loading "
|
||||
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
|
||||
<< " (ID #" << SectionID << ")"
|
||||
<< " '" << Sect->SegmentName << ","
|
||||
<< Sect->Name << "' of size " << Sect->Size
|
||||
<< " (align " << Align << ")"
|
||||
<< " to address " << Buffer << ".\n");
|
||||
|
||||
// Copy the payload from the object file into the allocated buffer.
|
||||
uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
|
||||
Segment64LC->FileSize).data();
|
||||
memcpy(Buffer, Base + Sect->Address, Sect->Size);
|
||||
|
||||
// Remember what got allocated for this SectionID.
|
||||
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
|
||||
SectionLocalMemToID[Buffer] = SectionID;
|
||||
|
||||
// By default, the load address of a section is its memory buffer.
|
||||
SectionLoadAddress.push_back((uint64_t)Buffer);
|
||||
|
||||
// Keep a map of object file section numbers to corresponding SectionIDs
|
||||
// while processing the file.
|
||||
SectionMap.push_back(SectionID);
|
||||
}
|
||||
|
||||
// Process the symbol table.
|
||||
SmallVector<StringRef, 64> SymbolNames;
|
||||
processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);
|
||||
|
||||
// Process the relocations for each section we're loading.
|
||||
Relocations.grow(Relocations.size() + Segment64LC->NumSections);
|
||||
Referrers.grow(Referrers.size() + Segment64LC->NumSections);
|
||||
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
|
||||
InMemoryStruct<macho::Section64> Sect;
|
||||
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
|
||||
if (!Sect)
|
||||
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
||||
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
|
||||
InMemoryStruct<macho::RelocationEntry> RE;
|
||||
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
|
||||
if (RE->Word0 & macho::RF_Scattered)
|
||||
return Error("NOT YET IMPLEMENTED: scattered relocations.");
|
||||
// Word0 of the relocation is the offset into the section where the
|
||||
// relocation should be applied. We need to translate that into an
|
||||
// offset into a function since that's our atom.
|
||||
uint32_t Offset = RE->Word0;
|
||||
bool isExtern = (RE->Word1 >> 27) & 1;
|
||||
|
||||
// FIXME: Get the relocation addend from the target address.
|
||||
// FIXME: VERY imporant for internal relocations.
|
||||
|
||||
// Figure out the source symbol of the relocation. If isExtern is true,
|
||||
// this relocation references the symbol table, otherwise it references
|
||||
// a section in the same object, numbered from 1 through NumSections
|
||||
// (SectionBases is [0, NumSections-1]).
|
||||
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
|
||||
if (!isExtern) {
|
||||
assert(SourceNum > 0 && "Invalid relocation section number!");
|
||||
unsigned SectionID = SectionMap[SourceNum - 1];
|
||||
unsigned TargetID = SectionMap[SectNum];
|
||||
DEBUG(dbgs() << "Internal relocation at Section #"
|
||||
<< TargetID << " + " << Offset
|
||||
<< " from Section #"
|
||||
<< SectionID << " (Word1: "
|
||||
<< format("0x%x", RE->Word1) << ")\n");
|
||||
|
||||
// Store the relocation information. It will get resolved when
|
||||
// the section addresses are assigned.
|
||||
uint32_t RelocationIndex = Relocations[SectionID].size();
|
||||
Relocations[SectionID].push_back(RelocationEntry(TargetID,
|
||||
Offset,
|
||||
RE->Word1,
|
||||
0 /*Addend*/));
|
||||
Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
|
||||
} else {
|
||||
StringRef SourceName = SymbolNames[SourceNum];
|
||||
|
||||
// Now store the relocation information. Associate it with the source
|
||||
// symbol. Just add it to the unresolved list and let the general
|
||||
// path post-load resolve it if we know where the symbol is.
|
||||
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
|
||||
Offset,
|
||||
RE->Word1,
|
||||
0 /*Addend*/));
|
||||
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
|
||||
<< " from '" << SourceName << "(Word1: "
|
||||
<< format("0x%x", RE->Word1) << ")\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Resolve the addresses of any symbols that were defined in this segment.
|
||||
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
|
||||
resolveSymbol(SymbolNames[i]);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool RuntimeDyldMachO::
|
||||
processSymbols32(const MachOObject *Obj,
|
||||
SmallVectorImpl<unsigned> &SectionMap,
|
||||
SmallVectorImpl<StringRef> &SymbolNames,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
||||
// FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
|
||||
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
||||
InMemoryStruct<macho::SymbolTableEntry> STE;
|
||||
Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
||||
if (!STE)
|
||||
return Error("unable to read symbol: '" + Twine(i) + "'");
|
||||
// Get the symbol name.
|
||||
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
||||
SymbolNames.push_back(Name);
|
||||
|
||||
// FIXME: Check the symbol type and flags.
|
||||
if (STE->Type != 0xF) // external, defined in this segment.
|
||||
continue;
|
||||
// Flags in the upper nibble we don't care about.
|
||||
if ((STE->Flags & 0xf) != 0x0)
|
||||
continue;
|
||||
|
||||
// Remember the symbol.
|
||||
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
|
||||
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
|
||||
|
||||
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
|
||||
<< (getSectionAddress(SectionID) + STE->Value)
|
||||
<< "\n");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool RuntimeDyldMachO::
|
||||
processSymbols64(const MachOObject *Obj,
|
||||
SmallVectorImpl<unsigned> &SectionMap,
|
||||
SmallVectorImpl<StringRef> &SymbolNames,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
||||
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
||||
InMemoryStruct<macho::Symbol64TableEntry> STE;
|
||||
Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
||||
if (!STE)
|
||||
return Error("unable to read symbol: '" + Twine(i) + "'");
|
||||
// Get the symbol name.
|
||||
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
||||
SymbolNames.push_back(Name);
|
||||
|
||||
// FIXME: Check the symbol type and flags.
|
||||
if (STE->Type != 0xF) // external, defined in this segment.
|
||||
continue;
|
||||
// Flags in the upper nibble we don't care about.
|
||||
if ((STE->Flags & 0xf) != 0x0)
|
||||
continue;
|
||||
|
||||
// Remember the symbol.
|
||||
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
|
||||
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
|
||||
|
||||
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
|
||||
<< (getSectionAddress(SectionID) + STE->Value)
|
||||
<< "\n");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// resolveSymbol - Resolve any relocations to the specified symbol if
|
||||
// we know where it lives.
|
||||
void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
|
||||
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
|
||||
if (Loc == SymbolTable.end())
|
||||
return;
|
||||
|
||||
RelocationList &Relocs = UnresolvedRelocations[Name];
|
||||
DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
|
||||
for (int i = 0, e = Relocs.size(); i != e; ++i) {
|
||||
// Change the relocation to be section relative rather than symbol
|
||||
// relative and move it to the resolved relocation list.
|
||||
RelocationEntry Entry = Relocs[i];
|
||||
Entry.Addend += Loc->second.second;
|
||||
uint32_t RelocationIndex = Relocations[Loc->second.first].size();
|
||||
Relocations[Loc->second.first].push_back(Entry);
|
||||
Referrers[Entry.SectionID].push_back(Referrer(Loc->second.first, RelocationIndex));
|
||||
}
|
||||
// FIXME: Keep a worklist of the relocations we've added so that we can
|
||||
// resolve more selectively later.
|
||||
Relocs.clear();
|
||||
}
|
||||
|
||||
bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
|
||||
// If the linker is in an error state, don't do anything.
|
||||
if (hasError())
|
||||
return true;
|
||||
// Load the Mach-O wrapper object.
|
||||
std::string ErrorStr;
|
||||
OwningPtr<MachOObject> Obj(
|
||||
MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
|
||||
if (!Obj)
|
||||
return Error("unable to load object: '" + ErrorStr + "'");
|
||||
|
||||
// Get the CPU type information from the header.
|
||||
const macho::Header &Header = Obj->getHeader();
|
||||
|
||||
// FIXME: Error checking that the loaded object is compatible with
|
||||
// the system we're running on.
|
||||
CPUType = Header.CPUType;
|
||||
CPUSubtype = Header.CPUSubtype;
|
||||
|
||||
// Validate that the load commands match what we expect.
|
||||
const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
|
||||
*DysymtabLCI = 0;
|
||||
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
|
||||
const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
|
||||
switch (LCI.Command.Type) {
|
||||
case macho::LCT_Segment:
|
||||
case macho::LCT_Segment64:
|
||||
if (SegmentLCI)
|
||||
return Error("unexpected input object (multiple segments)");
|
||||
SegmentLCI = &LCI;
|
||||
break;
|
||||
case macho::LCT_Symtab:
|
||||
if (SymtabLCI)
|
||||
return Error("unexpected input object (multiple symbol tables)");
|
||||
SymtabLCI = &LCI;
|
||||
break;
|
||||
case macho::LCT_Dysymtab:
|
||||
if (DysymtabLCI)
|
||||
return Error("unexpected input object (multiple symbol tables)");
|
||||
DysymtabLCI = &LCI;
|
||||
break;
|
||||
default:
|
||||
return Error("unexpected input object (unexpected load command");
|
||||
}
|
||||
}
|
||||
|
||||
if (!SymtabLCI)
|
||||
return Error("no symbol table found in object");
|
||||
if (!SegmentLCI)
|
||||
return Error("no segments found in object");
|
||||
|
||||
// Read and register the symbol table data.
|
||||
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
|
||||
Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
|
||||
if (!SymtabLC)
|
||||
return Error("unable to load symbol table load command");
|
||||
Obj->RegisterStringTable(*SymtabLC);
|
||||
|
||||
// Read the dynamic link-edit information, if present (not present in static
|
||||
// objects).
|
||||
if (DysymtabLCI) {
|
||||
InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
|
||||
Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
|
||||
if (!DysymtabLC)
|
||||
return Error("unable to load dynamic link-exit load command");
|
||||
|
||||
// FIXME: We don't support anything interesting yet.
|
||||
// if (DysymtabLC->LocalSymbolsIndex != 0)
|
||||
// return Error("NOT YET IMPLEMENTED: local symbol entries");
|
||||
// if (DysymtabLC->ExternalSymbolsIndex != 0)
|
||||
// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
|
||||
// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
|
||||
// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
|
||||
}
|
||||
|
||||
// Load the segment load command.
|
||||
if (SegmentLCI->Command.Type == macho::LCT_Segment) {
|
||||
if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
|
||||
return true;
|
||||
} else {
|
||||
if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
|
||||
return true;
|
||||
}
|
||||
|
||||
// Assign the addresses of the sections from the object so that any
|
||||
// relocations to them get set properly.
|
||||
// FIXME: This is done directly from the client at the moment. We should
|
||||
// default the values to the local storage, at least when the target arch
|
||||
// is the same as the host arch.
