forked from OSchip/llvm-project
InstCombine: Refactor fmul/fdiv combines to handle vectors.
llvm-svn: 199598
This commit is contained in:
parent
c28a9a2c33
commit
76b15d04ff
|
@ -116,7 +116,7 @@ public:
|
|||
Instruction *visitSub(BinaryOperator &I);
|
||||
Instruction *visitFSub(BinaryOperator &I);
|
||||
Instruction *visitMul(BinaryOperator &I);
|
||||
Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
|
||||
Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
|
||||
Instruction *InsertBefore);
|
||||
Instruction *visitFMul(BinaryOperator &I);
|
||||
Instruction *visitURem(BinaryOperator &I);
|
||||
|
|
|
@ -313,16 +313,41 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
|
|||
if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
|
||||
return;
|
||||
|
||||
ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
|
||||
if (CFP && CFP->isExactlyValue(0.5)) {
|
||||
if (match(I->getOperand(0), m_SpecificFP(0.5)))
|
||||
Y = I->getOperand(1);
|
||||
return;
|
||||
}
|
||||
CFP = dyn_cast<ConstantFP>(I->getOperand(1));
|
||||
if (CFP && CFP->isExactlyValue(0.5))
|
||||
else if (match(I->getOperand(1), m_SpecificFP(0.5)))
|
||||
Y = I->getOperand(0);
|
||||
}
|
||||
|
||||
static bool isFiniteNonZeroFp(Constant *C) {
|
||||
if (C->getType()->isVectorTy()) {
|
||||
for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
|
||||
++I) {
|
||||
ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
|
||||
if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
return isa<ConstantFP>(C) &&
|
||||
cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
|
||||
}
|
||||
|
||||
static bool isNormalFp(Constant *C) {
|
||||
if (C->getType()->isVectorTy()) {
|
||||
for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
|
||||
++I) {
|
||||
ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
|
||||
if (!CFP || !CFP->getValueAPF().isNormal())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
|
||||
}
|
||||
|
||||
/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
|
||||
/// true iff the given value is FMul or FDiv with one and only one operand
|
||||
/// being a normal constant (i.e. not Zero/NaN/Infinity).
|
||||
|
@ -332,19 +357,13 @@ static bool isFMulOrFDivWithConstant(Value *V) {
|
|||
I->getOpcode() != Instruction::FDiv))
|
||||
return false;
|
||||
|
||||
ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
|
||||
ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
|
||||
Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
|
||||
Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
|
||||
|
||||
if (C0 && C1)
|
||||
return false;
|
||||
|
||||
return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
|
||||
(C1 && C1->getValueAPF().isFiniteNonZero());
|
||||
}
|
||||
|
||||
static bool isNormalFp(const ConstantFP *C) {
|
||||
const APFloat &Flt = C->getValueAPF();
|
||||
return Flt.isNormal();
|
||||
return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
|
||||
}
|
||||
|
||||
/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
|
||||
|
@ -354,41 +373,41 @@ static bool isNormalFp(const ConstantFP *C) {
|
|||
/// resulting expression. Note that this function could return NULL in
|
||||
/// case the constants cannot be folded into a normal floating-point.
|
||||
///
|
||||
Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
|
||||
Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
|
||||
Instruction *InsertBefore) {
|
||||
assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
|
||||
|
||||
Value *Opnd0 = FMulOrDiv->getOperand(0);
|
||||
Value *Opnd1 = FMulOrDiv->getOperand(1);
|
||||
|
||||
ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
|
||||
ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
|
||||
Constant *C0 = dyn_cast<Constant>(Opnd0);
|
||||
Constant *C1 = dyn_cast<Constant>(Opnd1);
|
||||
|
||||
BinaryOperator *R = 0;
|
||||
|
||||
// (X * C0) * C => X * (C0*C)
|
||||
if (FMulOrDiv->getOpcode() == Instruction::FMul) {
|
||||
Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
|
||||
if (isNormalFp(cast<ConstantFP>(F)))
|
||||
if (isNormalFp(F))
|
||||
R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
|
||||
} else {
|
||||
if (C0) {
|
||||
// (C0 / X) * C => (C0 * C) / X
|
||||
if (FMulOrDiv->hasOneUse()) {
|
||||
// It would otherwise introduce another div.