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Assign an address to a symbol name and resolve all the relocations
|
||||
// associated with it.
|
||||
void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
|
||||
uint64_t Addr) {
|
||||
// The address to use for relocation resolution is not
|
||||
// the address of the local section buffer. We must be doing
|
||||
// a remote execution environment of some sort. Re-apply any
|
||||
// relocations referencing this section with the given address.
|
||||
//
|
||||
// Addr is a uint64_t because we can't assume the pointer width
|
||||
// of the target is the same as that of the host. Just use a generic
|
||||
// "big enough" type.
|
||||
|
||||
SectionLoadAddress[SectionID] = Addr;
|
||||
|
||||
RelocationList &Relocs = Relocations[SectionID];
|
||||
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
||||
RelocationEntry &RE = Relocs[i];
|
||||
uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
|
||||
uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
|
||||
bool isPCRel = (RE.Data >> 24) & 1;
|
||||
unsigned Type = (RE.Data >> 28) & 0xf;
|
||||
unsigned Size = 1 << ((RE.Data >> 25) & 3);
|
||||
|
||||
DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
|
||||
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
|
||||
<< " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
|
||||
<< "(" << (isPCRel ? "pcrel" : "absolute")
|
||||
<< ", type: " << Type << ", Size: " << Size << ", Addend: "
|
||||
<< RE.Addend << ").\n");
|
||||
|
||||
resolveRelocation(Target,
|
||||
FinalTarget,
|
||||
Addr,
|
||||
isPCRel,
|
||||
Type,
|
||||
Size,
|
||||
RE.Addend);
|
||||
}
|
||||
ReferrerList &Refers = Referrers[SectionID];
|
||||
for (unsigned i = 0, e = Refers.size(); i != e; ++i) {
|
||||
Referrer &R = Refers[i];
|
||||
RelocationEntry &RE = Relocations[R.SectionID][R.Index];
|
||||
uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
|
||||
uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
|
||||
bool isPCRel = (RE.Data >> 24) & 1;
|
||||
unsigned Type = (RE.Data >> 28) & 0xf;
|
||||
unsigned Size = 1 << ((RE.Data >> 25) & 3);
|
||||
|
||||
DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
|
||||
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
|
||||
<< " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
|
||||
<< "(" << (isPCRel ? "pcrel" : "absolute")
|
||||
<< ", type: " << Type << ", Size: " << Size << ", Addend: "
|
||||
<< RE.Addend << ").\n");
|
||||
|
||||
resolveRelocation(Target,
|
||||
FinalTarget,
|
||||
Addr,
|
||||
isPCRel,
|
||||
Type,
|
||||
Size,
|
||||
RE.Addend);
|
||||
}
|
||||
}
|
||||
|
||||
bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
|
||||
StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
|
||||
if (Magic == "\xFE\xED\xFA\xCE") return true;
|
||||
if (Magic == "\xCE\xFA\xED\xFE") return true;
|
||||
|
|
|
@ -25,7 +25,55 @@ using namespace llvm::object;
|
|||
|
||||
namespace llvm {
|
||||
class RuntimeDyldMachO : public RuntimeDyldImpl {
|
||||
protected:
|
||||
|
||||
// For each symbol, keep a list of relocations based on it. Anytime
|
||||
// its address is reassigned (the JIT re-compiled the function, e.g.),
|
||||
// the relocations get re-resolved.
|
||||
// The symbol (or section) the relocation is sourced from is the Key
|
||||
// in the relocation list where it's stored.
|
||||
struct RelocationEntry {
|
||||
unsigned SectionID; // Section the relocation is contained in.
|
||||
uint64_t Offset; // Offset into the section for the relocation.
|
||||
uint32_t Data; // Second word of the raw macho relocation entry.
|
||||
int64_t Addend; // Addend encoded in the instruction itself, if any,
|
||||
// plus the offset into the source section for
|
||||
// the symbol once the relocation is resolvable.
|
||||
|
||||
RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
|
||||
: SectionID(id), Offset(offset), Data(data), Addend(addend) {}
|
||||
};
|
||||
typedef SmallVector<RelocationEntry, 4> RelocationList;
|
||||
|
||||
// For each section, keep a list of referrers in that section that are clients
|
||||
// of relocations in other sections. Whenever a relocation gets created,
|
||||
// create a corresponding referrer. Whenever relocations are re-resolved,
|
||||
// re-resolve the referrers' relocations as well.
|
||||
struct Referrer {
|
||||
unsigned SectionID; // Section whose RelocationList contains the relocation.
|
||||
uint32_t Index; // Index of the RelocatonEntry in that RelocationList.
|
||||
|
||||
Referrer(unsigned id, uint32_t index)
|
||||
: SectionID(id), Index(index) {}
|
||||
};
|
||||
typedef SmallVector<Referrer, 4> ReferrerList;
|
||||
|
||||
// Relocations to sections already loaded. Indexed by SectionID which is the
|
||||
// source of the address. The target where the address will be writen is
|
||||
// SectionID/Offset in the relocation itself.
|
||||
IndexedMap<RelocationList> Relocations;
|
||||
// Referrers corresponding to Relocations.
|
||||
IndexedMap<ReferrerList> Referrers;
|
||||
// Relocations to symbols that are not yet resolved. Must be external
|
||||
// relocations by definition. Indexed by symbol name.
|
||||
StringMap<RelocationList> UnresolvedRelocations;
|
||||
|
||||
bool resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
bool isPCRel,
|
||||
unsigned Type,
|
||||
unsigned Size,
|
||||
int64_t Addend);
|
||||
bool resolveI386Relocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
|
@ -48,21 +96,35 @@ protected:
|
|||
unsigned Size,
|
||||
int64_t Addend);
|
||||
|
||||
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
|
||||
const ObjectFile &Obj,
|
||||
ObjSectionToIDMap &ObjSectionToID,
|
||||
LocalSymbolMap &Symbols, StubMap &Stubs);
|
||||
bool loadSegment32(const MachOObject *Obj,
|
||||
const MachOObject::LoadCommandInfo *SegmentLCI,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
||||
bool loadSegment64(const MachOObject *Obj,
|
||||
const MachOObject::LoadCommandInfo *SegmentLCI,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
||||
bool processSymbols32(const MachOObject *Obj,
|
||||
SmallVectorImpl<unsigned> &SectionMap,
|
||||
SmallVectorImpl<StringRef> &SymbolNames,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
||||
bool processSymbols64(const MachOObject *Obj,
|
||||
SmallVectorImpl<unsigned> &SectionMap,
|
||||
SmallVectorImpl<StringRef> &SymbolNames,
|
||||
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
|
||||
|
||||
void resolveSymbol(StringRef Name);
|
||||
|
||||
public:
|
||||
virtual void resolveRelocation(uint8_t *LocalAddress,
|
||||
uint64_t FinalAddress,
|
||||
uint64_t Value,
|
||||
uint32_t Type,
|
||||
int64_t Addend);
|
||||
|
||||
RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
|
||||
|
||||
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
|
||||
bool loadObject(MemoryBuffer *InputBuffer);
|
||||
|
||||
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
|
||||
|
||||
static bool isKnownFormat(const MemoryBuffer *InputBuffer);
|
||||
|
||||
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
|
||||
return isKnownFormat(InputBuffer);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
|
|
@ -49,8 +49,6 @@ else()
|
|||
set(ENABLE_ASSERTIONS "0")
|
||||
endif()
|
||||
|
||||
set(HOST_OS ${CMAKE_HOST_SYSTEM_NAME})
|
||||
|
||||
configure_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/lit.site.cfg.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg
|
||||
|
|
|
@ -1,37 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
@.LC0 = internal global [10 x i8] c"argc: %d\0A\00" ; <[10 x i8]*> [#uses=1]
|
||||
|
||||
declare i32 @puts(i8*)
|
||||
|
||||
define void @getoptions(i32* %argc) {
|
||||
bb0:
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i32 @printf(i8*, ...)
|
||||
|
||||
define i32 @main(i32 %argc, i8** %argv) {
|
||||
bb0:
|
||||
call i32 (i8*, ...)* @printf( i8* getelementptr ([10 x i8]* @.LC0, i64 0, i64 0), i32 %argc ) ; <i32>:0 [#uses=0]
|
||||
%cast224 = bitcast i8** %argv to i8* ; <i8*> [#uses=1]
|
||||
%local = alloca i8* ; <i8**> [#uses=3]
|
||||
store i8* %cast224, i8** %local
|
||||
%cond226 = icmp sle i32 %argc, 0 ; <i1> [#uses=1]
|
||||
br i1 %cond226, label %bb3, label %bb2
|
||||
bb2: ; preds = %bb2, %bb0
|
||||
%cann-indvar = phi i32 [ 0, %bb0 ], [ %add1-indvar, %bb2 ] ; <i32> [#uses=2]
|
||||
%add1-indvar = add i32 %cann-indvar, 1 ; <i32> [#uses=2]
|
||||
%cann-indvar-idxcast = sext i32 %cann-indvar to i64 ; <i64> [#uses=1]
|
||||
%CT = bitcast i8** %local to i8*** ; <i8***> [#uses=1]
|
||||
%reg115 = load i8*** %CT ; <i8**> [#uses=1]
|
||||
%cast235 = getelementptr i8** %reg115, i64 %cann-indvar-idxcast ; <i8**> [#uses=1]
|
||||
%reg117 = load i8** %cast235 ; <i8*> [#uses=1]
|
||||
%reg236 = call i32 @puts( i8* %reg117 ) ; <i32> [#uses=0]
|
||||
%cond239 = icmp slt i32 %add1-indvar, %argc ; <i1> [#uses=1]
|
||||
br i1 %cond239, label %bb2, label %bb3
|
||||
bb3: ; preds = %bb2, %bb0
|
||||
%cast243 = bitcast i8** %local to i32* ; <i32*> [#uses=1]
|
||||
call void @getoptions( i32* %cast243 )
|
||||
ret i32 0
|
||||
}
|
|
@ -1,13 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @foo(i32 %X, i32 %Y, double %A) {
|
||||
%cond212 = fcmp une double %A, 1.000000e+00 ; <i1> [#uses=1]
|
||||
%cast110 = zext i1 %cond212 to i32 ; <i32> [#uses=1]
|
||||
ret i32 %cast110
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%reg212 = call i32 @foo( i32 0, i32 1, double 1.000000e+00 ) ; <i32> [#uses=1]
|
||||
ret i32 %reg212
|
||||
}
|
||||
|
|
@ -1,20 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
call i32 @mylog( i32 4 ) ; <i32>:1 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
define internal i32 @mylog(i32 %num) {
|
||||
bb0:
|
||||
br label %bb2
|
||||
bb2: ; preds = %bb2, %bb0
|
||||
%reg112 = phi i32 [ 10, %bb2 ], [ 1, %bb0 ] ; <i32> [#uses=1]
|
||||
%cann-indvar = phi i32 [ %cann-indvar, %bb2 ], [ 0, %bb0 ] ; <i32> [#uses=1]
|
||||
%reg114 = add i32 %reg112, 1 ; <i32> [#uses=2]
|
||||
%cond222 = icmp slt i32 %reg114, %num ; <i1> [#uses=1]
|
||||
br i1 %cond222, label %bb2, label %bb3
|
||||
bb3: ; preds = %bb2
|
||||
ret i32 %reg114
|
||||
}
|
||||
|
|
@ -1,12 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
; <label>:0
|
||||
br label %Loop
|
||||
Loop: ; preds = %Loop, %0
|
||||
%X = phi i32 [ 0, %0 ], [ 1, %Loop ] ; <i32> [#uses=1]
|
||||
br i1 true, label %Out, label %Loop
|
||||
Out: ; preds = %Loop
|
||||
ret i32 %X
|
||||
}
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; We were accidentally inverting the signedness of right shifts. Whoops.
|
||||
|
||||
define i32 @main() {
|
||||
%X = ashr i32 -1, 16 ; <i32> [#uses=1]
|
||||
%Y = ashr i32 %X, 16 ; <i32> [#uses=1]
|
||||
%Z = add i32 %Y, 1 ; <i32> [#uses=1]
|
||||
ret i32 %Z
|
||||
}
|
||||
|
|
@ -1,10 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
%X = fadd double 0.000000e+00, 1.000000e+00 ; <double> [#uses=1]
|
||||
%Y = fsub double 0.000000e+00, 1.000000e+00 ; <double> [#uses=2]
|
||||
%Z = fcmp oeq double %X, %Y ; <i1> [#uses=0]
|
||||
fadd double %Y, 0.000000e+00 ; <double>:1 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @bar(i8* %X) {
|
||||
; pointer should be 4 byte aligned!
|
||||
%P = alloca double ; <double*> [#uses=1]
|
||||
%R = ptrtoint double* %P to i32 ; <i32> [#uses=1]
|
||||
%A = and i32 %R, 3 ; <i32> [#uses=1]
|
||||
ret i32 %A
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%SP = alloca i8 ; <i8*> [#uses=1]
|
||||
%X = add i32 0, 0 ; <i32> [#uses=1]
|
||||
alloca i8, i32 %X ; <i8*>:1 [#uses=0]
|
||||
call i32 @bar( i8* %SP ) ; <i32>:2 [#uses=1]
|
||||
ret i32 %2
|
||||
}
|
|
@ -1,19 +0,0 @@
|
|||
; This testcase should return with an exit code of 1.
|
||||
;
|
||||
; RUN: not %lli -use-mcjit %s
|
||||
|
||||
@test = global i64 0 ; <i64*> [#uses=1]
|
||||
|
||||
define internal i64 @test.upgrd.1() {
|
||||
%tmp.0 = load i64* @test ; <i64> [#uses=1]
|
||||
%tmp.1 = add i64 %tmp.0, 1 ; <i64> [#uses=1]
|
||||
ret i64 %tmp.1
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%L = call i64 @test.upgrd.1( ) ; <i64> [#uses=1]
|
||||
%I = trunc i64 %L to i32 ; <i32> [#uses=1]
|
||||
ret i32 %I
|
||||
}
|
||||
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s test
|
||||
|
||||
declare i32 @puts(i8*)
|
||||
|
||||
define i32 @main(i32 %argc.1, i8** %argv.1) {
|
||||
%tmp.5 = getelementptr i8** %argv.1, i64 1 ; <i8**> [#uses=1]
|
||||
%tmp.6 = load i8** %tmp.5 ; <i8*> [#uses=1]
|
||||
%tmp.0 = call i32 @puts( i8* %tmp.6 ) ; <i32> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,15 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
target datalayout = "e-p:32:32"
|
||||
|
||||
define i32 @main() {
|
||||
entry:
|
||||
br label %endif
|
||||
then: ; No predecessors!
|
||||
br label %endif
|
||||
endif: ; preds = %then, %entry
|
||||
%x = phi i32 [ 4, %entry ], [ 27, %then ] ; <i32> [#uses=0]
|
||||
%result = phi i32 [ 32, %then ], [ 0, %entry ] ; <i32> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; Testcase distilled from 256.bzip2.
|
||||
|
||||
target datalayout = "e-p:32:32"
|
||||
|
||||
define i32 @main() {
|
||||
entry:
|
||||
br label %loopentry.0
|
||||
loopentry.0: ; preds = %loopentry.0, %entry
|
||||
%h.0 = phi i32 [ %tmp.2, %loopentry.0 ], [ -1, %entry ] ; <i32> [#uses=1]
|
||||
%tmp.2 = add i32 %h.0, 1 ; <i32> [#uses=3]
|
||||
%tmp.4 = icmp ne i32 %tmp.2, 0 ; <i1> [#uses=1]
|
||||
br i1 %tmp.4, label %loopentry.0, label %loopentry.1
|
||||
loopentry.1: ; preds = %loopentry.0
|
||||
%h.1 = phi i32 [ %tmp.2, %loopentry.0 ] ; <i32> [#uses=1]
|
||||
ret i32 %h.1
|
||||
}
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; Testcase distilled from 256.bzip2.
|
||||
|
||||
target datalayout = "e-p:32:32"
|
||||
|
||||
define i32 @main() {
|
||||
entry:
|
||||
%X = add i32 1, -1 ; <i32> [#uses=3]
|
||||
br label %Next
|
||||
Next: ; preds = %entry
|
||||
%A = phi i32 [ %X, %entry ] ; <i32> [#uses=0]
|
||||
%B = phi i32 [ %X, %entry ] ; <i32> [#uses=0]
|
||||
%C = phi i32 [ %X, %entry ] ; <i32> [#uses=1]
|
||||
ret i32 %C
|
||||
}
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; This testcase failed to work because two variable sized allocas confused the
|
||||
; local register allocator.
|
||||
|
||||
define i32 @main(i32 %X) {
|
||||
%A = alloca i32, i32 %X ; <i32*> [#uses=0]
|
||||
%B = alloca float, i32 %X ; <float*> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
;
|
||||
; Regression Test: EnvironmentTest.ll
|
||||
;
|
||||
; Description:
|
||||
; This is a regression test that verifies that the JIT passes the
|
||||
; environment to the main() function.