|
||||
ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
|
||||
Constant *F = ConstantExpr::getFMul(C0, C);
|
||||
if (isNormalFp(F))
|
||||
R = BinaryOperator::CreateFDiv(F, Opnd1);
|
||||
}
|
||||
} else {
|
||||
// (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
|
||||
ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
|
||||
Constant *F = ConstantExpr::getFDiv(C, C1);
|
||||
if (isNormalFp(F)) {
|
||||
R = BinaryOperator::CreateFMul(Opnd0, F);
|
||||
} else {
|
||||
// (X / C1) * C => X / (C1/C)
|
||||
Constant *F = ConstantExpr::getFDiv(C1, C);
|
||||
if (isNormalFp(cast<ConstantFP>(F)))
|
||||
if (isNormalFp(F))
|
||||
R = BinaryOperator::CreateFDiv(Opnd0, F);
|
||||
}
|
||||
}
|
||||
|
@ -433,17 +452,15 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
|||
return RI;
|
||||
}
|
||||
|
||||
ConstantFP *C = dyn_cast<ConstantFP>(Op1);
|
||||
if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
|
||||
Constant *C = cast<Constant>(Op1);
|
||||
if (AllowReassociate && isFiniteNonZeroFp(C)) {
|
||||
// Let MDC denote an expression in one of these forms:
|
||||
// X * C, C/X, X/C, where C is a constant.
|
||||
//
|
||||
// Try to simplify "MDC * Constant"
|
||||
if (isFMulOrFDivWithConstant(Op0)) {
|
||||
Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
|
||||
if (V)
|
||||
if (isFMulOrFDivWithConstant(Op0))
|
||||
if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
|
||||
return ReplaceInstUsesWith(I, V);
|
||||
}
|
||||
|
||||
// (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
|
||||
Instruction *FAddSub = dyn_cast<Instruction>(Op0);
|
||||
|
@ -452,8 +469,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
|||
FAddSub->getOpcode() == Instruction::FSub)) {
|
||||
Value *Opnd0 = FAddSub->getOperand(0);
|
||||
Value *Opnd1 = FAddSub->getOperand(1);
|
||||
ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
|
||||
ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
|
||||
Constant *C0 = dyn_cast<Constant>(Opnd0);
|
||||
Constant *C1 = dyn_cast<Constant>(Opnd1);
|
||||
bool Swap = false;
|
||||
if (C0) {
|
||||
std::swap(C0, C1);
|
||||
|
@ -461,10 +478,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
|||
Swap = true;
|
||||
}
|
||||
|
||||
if (C1 && C1->getValueAPF().isFiniteNonZero() &&
|
||||
isFMulOrFDivWithConstant(Opnd0)) {
|
||||
if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
|
||||
Value *M1 = ConstantExpr::getFMul(C1, C);
|
||||
Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
|
||||
Value *M0 = isNormalFp(cast<Constant>(M1)) ?
|
||||
foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
|
||||
0;
|
||||
if (M0 && M1) {
|
||||
|
@ -575,7 +591,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
|||
if (!match(RHS, m_UIToFP(m_Value(C))))
|
||||
std::swap(LHS, RHS);
|
||||
|
||||
if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
|
||||
if (match(RHS, m_UIToFP(m_Value(C))) &&
|
||||
C->getType()->getScalarType()->isIntegerTy(1)) {
|
||||
B = LHS;
|
||||
Value *Zero = ConstantFP::getNegativeZero(B->getType());
|
||||
return SelectInst::Create(C, B, Zero);
|
||||
|
@ -590,7 +607,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
|||
std::swap(LHS, RHS);
|
||||
|
||||
if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
|
||||
C->getType()->isIntegerTy(1)) {
|
||||
C->getType()->getScalarType()->isIntegerTy(1)) {
|
||||
A = LHS;
|
||||
Value *Zero = ConstantFP::getNegativeZero(A->getType());
|
||||
return SelectInst::Create(C, Zero, A);
|
||||
|
@ -976,9 +993,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
|
|||
/// returned; otherwise, NULL is returned.