|
||||
;
|
||||
|
||||
|
||||
declare i32 @strlen(i8*)
|
||||
|
||||
define i32 @main(i32 %argc.1, i8** %argv.1, i8** %envp.1) {
|
||||
%tmp.2 = load i8** %envp.1 ; <i8*> [#uses=1]
|
||||
%tmp.3 = call i32 @strlen( i8* %tmp.2 ) ; <i32> [#uses=1]
|
||||
%T = icmp eq i32 %tmp.3, 0 ; <i1> [#uses=1]
|
||||
%R = zext i1 %T to i32 ; <i32> [#uses=1]
|
||||
ret i32 %R
|
||||
}
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; This testcase exposes a bug in the local register allocator where it runs out
|
||||
; of registers (due to too many overlapping live ranges), but then attempts to
|
||||
; use the ESP register (which is not allocatable) to hold a value.
|
||||
|
||||
define i32 @main(i32 %A) {
|
||||
; ESP gets used again...
|
||||
%Ap2 = alloca i32, i32 %A ; <i32*> [#uses=11]
|
||||
; Produce lots of overlapping live ranges
|
||||
%B = add i32 %A, 1 ; <i32> [#uses=1]
|
||||
%C = add i32 %A, 2 ; <i32> [#uses=1]
|
||||
%D = add i32 %A, 3 ; <i32> [#uses=1]
|
||||
%E = add i32 %A, 4 ; <i32> [#uses=1]
|
||||
%F = add i32 %A, 5 ; <i32> [#uses=1]
|
||||
%G = add i32 %A, 6 ; <i32> [#uses=1]
|
||||
%H = add i32 %A, 7 ; <i32> [#uses=1]
|
||||
%I = add i32 %A, 8 ; <i32> [#uses=1]
|
||||
%J = add i32 %A, 9 ; <i32> [#uses=1]
|
||||
%K = add i32 %A, 10 ; <i32> [#uses=1]
|
||||
; Uses of all of the values
|
||||
store i32 %A, i32* %Ap2
|
||||
store i32 %B, i32* %Ap2
|
||||
store i32 %C, i32* %Ap2
|
||||
store i32 %D, i32* %Ap2
|
||||
store i32 %E, i32* %Ap2
|
||||
store i32 %F, i32* %Ap2
|
||||
store i32 %G, i32* %Ap2
|
||||
store i32 %H, i32* %Ap2
|
||||
store i32 %I, i32* %Ap2
|
||||
store i32 %J, i32* %Ap2
|
||||
store i32 %K, i32* %Ap2
|
||||
ret i32 0
|
||||
}
|
|
@ -1,23 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
@A = global i32 0 ; <i32*> [#uses=1]
|
||||
|
||||
define i32 @main() {
|
||||
%Ret = call i32 @test( i1 true, i32 0 ) ; <i32> [#uses=1]
|
||||
ret i32 %Ret
|
||||
}
|
||||
|
||||
define i32 @test(i1 %c, i32 %A) {
|
||||
br i1 %c, label %Taken1, label %NotTaken
|
||||
Cont: ; preds = %Taken1, %NotTaken
|
||||
%V = phi i32 [ 0, %NotTaken ], [ sub (i32 ptrtoint (i32* @A to i32), i32 1234), %Taken1 ] ; <i32> [#uses=0]
|
||||
ret i32 0
|
||||
NotTaken: ; preds = %0
|
||||
br label %Cont
|
||||
Taken1: ; preds = %0
|
||||
%B = icmp eq i32 %A, 0 ; <i1> [#uses=1]
|
||||
br i1 %B, label %Cont, label %ExitError
|
||||
ExitError: ; preds = %Taken1
|
||||
ret i32 12
|
||||
}
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
; PR672
|
||||
; RUN: %lli -use-mcjit %s
|
||||
; XFAIL: mcjit-ia32
|
||||
|
||||
define i32 @main() {
|
||||
%f = bitcast i32 (i32, i32*, i32)* @check_tail to i32* ; <i32*> [#uses=1]
|
||||
%res = tail call fastcc i32 @check_tail( i32 10, i32* %f, i32 10 ) ; <i32> [#uses=1]
|
||||
ret i32 %res
|
||||
}
|
||||
|
||||
define fastcc i32 @check_tail(i32 %x, i32* %f, i32 %g) {
|
||||
%tmp1 = icmp sgt i32 %x, 0 ; <i1> [#uses=1]
|
||||
br i1 %tmp1, label %if-then, label %if-else
|
||||
if-then: ; preds = %0
|
||||
%fun_ptr = bitcast i32* %f to i32 (i32, i32*, i32)* ; <i32 (i32, i32*, i32)*> [#uses=1]
|
||||
%arg1 = add i32 %x, -1 ; <i32> [#uses=1]
|
||||
%res = tail call fastcc i32 %fun_ptr( i32 %arg1, i32* %f, i32 %g ) ; <i32> [#uses=1]
|
||||
ret i32 %res
|
||||
if-else: ; preds = %0
|
||||
ret i32 %x
|
||||
}
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
; RUN: %lli -use-mcjit -force-interpreter %s
|
||||
; PR1836
|
||||
|
||||
define i32 @main() {
|
||||
entry:
|
||||
%retval = alloca i32 ; <i32*> [#uses=2]
|
||||
%tmp = alloca i32 ; <i32*> [#uses=2]
|
||||
%x = alloca i75, align 16 ; <i75*> [#uses=1]
|
||||
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
|
||||
store i75 999, i75* %x, align 16
|
||||
store i32 0, i32* %tmp, align 4
|
||||
%tmp1 = load i32* %tmp, align 4 ; <i32> [#uses=1]
|
||||
store i32 %tmp1, i32* %retval, align 4
|
||||
br label %return
|
||||
|
||||
return: ; preds = %entry
|
||||
%retval2 = load i32* %retval ; <i32> [#uses=1]
|
||||
ret i32 %retval2
|
||||
}
|
|
@ -1,59 +0,0 @@
|
|||
; RUN: %lli -use-mcjit -force-interpreter=true %s | grep 1
|
||||
|
||||
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32"
|
||||
target triple = "i686-pc-linux-gnu"
|
||||
@.str = internal constant [10 x i8] c"MSB = %d\0A\00" ; <[10 x i8]*> [#uses=1]
|
||||
|
||||
define i65 @foo(i65 %x) {
|
||||
entry:
|
||||
%x_addr = alloca i65 ; <i65*> [#uses=2]
|
||||
%retval = alloca i65 ; <i65*> [#uses=2]
|
||||
%tmp = alloca i65 ; <i65*> [#uses=2]
|
||||
%"alloca point" = bitcast i65 0 to i65 ; <i65> [#uses=0]
|
||||
store i65 %x, i65* %x_addr
|
||||
%tmp1 = load i65* %x_addr, align 4 ; <i65> [#uses=1]
|
||||
%tmp2 = ashr i65 %tmp1, 65 ; <i65> [#uses=1]
|
||||
store i65 %tmp2, i65* %tmp, align 4
|
||||
%tmp3 = load i65* %tmp, align 4 ; <i65> [#uses=1]
|
||||
store i65 %tmp3, i65* %retval, align 4
|
||||
br label %return
|
||||
|
||||
return: ; preds = %entry
|
||||
%retval4 = load i65* %retval ; <i65> [#uses=1]
|
||||
ret i65 %retval4
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
entry:
|
||||
%retval = alloca i32 ; <i32*> [#uses=1]
|
||||
%iftmp.0 = alloca i32 ; <i32*> [#uses=3]
|
||||
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
|
||||
%tmp = call i65 @foo( i65 -9 ) ; <i65> [#uses=1]
|
||||
%tmp1 = lshr i65 %tmp, 64 ; <i65> [#uses=1]
|
||||
%tmp2 = xor i65 %tmp1, 1 ; <i65> [#uses=1]
|
||||
%tmp3 = and i65 %tmp2, 1 ; <i65> [#uses=1]
|
||||
%tmp34 = trunc i65 %tmp3 to i8 ; <i8> [#uses=1]
|
||||
%toBool = icmp ne i8 %tmp34, 0 ; <i1> [#uses=1]
|
||||
br i1 %toBool, label %cond_true, label %cond_false
|
||||
|
||||
cond_true: ; preds = %entry
|
||||
store i32 0, i32* %iftmp.0, align 4
|
||||
br label %cond_next
|
||||
|
||||
cond_false: ; preds = %entry
|
||||
store i32 1, i32* %iftmp.0, align 4
|
||||
br label %cond_next
|
||||
|
||||
cond_next: ; preds = %cond_false, %cond_true
|
||||
%tmp5 = getelementptr [10 x i8]* @.str, i32 0, i32 0 ; <i8*> [#uses=1]
|
||||
%tmp6 = load i32* %iftmp.0, align 4 ; <i32> [#uses=1]
|
||||
%tmp7 = call i32 (i8*, ...)* @printf( i8* noalias %tmp5, i32 %tmp6 ) nounwind ; <i32> [#uses=0]
|
||||
br label %return
|
||||
|
||||
return: ; preds = %cond_next
|
||||
store i32 0, i32* %retval, align 4
|
||||
%retval8 = load i32* %retval ; <i32> [#uses=1]
|
||||
ret i32 %retval8
|
||||
}
|
||||
|
||||
declare i32 @printf(i8* noalias , ...) nounwind
|
|
@ -1,8 +0,0 @@
|
|||
; RUN: %lli -use-mcjit -force-interpreter=true %s
|
||||
|
||||
define i32 @main() {
|
||||
%a = add i32 0, undef
|
||||
%b = fadd float 0.0, undef
|
||||
%c = fadd double 0.0, undef
|
||||
ret i32 0
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
; RUN: %lli -use-mcjit -force-interpreter=true %s | grep 40091eb8
|
||||
;
|
||||
define i32 @test(double %x) {
|
||||
entry:
|
||||
%x46.i = bitcast double %x to i64
|
||||
%tmp343.i = lshr i64 %x46.i, 32
|
||||
%tmp344.i = trunc i64 %tmp343.i to i32
|
||||
ret i32 %tmp344.i
|
||||
}
|
||||
|
||||
define i32 @main()
|
||||
{
|
||||
%res = call i32 @test(double 3.14)
|
||||
%ptr = getelementptr [4 x i8]* @format, i32 0, i32 0
|
||||
call i32 (i8*,...)* @printf(i8* %ptr, i32 %res)
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
declare i32 @printf(i8*, ...)
|
||||
@format = internal constant [4 x i8] c"%x\0A\00"
|
|
@ -1,11 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
@.LC0 = internal global [12 x i8] c"Hello World\00" ; <[12 x i8]*> [#uses=1]
|
||||
|
||||
declare i32 @puts(i8*)
|
||||
|
||||
define i32 @main() {
|
||||
%reg210 = call i32 @puts( i8* getelementptr ([12 x i8]* @.LC0, i64 0, i64 0) ) ; <i32> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
@X = global i32 7 ; <i32*> [#uses=0]
|
||||
@msg = internal global [13 x i8] c"Hello World\0A\00" ; <[13 x i8]*> [#uses=1]
|
||||
|
||||
declare void @printf([13 x i8]*, ...)
|
||||
|
||||
define void @bar() {
|
||||
call void ([13 x i8]*, ...)* @printf( [13 x i8]* @msg )
|
||||
ret void
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
call void @bar( )
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
config.suffixes = ['.ll', '.c', '.cpp']
|
||||
|
||||
def getRoot(config):
|
||||
if not config.parent:
|
||||
return config
|
||||
return getRoot(config.parent)
|
||||
|
||||
root = getRoot(config)
|
||||
|
||||
targets = set(root.targets_to_build.split())
|
||||
if ('X86' in targets) | ('ARM' in targets):
|
||||
config.unsupported = False
|
||||
else:
|
||||
config.unsupported = True
|
||||
|
||||
if root.host_os in ['Win32', 'Cygwin', 'MingW', 'Windows']:
|
||||
config.unsupported = True
|
|
@ -1,6 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @bar() {
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%r = call i32 @bar( ) ; <i32> [#uses=1]
|
||||
ret i32 %r
|
||||
}
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
%A = add i8 0, 12 ; <i8> [#uses=1]
|
||||
%B = sub i8 %A, 1 ; <i8> [#uses=2]
|
||||
%C = mul i8 %B, %B ; <i8> [#uses=2]
|
||||
%D = sdiv i8 %C, %C ; <i8> [#uses=2]
|
||||
%E = srem i8 %D, %D ; <i8> [#uses=0]
|
||||
%F = udiv i8 5, 6 ; <i8> [#uses=0]
|
||||
%G = urem i8 6, 5 ; <i8> [#uses=0]
|
||||
%A.upgrd.1 = add i16 0, 12 ; <i16> [#uses=1]
|
||||
%B.upgrd.2 = sub i16 %A.upgrd.1, 1 ; <i16> [#uses=2]
|
||||
%C.upgrd.3 = mul i16 %B.upgrd.2, %B.upgrd.2 ; <i16> [#uses=2]
|
||||
%D.upgrd.4 = sdiv i16 %C.upgrd.3, %C.upgrd.3 ; <i16> [#uses=2]
|
||||
%E.upgrd.5 = srem i16 %D.upgrd.4, %D.upgrd.4 ; <i16> [#uses=0]
|
||||
%F.upgrd.6 = udiv i16 5, 6 ; <i16> [#uses=0]
|
||||
%G.upgrd.7 = urem i32 6, 5 ; <i32> [#uses=0]
|
||||
%A.upgrd.8 = add i32 0, 12 ; <i32> [#uses=1]
|
||||
%B.upgrd.9 = sub i32 %A.upgrd.8, 1 ; <i32> [#uses=2]
|
||||
%C.upgrd.10 = mul i32 %B.upgrd.9, %B.upgrd.9 ; <i32> [#uses=2]
|
||||
%D.upgrd.11 = sdiv i32 %C.upgrd.10, %C.upgrd.10 ; <i32> [#uses=2]
|
||||
%E.upgrd.12 = srem i32 %D.upgrd.11, %D.upgrd.11 ; <i32> [#uses=0]
|
||||
%F.upgrd.13 = udiv i32 5, 6 ; <i32> [#uses=0]
|
||||
%G1 = urem i32 6, 5 ; <i32> [#uses=0]
|
||||
%A.upgrd.14 = add i64 0, 12 ; <i64> [#uses=1]
|
||||
%B.upgrd.15 = sub i64 %A.upgrd.14, 1 ; <i64> [#uses=2]
|
||||
%C.upgrd.16 = mul i64 %B.upgrd.15, %B.upgrd.15 ; <i64> [#uses=2]
|
||||
%D.upgrd.17 = sdiv i64 %C.upgrd.16, %C.upgrd.16 ; <i64> [#uses=2]
|
||||
%E.upgrd.18 = srem i64 %D.upgrd.17, %D.upgrd.17 ; <i64> [#uses=0]
|
||||
%F.upgrd.19 = udiv i64 5, 6 ; <i64> [#uses=0]
|
||||
%G.upgrd.20 = urem i64 6, 5 ; <i64> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,12 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; test unconditional branch
|
||||
define i32 @main() {
|
||||
br label %Test
|
||||
Test: ; preds = %Test, %0
|
||||
%X = icmp eq i32 0, 4 ; <i1> [#uses=1]
|
||||
br i1 %X, label %Test, label %Label
|
||||
Label: ; preds = %Test
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,14 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @_Z14func_exit_codev() nounwind uwtable {
|
||||
entry:
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
define i32 @main() nounwind uwtable {
|
||||
entry:
|
||||
%retval = alloca i32, align 4
|
||||
store i32 0, i32* %retval
|
||||
%call = call i32 @_Z14func_exit_codev()
|
||||
ret i32 %call
|
||||
}
|
|
@ -1,21 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
declare void @exit(i32)
|
||||
|
||||
define i32 @test(i8 %C, i16 %S) {
|
||||
%X = trunc i16 %S to i8 ; <i8> [#uses=1]
|
||||
%Y = zext i8 %X to i32 ; <i32> [#uses=1]
|
||||
ret i32 %Y
|
||||
}
|
||||
|
||||
define void @FP(void (i32)* %F) {
|
||||
%X = call i32 @test( i8 123, i16 1024 ) ; <i32> [#uses=1]
|
||||
call void %F( i32 %X )
|
||||
ret void
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
call void @FP( void (i32)* @exit )
|
||||
ret i32 1
|
||||
}
|
||||
|
|
@ -1,109 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @foo() {
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
icmp ne i1 true, false ; <i1>:1 [#uses=0]
|
||||
zext i1 true to i8 ; <i8>:2 [#uses=0]
|
||||
zext i1 true to i8 ; <i8>:3 [#uses=0]
|
||||
zext i1 true to i16 ; <i16>:4 [#uses=0]
|
||||
zext i1 true to i16 ; <i16>:5 [#uses=0]
|
||||
zext i1 true to i32 ; <i32>:6 [#uses=0]
|
||||
zext i1 true to i32 ; <i32>:7 [#uses=0]
|
||||
zext i1 true to i64 ; <i64>:8 [#uses=0]
|
||||
zext i1 true to i64 ; <i64>:9 [#uses=0]
|
||||
uitofp i1 true to float ; <float>:10 [#uses=0]
|
||||
uitofp i1 true to double ; <double>:11 [#uses=0]
|
||||
icmp ne i8 0, 0 ; <i1>:12 [#uses=0]
|
||||
icmp ne i8 1, 0 ; <i1>:13 [#uses=0]
|
||||
bitcast i8 0 to i8 ; <i8>:14 [#uses=0]
|
||||
bitcast i8 -1 to i8 ; <i8>:15 [#uses=0]
|
||||
sext i8 4 to i16 ; <i16>:16 [#uses=0]
|
||||
sext i8 4 to i16 ; <i16>:17 [#uses=0]
|
||||
sext i8 4 to i64 ; <i64>:18 [#uses=0]
|
||||
sext i8 4 to i64 ; <i64>:19 [#uses=0]
|
||||
sitofp i8 4 to float ; <float>:20 [#uses=0]
|
||||
sitofp i8 4 to double ; <double>:21 [#uses=0]
|
||||
icmp ne i8 0, 0 ; <i1>:22 [#uses=0]
|
||||
icmp ne i8 1, 0 ; <i1>:23 [#uses=0]
|
||||
bitcast i8 0 to i8 ; <i8>:24 [#uses=0]
|
||||
bitcast i8 1 to i8 ; <i8>:25 [#uses=0]
|
||||
zext i8 4 to i16 ; <i16>:26 [#uses=0]
|
||||
zext i8 4 to i16 ; <i16>:27 [#uses=0]
|
||||
zext i8 4 to i64 ; <i64>:28 [#uses=0]
|
||||
zext i8 4 to i64 ; <i64>:29 [#uses=0]
|
||||
uitofp i8 0 to float ; <float>:30 [#uses=0]
|
||||
uitofp i8 0 to double ; <double>:31 [#uses=0]
|
||||
icmp ne i16 1, 0 ; <i1>:32 [#uses=0]
|
||||
trunc i16 -1 to i8 ; <i8>:33 [#uses=0]
|
||||
trunc i16 255 to i8 ; <i8>:34 [#uses=0]
|
||||
bitcast i16 0 to i16 ; <i16>:35 [#uses=0]
|
||||
bitcast i16 0 to i16 ; <i16>:36 [#uses=0]
|
||||
sext i16 0 to i64 ; <i64>:37 [#uses=0]
|
||||
sext i16 0 to i64 ; <i64>:38 [#uses=0]
|
||||
sitofp i16 0 to float ; <float>:39 [#uses=0]
|
||||
sitofp i16 0 to double ; <double>:40 [#uses=0]
|
||||
icmp ne i16 1, 0 ; <i1>:41 [#uses=0]
|
||||
trunc i16 1 to i8 ; <i8>:42 [#uses=0]
|
||||
trunc i16 255 to i8 ; <i8>:43 [#uses=0]
|
||||
bitcast i16 0 to i16 ; <i16>:44 [#uses=0]
|
||||
bitcast i16 0 to i16 ; <i16>:45 [#uses=0]
|
||||
zext i16 0 to i64 ; <i64>:46 [#uses=0]
|
||||
zext i16 0 to i64 ; <i64>:47 [#uses=0]
|
||||
uitofp i16 0 to float ; <float>:48 [#uses=0]
|
||||