|
||||
///
|
||||
static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
|
||||
ConstantFP *Divisor,
|
||||
Constant *Divisor,
|
||||
bool AllowReciprocal) {
|
||||
const APFloat &FpVal = Divisor->getValueAPF();
|
||||
if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
|
||||
return 0;
|
||||
|
||||
const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
|
||||
APFloat Reciprocal(FpVal.getSemantics());
|
||||
bool Cvt = FpVal.getExactInverse(&Reciprocal);
|
||||
|
||||
|
@ -1010,32 +1030,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
|
|||
bool AllowReassociate = I.hasUnsafeAlgebra();
|
||||
bool AllowReciprocal = I.hasAllowReciprocal();
|
||||
|
||||
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
|
||||
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
|
||||
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
||||
return R;
|
||||
|
||||
if (AllowReassociate) {
|
||||
ConstantFP *C1 = 0;
|
||||
ConstantFP *C2 = Op1C;
|
||||
Constant *C1 = 0;
|
||||
Constant *C2 = Op1C;
|
||||
Value *X;
|
||||
Instruction *Res = 0;
|
||||
|
||||
if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
|
||||
if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
|
||||
// (X*C1)/C2 => X * (C1/C2)
|
||||
//
|
||||
Constant *C = ConstantExpr::getFDiv(C1, C2);
|
||||
const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
|
||||
if (F.isNormal())
|
||||
if (isNormalFp(C))
|
||||
Res = BinaryOperator::CreateFMul(X, C);
|
||||
} else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
|
||||
} else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
|
||||
// (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
|
||||
//
|
||||
Constant *C = ConstantExpr::getFMul(C1, C2);
|
||||
const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
|
||||
if (F.isNormal()) {
|
||||
Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
|
||||
AllowReciprocal);
|
||||
if (isNormalFp(C)) {
|
||||
Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
|
||||
if (!Res)
|
||||
Res = BinaryOperator::CreateFDiv(X, C);
|
||||
}
|
||||
|
@ -1056,33 +1073,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
if (AllowReassociate && isa<ConstantFP>(Op0)) {
|
||||
ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
|
||||
if (AllowReassociate && isa<Constant>(Op0)) {
|
||||
Constant *C1 = cast<Constant>(Op0), *C2;
|
||||
Constant *Fold = 0;
|
||||
Value *X;
|
||||
bool CreateDiv = true;
|
||||
|
||||
// C1 / (X*C2) => (C1/C2) / X
|
||||
if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
|
||||
if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
|
||||
Fold = ConstantExpr::getFDiv(C1, C2);
|
||||
else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
|
||||
else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
|
||||
// C1 / (X/C2) => (C1*C2) / X
|
||||
Fold = ConstantExpr::getFMul(C1, C2);
|
||||
} else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
|
||||
} else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
|
||||
// C1 / (C2/X) => (C1/C2) * X
|
||||
Fold = ConstantExpr::getFDiv(C1, C2);
|
||||
CreateDiv = false;
|
||||
}
|
||||
|
||||
if (Fold) {
|
||||
const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
|
||||
if (FoldC.isNormal()) {
|
||||
Instruction *R = CreateDiv ?