uitofp i16 0 to double ; <double>:49 [#uses=0]
|
||||
icmp ne i32 6, 0 ; <i1>:50 [#uses=0]
|
||||
trunc i32 -6 to i8 ; <i8>:51 [#uses=0]
|
||||
trunc i32 6 to i8 ; <i8>:52 [#uses=0]
|
||||
trunc i32 6 to i16 ; <i16>:53 [#uses=0]
|
||||
bitcast i32 0 to i32 ; <i32>:54 [#uses=0]
|
||||
sext i32 0 to i64 ; <i64>:55 [#uses=0]
|
||||
sext i32 0 to i64 ; <i64>:56 [#uses=0]
|
||||
sitofp i32 0 to float ; <float>:57 [#uses=0]
|
||||
sitofp i32 0 to double ; <double>:58 [#uses=0]
|
||||
icmp ne i32 6, 0 ; <i1>:59 [#uses=0]
|
||||
trunc i32 7 to i8 ; <i8>:60 [#uses=0]
|
||||
trunc i32 8 to i8 ; <i8>:61 [#uses=0]
|
||||
trunc i32 9 to i16 ; <i16>:62 [#uses=0]
|
||||
bitcast i32 10 to i32 ; <i32>:63 [#uses=0]
|
||||
zext i32 0 to i64 ; <i64>:64 [#uses=0]
|
||||
zext i32 0 to i64 ; <i64>:65 [#uses=0]
|
||||
uitofp i32 0 to float ; <float>:66 [#uses=0]
|
||||
uitofp i32 0 to double ; <double>:67 [#uses=0]
|
||||
icmp ne i64 0, 0 ; <i1>:68 [#uses=0]
|
||||
trunc i64 0 to i8 ; <i8>:69 [#uses=0]
|
||||
trunc i64 0 to i8 ; <i8>:70 [#uses=0]
|
||||
trunc i64 0 to i16 ; <i16>:71 [#uses=0]
|
||||
trunc i64 0 to i16 ; <i16>:72 [#uses=0]
|
||||
trunc i64 0 to i32 ; <i32>:73 [#uses=0]
|
||||
trunc i64 0 to i32 ; <i32>:74 [#uses=0]
|
||||
bitcast i64 0 to i64 ; <i64>:75 [#uses=0]
|
||||
bitcast i64 0 to i64 ; <i64>:76 [#uses=0]
|
||||
sitofp i64 0 to float ; <float>:77 [#uses=0]
|
||||
sitofp i64 0 to double ; <double>:78 [#uses=0]
|
||||
icmp ne i64 1, 0 ; <i1>:79 [#uses=0]
|
||||
trunc i64 1 to i8 ; <i8>:80 [#uses=0]
|
||||
trunc i64 1 to i8 ; <i8>:81 [#uses=0]
|
||||
trunc i64 1 to i16 ; <i16>:82 [#uses=0]
|
||||
trunc i64 1 to i16 ; <i16>:83 [#uses=0]
|
||||
trunc i64 1 to i32 ; <i32>:84 [#uses=0]
|
||||
trunc i64 1 to i32 ; <i32>:85 [#uses=0]
|
||||
bitcast i64 1 to i64 ; <i64>:86 [#uses=0]
|
||||
bitcast i64 1 to i64 ; <i64>:87 [#uses=0]
|
||||
uitofp i64 1 to float ; <float>:88 [#uses=0]
|
||||
uitofp i64 0 to double ; <double>:89 [#uses=0]
|
||||
bitcast float 0.000000e+00 to float ; <float>:90 [#uses=0]
|
||||
fpext float 0.000000e+00 to double ; <double>:91 [#uses=0]
|
||||
fptosi double 0.000000e+00 to i8 ; <i8>:92 [#uses=0]
|
||||
fptoui double 0.000000e+00 to i8 ; <i8>:93 [#uses=0]
|
||||
fptosi double 0.000000e+00 to i16 ; <i16>:94 [#uses=0]
|
||||
fptoui double 0.000000e+00 to i16 ; <i16>:95 [#uses=0]
|
||||
fptosi double 0.000000e+00 to i32 ; <i32>:96 [#uses=0]
|
||||
fptoui double 0.000000e+00 to i32 ; <i32>:97 [#uses=0]
|
||||
fptosi double 0.000000e+00 to i64 ; <i64>:98 [#uses=0]
|
||||
fptrunc double 0.000000e+00 to float ; <float>:99 [#uses=0]
|
||||
bitcast double 0.000000e+00 to double ; <double>:100 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
|
@ -1,12 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; This tests to make sure that we can evaluate weird constant expressions
|
||||
|
||||
@A = global i32 5 ; <i32*> [#uses=1]
|
||||
@B = global i32 6 ; <i32*> [#uses=1]
|
||||
|
||||
define i32 @main() {
|
||||
%A = or i1 false, icmp slt (i32* @A, i32* @B) ; <i1> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define double @test(double* %DP, double %Arg) {
|
||||
%D = load double* %DP ; <double> [#uses=1]
|
||||
%V = fadd double %D, 1.000000e+00 ; <double> [#uses=2]
|
||||
%W = fsub double %V, %V ; <double> [#uses=3]
|
||||
%X = fmul double %W, %W ; <double> [#uses=2]
|
||||
%Y = fdiv double %X, %X ; <double> [#uses=2]
|
||||
%Q = fadd double %Y, %Arg ; <double> [#uses=1]
|
||||
%R = bitcast double %Q to double ; <double> [#uses=1]
|
||||
store double %Q, double* %DP
|
||||
ret double %Y
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%X = alloca double ; <double*> [#uses=2]
|
||||
store double 0.000000e+00, double* %X
|
||||
call double @test( double* %X, double 2.000000e+00 ) ; <double>:1 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,23 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define double @test(double* %DP, double %Arg) {
|
||||
%D = load double* %DP ; <double> [#uses=1]
|
||||
%V = fadd double %D, 1.000000e+00 ; <double> [#uses=2]
|
||||
%W = fsub double %V, %V ; <double> [#uses=3]
|
||||
%X = fmul double %W, %W ; <double> [#uses=2]
|
||||
%Y = fdiv double %X, %X ; <double> [#uses=2]
|
||||
%Z = frem double %Y, %Y ; <double> [#uses=3]
|
||||
%Z1 = fdiv double %Z, %W ; <double> [#uses=0]
|
||||
%Q = fadd double %Z, %Arg ; <double> [#uses=1]
|
||||
%R = bitcast double %Q to double ; <double> [#uses=1]
|
||||
store double %R, double* %DP
|
||||
ret double %Z
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%X = alloca double ; <double*> [#uses=2]
|
||||
store double 0.000000e+00, double* %X
|
||||
call double @test( double* %X, double 2.000000e+00 ) ; <double>:1 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
@count = global i32 1, align 4
|
||||
|
||||
define i32 @main() nounwind uwtable {
|
||||
entry:
|
||||
%retval = alloca i32, align 4
|
||||
%i = alloca i32, align 4
|
||||
store i32 0, i32* %retval
|
||||
store i32 0, i32* %i, align 4
|
||||
br label %for.cond
|
||||
|
||||
for.cond: ; preds = %for.inc, %entry
|
||||
%0 = load i32* %i, align 4
|
||||
%cmp = icmp slt i32 %0, 49
|
||||
br i1 %cmp, label %for.body, label %for.end
|
||||
|
||||
for.body: ; preds = %for.cond
|
||||
%1 = load i32* @count, align 4
|
||||
%inc = add nsw i32 %1, 1
|
||||
store i32 %inc, i32* @count, align 4
|
||||
br label %for.inc
|
||||
|
||||
for.inc: ; preds = %for.body
|
||||
%2 = load i32* %i, align 4
|
||||
%inc1 = add nsw i32 %2, 1
|
||||
store i32 %inc1, i32* %i, align 4
|
||||
br label %for.cond
|
||||
|
||||
for.end: ; preds = %for.cond
|
||||
%3 = load i32* @count, align 4
|
||||
%sub = sub nsw i32 %3, 50
|
||||
ret i32 %sub
|
||||
}
|
|
@ -1,31 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define void @test(i8* %P, i16* %P.upgrd.1, i32* %P.upgrd.2, i64* %P.upgrd.3) {
|
||||
%V = load i8* %P ; <i8> [#uses=1]
|
||||
store i8 %V, i8* %P
|
||||
%V.upgrd.4 = load i16* %P.upgrd.1 ; <i16> [#uses=1]
|
||||
store i16 %V.upgrd.4, i16* %P.upgrd.1
|
||||
%V.upgrd.5 = load i32* %P.upgrd.2 ; <i32> [#uses=1]
|
||||
store i32 %V.upgrd.5, i32* %P.upgrd.2
|
||||
%V.upgrd.6 = load i64* %P.upgrd.3 ; <i64> [#uses=1]
|
||||
store i64 %V.upgrd.6, i64* %P.upgrd.3
|
||||
ret void
|
||||
}
|
||||
|
||||
define i32 @varalloca(i32 %Size) {
|
||||
;; Variable sized alloca
|
||||
%X = alloca i32, i32 %Size ; <i32*> [#uses=2]
|
||||
store i32 %Size, i32* %X
|
||||
%Y = load i32* %X ; <i32> [#uses=1]
|
||||
ret i32 %Y
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
%A = alloca i8 ; <i8*> [#uses=1]
|
||||
%B = alloca i16 ; <i16*> [#uses=1]
|
||||
%C = alloca i32 ; <i32*> [#uses=1]
|
||||
%D = alloca i64 ; <i64*> [#uses=1]
|
||||
call void @test( i8* %A, i16* %B, i32* %C, i64* %D )
|
||||
call i32 @varalloca( i32 7 ) ; <i32>:1 [#uses=0]
|
||||
ret i32 0
|
||||
}
|
|