|
||||
BinaryOperator::CreateFDiv(Fold, X) :
|
||||
BinaryOperator::CreateFMul(X, Fold);
|
||||
R->setFastMathFlags(I.getFastMathFlags());
|
||||
return R;
|
||||
}
|
||||
if (Fold && isNormalFp(Fold)) {
|
||||
Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
|
||||
: BinaryOperator::CreateFMul(X, Fold);
|
||||
R->setFastMathFlags(I.getFastMathFlags());
|
||||
return R;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -1095,14 +1108,14 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
|
|||
if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
|
||||
// (X/Y) / Z => X / (Y*Z)
|
||||
//
|
||||
if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
|
||||
if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
|
||||
NewInst = Builder->CreateFMul(Y, Op1);
|
||||
SimpR = BinaryOperator::CreateFDiv(X, NewInst);
|
||||
}
|
||||
} else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
|
||||
// Z / (X/Y) => Z*Y / X
|
||||
//
|
||||
if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
|
||||
if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
|
||||
NewInst = Builder->CreateFMul(Op0, Y);
|
||||
SimpR = BinaryOperator::CreateFDiv(NewInst, X);
|
||||
}
|
||||
|
|
|
@ -77,3 +77,26 @@ define float @test7(float %A, float %B, i32 %C) {
|
|||
; CHECK: uitofp
|
||||
}
|
||||
|
||||
define <4 x float> @test8(<4 x float> %A, <4 x float> %B, <4 x i1> %C) {
|
||||
;; B*(uitofp i1 C) + A*(1 - uitofp i1 C) -> select C, A, B
|
||||
%cf = uitofp <4 x i1> %C to <4 x float>
|
||||
%mc = fsub fast <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>, %cf
|
||||
%p1 = fmul fast <4 x float> %A, %mc
|
||||
%p2 = fmul fast <4 x float> %B, %cf
|
||||
%s1 = fadd fast <4 x float> %p2, %p1
|
||||
ret <4 x float> %s1
|
||||
; CHECK-LABEL: @test8(
|
||||
; CHECK: select <4 x i1> %C, <4 x float> %B, <4 x float> %A
|
||||
}
|
||||
|
||||
define <4 x float> @test9(<4 x float> %A, <4 x float> %B, <4 x i1> %C) {
|
||||
;; A*(1 - uitofp i1 C) + B*(uitofp i1 C) -> select C, A, B
|
||||
%cf = uitofp <4 x i1> %C to <4 x float>
|
||||
%mc = fsub fast <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>, %cf
|
||||
%p1 = fmul fast <4 x float> %A, %mc
|
||||
%p2 = fmul fast <4 x float> %B, %cf
|
||||
%s1 = fadd fast <4 x float> %p1, %p2
|
||||
ret <4 x float> %s1
|
||||
; CHECK-LABEL: @test9
|
||||
; CHECK: select <4 x i1> %C, <4 x float> %B, <4 x float> %A
|
||||
}
|
||||
|
|
|
@ -259,6 +259,14 @@ define float @fmul3(float %f1, float %f2) {
|
|||
; CHECK: fmul fast float %f1, 3.000000e+00
|
||||
}
|
||||
|
||||
define <4 x float> @fmul3_vec(<4 x float> %f1, <4 x float> %f2) {
|
||||
%t1 = fdiv <4 x float> %f1, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3>
|
||||
%t3 = fmul fast <4 x float> %t1, <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3>
|
||||
ret <4 x float> %t3
|
||||
; CHECK-LABEL: @fmul3_vec(
|
||||
; CHECK: fmul fast <4 x float> %f1, <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00>
|
||||
}
|
||||
|
||||
; Rule "X/C1 * C2 => X * (C2/C1) is not applicable if C2/C1 is either a special
|
||||
; value of a denormal. The 0x3810000000000000 here take value FLT_MIN
|
||||
;
|
||||
|
@ -345,6 +353,15 @@ define float @fdiv2(float %x) {
|
|||
; CHECK: fmul fast float %x, 0x3FE0B21660000000
|
||||
}
|
||||
|
||||
define <2 x float> @fdiv2_vec(<2 x float> %x) {
|
||||
%mul = fmul <2 x float> %x, <float 6.0, float 9.0>
|
||||
%div1 = fdiv fast <2 x float> %mul, <float 2.0, float 3.0>
|
||||
ret <2 x float> %div1
|
||||
|
||||
; CHECK-LABEL: @fdiv2_vec(
|
||||
; CHECK: fmul fast <2 x float> %x, <float 3.000000e+00, float 3.000000e+00>
|
||||
}
|
||||
|
||||
; "X/C1 / C2 => X * (1/(C2*C1))" is disabled (for now) is C2/C1 is a denormal
|
||||
;
|
||||
define float @fdiv3(float %x) {
|
||||
|
|
Loading…
Reference in New Issue