@ -1,34 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() nounwind uwtable {
|
||||
entry:
|
||||
%retval = alloca i32, align 4
|
||||
%count = alloca i32, align 4
|
||||
%i = alloca i32, align 4
|
||||
store i32 0, i32* %retval
|
||||
store i32 0, i32* %count, align 4
|
||||
store i32 0, i32* %i, align 4
|
||||
br label %for.cond
|
||||
|
||||
for.cond: ; preds = %for.inc, %entry
|
||||
%0 = load i32* %i, align 4
|
||||
%cmp = icmp slt i32 %0, 50
|
||||
br i1 %cmp, label %for.body, label %for.end
|
||||
|
||||
for.body: ; preds = %for.cond
|
||||
%1 = load i32* %count, align 4
|
||||
%inc = add nsw i32 %1, 1
|
||||
store i32 %inc, i32* %count, align 4
|
||||
br label %for.inc
|
||||
|
||||
for.inc: ; preds = %for.body
|
||||
%2 = load i32* %i, align 4
|
||||
%inc1 = add nsw i32 %2, 1
|
||||
store i32 %inc1, i32* %i, align 4
|
||||
br label %for.cond
|
||||
|
||||
for.end: ; preds = %for.cond
|
||||
%3 = load i32* %count, align 4
|
||||
%sub = sub nsw i32 %3, 50
|
||||
ret i32 %sub
|
||||
}
|
|
@ -1,18 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
%A = and i8 4, 8 ; <i8> [#uses=2]
|
||||
%B = or i8 %A, 7 ; <i8> [#uses=1]
|
||||
%C = xor i8 %B, %A ; <i8> [#uses=0]
|
||||
%A.upgrd.1 = and i16 4, 8 ; <i16> [#uses=2]
|
||||
%B.upgrd.2 = or i16 %A.upgrd.1, 7 ; <i16> [#uses=1]
|
||||
%C.upgrd.3 = xor i16 %B.upgrd.2, %A.upgrd.1 ; <i16> [#uses=0]
|
||||
%A.upgrd.4 = and i32 4, 8 ; <i32> [#uses=2]
|
||||
%B.upgrd.5 = or i32 %A.upgrd.4, 7 ; <i32> [#uses=1]
|
||||
%C.upgrd.6 = xor i32 %B.upgrd.5, %A.upgrd.4 ; <i32> [#uses=0]
|
||||
%A.upgrd.7 = and i64 4, 8 ; <i64> [#uses=2]
|
||||
%B.upgrd.8 = or i64 %A.upgrd.7, 7 ; <i64> [#uses=1]
|
||||
%C.upgrd.9 = xor i64 %B.upgrd.8, %A.upgrd.7 ; <i64> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,14 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
; <label>:0
|
||||
br label %Loop
|
||||
Loop: ; preds = %Loop, %0
|
||||
%I = phi i32 [ 0, %0 ], [ %i2, %Loop ] ; <i32> [#uses=1]
|
||||
%i2 = add i32 %I, 1 ; <i32> [#uses=2]
|
||||
%C = icmp eq i32 %i2, 10 ; <i1> [#uses=1]
|
||||
br i1 %C, label %Out, label %Loop
|
||||
Out: ; preds = %Loop
|
||||
ret i32 0
|
||||
}
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; test phi node
|
||||
@Y = global i32 6 ; <i32*> [#uses=1]
|
||||
|
||||
define void @blah(i32* %X) {
|
||||
; <label>:0
|
||||
br label %T
|
||||
T: ; preds = %Dead, %0
|
||||
phi i32* [ %X, %0 ], [ @Y, %Dead ] ; <i32*>:1 [#uses=0]
|
||||
ret void
|
||||
Dead: ; No predecessors!
|
||||
br label %T
|
||||
}
|
||||
|
||||
define i32 @test(i1 %C) {
|
||||
; <label>:0
|
||||
br i1 %C, label %T, label %T
|
||||
T: ; preds = %0, %0
|
||||
%X = phi i32 [ 123, %0 ], [ 123, %0 ] ; <i32> [#uses=1]
|
||||
ret i32 %X
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
; <label>:0
|
||||
br label %Test
|
||||
Test: ; preds = %Dead, %0
|
||||
%X = phi i32 [ 0, %0 ], [ %Y, %Dead ] ; <i32> [#uses=1]
|
||||
ret i32 %X
|
||||
Dead: ; No predecessors!
|
||||
%Y = ashr i32 12, 4 ; <i32> [#uses=1]
|
||||
br label %Test
|
||||
}
|
||||
|
|
@ -1,46 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
; test return instructions
|
||||
define void @test1() {
|
||||
ret void
|
||||
}
|
||||
|
||||
define i8 @test2() {
|
||||
ret i8 1
|
||||
}
|
||||
|
||||
define i8 @test3() {
|
||||
ret i8 1
|
||||
}
|
||||
|
||||
define i16 @test4() {
|
||||
ret i16 -1
|
||||
}
|
||||
|
||||
define i16 @test5() {
|
||||
ret i16 -1
|
||||
}
|
||||
|
||||
define i32 @main() {
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
define i32 @test6() {
|
||||
ret i32 4
|
||||
}
|
||||
|
||||
define i64 @test7() {
|
||||
ret i64 0
|
||||
}
|
||||
|
||||
define i64 @test8() {
|
||||
ret i64 0
|
||||
}
|
||||
|
||||
define float @test9() {
|
||||
ret float 1.000000e+00
|
||||
}
|
||||
|
||||
define double @test10() {
|
||||
ret double 2.000000e+00
|
||||
}
|
|
@ -1,8 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() nounwind uwtable {
|
||||
entry:
|
||||
%retval = alloca i32, align 4
|
||||
store i32 0, i32* %retval
|
||||
ret i32 0
|
||||
}
|
|
@ -1,24 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
|
||||
define i32 @main() {
|
||||
%double1 = fadd double 0.000000e+00, 0.000000e+00 ; <double> [#uses=6]
|
||||
%double2 = fadd double 0.000000e+00, 0.000000e+00 ; <double> [#uses=6]
|
||||
%float1 = fadd float 0.000000e+00, 0.000000e+00 ; <float> [#uses=6]
|
||||
%float2 = fadd float 0.000000e+00, 0.000000e+00 ; <float> [#uses=6]
|
||||
%test49 = fcmp oeq float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test50 = fcmp oge float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test51 = fcmp ogt float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test52 = fcmp ole float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test53 = fcmp olt float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test54 = fcmp une float %float1, %float2 ; <i1> [#uses=0]
|
||||
%test55 = fcmp oeq double %double1, %double2 ; <i1> [#uses=0]
|
||||
%test56 = fcmp oge double %double1, %double2 ; <i1> [#uses=0]
|
||||
%test57 = fcmp ogt double %double1, %double2 ; <i1> [#uses=0]
|
||||
%test58 = fcmp ole double %double1, %double2 ; <i1> [#uses=0]
|
||||
%test59 = fcmp olt double %double1, %double2 ; <i1> [#uses=0]
|
||||
%test60 = fcmp une double %double1, %double2 ; <i1> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
|
|
@ -1,69 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
%int1 = add i32 0, 0 ; <i32> [#uses=6]
|
||||
%int2 = add i32 0, 0 ; <i32> [#uses=6]
|
||||
%long1 = add i64 0, 0 ; <i64> [#uses=6]
|
||||
%long2 = add i64 0, 0 ; <i64> [#uses=6]
|
||||
%sbyte1 = add i8 0, 0 ; <i8> [#uses=6]
|
||||
%sbyte2 = add i8 0, 0 ; <i8> [#uses=6]
|
||||
%short1 = add i16 0, 0 ; <i16> [#uses=6]
|
||||
%short2 = add i16 0, 0 ; <i16> [#uses=6]
|
||||
%ubyte1 = add i8 0, 0 ; <i8> [#uses=6]
|
||||
%ubyte2 = add i8 0, 0 ; <i8> [#uses=6]
|
||||
%uint1 = add i32 0, 0 ; <i32> [#uses=6]
|
||||
%uint2 = add i32 0, 0 ; <i32> [#uses=6]
|
||||
%ulong1 = add i64 0, 0 ; <i64> [#uses=6]
|
||||
%ulong2 = add i64 0, 0 ; <i64> [#uses=6]
|
||||
%ushort1 = add i16 0, 0 ; <i16> [#uses=6]
|
||||
%ushort2 = add i16 0, 0 ; <i16> [#uses=6]
|
||||
%test1 = icmp eq i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test2 = icmp uge i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test3 = icmp ugt i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test4 = icmp ule i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test5 = icmp ult i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test6 = icmp ne i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
|
||||
%test7 = icmp eq i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test8 = icmp uge i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test9 = icmp ugt i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test10 = icmp ule i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test11 = icmp ult i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test12 = icmp ne i16 %ushort1, %ushort2 ; <i1> [#uses=0]
|
||||
%test13 = icmp eq i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test14 = icmp uge i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test15 = icmp ugt i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test16 = icmp ule i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test17 = icmp ult i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test18 = icmp ne i32 %uint1, %uint2 ; <i1> [#uses=0]
|
||||
%test19 = icmp eq i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test20 = icmp uge i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test21 = icmp ugt i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test22 = icmp ule i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test23 = icmp ult i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test24 = icmp ne i64 %ulong1, %ulong2 ; <i1> [#uses=0]
|
||||
%test25 = icmp eq i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test26 = icmp sge i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test27 = icmp sgt i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test28 = icmp sle i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test29 = icmp slt i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test30 = icmp ne i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
|
||||
%test31 = icmp eq i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test32 = icmp sge i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test33 = icmp sgt i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test34 = icmp sle i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test35 = icmp slt i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test36 = icmp ne i16 %short1, %short2 ; <i1> [#uses=0]
|
||||
%test37 = icmp eq i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test38 = icmp sge i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test39 = icmp sgt i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test40 = icmp sle i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test41 = icmp slt i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test42 = icmp ne i32 %int1, %int2 ; <i1> [#uses=0]
|
||||
%test43 = icmp eq i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
%test44 = icmp sge i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
%test45 = icmp sgt i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
%test46 = icmp sle i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
%test47 = icmp slt i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
%test48 = icmp ne i64 %long1, %long2 ; <i1> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
|
@ -1,32 +0,0 @@
|
|||
; RUN: %lli -use-mcjit %s > /dev/null
|
||||
|
||||
define i32 @main() {
|
||||
%shamt = add i8 0, 1 ; <i8> [#uses=8]
|
||||
%shift.upgrd.1 = zext i8 %shamt to i32 ; <i32> [#uses=1]
|
||||
%t1.s = shl i32 1, %shift.upgrd.1 ; <i32> [#uses=0]
|
||||
%t2.s = shl i32 1, 4 ; <i32> [#uses=0]
|
||||
%shift.upgrd.2 = zext i8 %shamt to i32 ; <i32> [#uses=1]
|
||||
%t1 = shl i32 1, %shift.upgrd.2 ; <i32> [#uses=0]
|
||||
%t2 = shl i32 1, 5 ; <i32> [#uses=0]
|
||||
%t2.s.upgrd.3 = shl i64 1, 4 ; <i64> [#uses=0]
|
||||
%t2.upgrd.4 = shl i64 1, 5 ; <i64> [#uses=0]
|
||||
%shift.upgrd.5 = zext i8 %shamt to i32 ; <i32> [#uses=1]
|
||||
%tr1.s = ashr i32 1, %shift.upgrd.5 ; <i32> [#uses=0]
|
||||
%tr2.s = ashr i32 1, 4 ; <i32> [#uses=0]
|
||||
%shift.upgrd.6 = zext i8 %shamt to i32 ; <i32> [#uses=1]
|
||||
%tr1 = lshr i32 1, %shift.upgrd.6 ; <i32> [#uses=0]
|
||||
%tr2 = lshr i32 1, 5 ; <i32> [#uses=0]
|
||||
%tr1.l = ashr i64 1, 4 ; <i64> [#uses=0]
|
||||
%shift.upgrd.7 = zext i8 %shamt to i64 ; <i64> [#uses=1]
|
||||
%tr2.l = ashr i64 1, %shift.upgrd.7 ; <i64> [#uses=0]
|
||||
%tr3.l = shl i64 1, 4 ; <i64> [#uses=0]
|
||||
%shift.upgrd.8 = zext i8 %shamt to i64 ; <i64> [#uses=1]
|
||||
%tr4.l = shl i64 1, %shift.upgrd.8 ; <i64> [#uses=0]
|
||||
%tr1.u = lshr i64 1, 5 ; <i64> [#uses=0]
|
||||
%shift.upgrd.9 = zext i8 %shamt to i64 ; <i64> [#uses=1]
|
||||
%tr2.u = lshr i64 1, %shift.upgrd.9 ; <i64> [#uses=0]
|
||||
%tr3.u = shl i64 1, 5 ; <i64> [#uses=0]
|
||||
%shift.upgrd.10 = zext i8 %shamt to i64 ; <i64> [#uses=1]
|
||||
%tr4.u = shl i64 1, %shift.upgrd.10 ; <i64> [#uses=0]
|
||||
ret i32 0
|
||||
}
|
|
@ -171,7 +171,6 @@ lit.site.cfg: site.exp
|
|||
@$(ECHOPATH) s=@ENABLE_ASSERTIONS@=$(ENABLE_ASSERTIONS)=g >> lit.tmp
|
||||
@$(ECHOPATH) s=@TARGETS_TO_BUILD@=$(TARGETS_TO_BUILD)=g >> lit.tmp
|
||||
@$(ECHOPATH) s=@LLVM_BINDINGS@=$(BINDINGS_TO_BUILD)=g >> lit.tmp
|
||||
@$(ECHOPATH) s=@HOST_OS@=$(HOST_OS)=g >> lit.tmp
|
||||
@sed -f lit.tmp $(PROJ_SRC_DIR)/lit.site.cfg.in > $@
|
||||
@-rm -f lit.tmp
|
||||
|
||||
|
@ -185,6 +184,5 @@ Unit/lit.site.cfg: $(PROJ_OBJ_DIR)/Unit/.dir FORCE
|
|||
@$(ECHOPATH) s=@ENABLE_SHARED@=$(ENABLE_SHARED)=g >> unit.tmp
|
||||
@$(ECHOPATH) s=@SHLIBDIR@=$(SharedLibDir)=g >> unit.tmp
|
||||
@$(ECHOPATH) s=@SHLIBPATH_VAR@=$(SHLIBPATH_VAR)=g >> unit.tmp
|
||||
@$(ECHOPATH) s=@HOST_OS@=$(HOST_OS)=g >> unit.tmp
|
||||
@sed -f unit.tmp $(PROJ_SRC_DIR)/Unit/lit.site.cfg.in > $@
|
||||
@-rm -f unit.tmp
|
||||
|
|
|
@ -9,7 +9,6 @@ config.enable_shared = @ENABLE_SHARED@
|
|||
config.enable_assertions = @ENABLE_ASSERTIONS@
|
||||
config.targets_to_build = "@TARGETS_TO_BUILD@"
|
||||
config.llvm_bindings = "@LLVM_BINDINGS@"
|
||||
config.host_os = "@HOST_OS@"
|
||||
|
||||
# Support substitution of the tools_dir with user parameters. This is
|
||||
# used when we can't determine the tool dir at configuration time.
|
||||
|
|
|
@ -58,6 +58,10 @@ public:
|
|||
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
|
||||
unsigned SectionID);
|
||||
|
||||
uint8_t *startFunctionBody(const char *Name, uintptr_t &Size);
|
||||
void endFunctionBody(const char *Name, uint8_t *FunctionStart,
|
||||
uint8_t *FunctionEnd);
|
||||
|
||||
virtual void *getPointerToNamedFunction(const std::string &Name,
|
||||
bool AbortOnFailure = true) {
|
||||
return 0;
|
||||
|
@ -77,6 +81,18 @@ uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
|
|||
return (uint8_t*)sys::Memory::AllocateRWX(Size, 0, 0).base();
|
||||
}
|
||||
|
||||
uint8_t *TrivialMemoryManager::startFunctionBody(const char *Name,
|
||||
uintptr_t &Size) {
|
||||
return (uint8_t*)sys::Memory::AllocateRWX(Size, 0, 0).base();
|
||||
}
|
||||
|
||||
void TrivialMemoryManager::endFunctionBody(const char *Name,
|
||||
uint8_t *FunctionStart,
|
||||
uint8_t *FunctionEnd) {
|
||||
uintptr_t Size = FunctionEnd - FunctionStart + 1;
|
||||
FunctionMemory.push_back(sys::MemoryBlock(FunctionStart, Size));
|
||||
}
|
||||
|
||||
static const char *ProgramName;
|
||||
|
||||
static void Message(const char *Type, const Twine &Msg) {
|
||||
|
|
Loading…
Reference in New Issue