forked from OSchip/llvm-project
Revert "Recommit "[SCEV] Use nw flag and symbolic iteration count to sharpen ranges of AddRecs""
This reverts commit 32b72c3165
.
While better than before, this change still introduces a large
compile-time regression (>3% on mafft):
https://llvm-compile-time-tracker.com/compare.php?from=fbd62fe60fb2281ca33da35dc25ca3c87ec0bb51&to=32b72c3165bf65cca2e8e6197b59eb4c4b60392a&stat=instructions
Additionally, the logic here doesn't look quite right to me,
I will comment in more detail on the differential revision.
This commit is contained in:
parent
f085b7cbc1
commit
74c8c2d903
|
@ -1489,13 +1489,6 @@ private:
|
|||
ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
|
||||
const SCEV *MaxBECount, unsigned BitWidth);
|
||||
|
||||
/// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
|
||||
/// Start,+,\p Stop}<nw>.
|
||||
ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
|
||||
const SCEV *MaxBECount,
|
||||
unsigned BitWidth,
|
||||
RangeSignHint SignHint);
|
||||
|
||||
/// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
|
||||
/// Stop} by "factoring out" a ternary expression from the add recurrence.
|
||||
/// Helper called by \c getRange.
|
||||
|
|
|
@ -5509,17 +5509,6 @@ ScalarEvolution::getRangeRef(const SCEV *S,
|
|||
ConservativeResult =
|
||||
ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
|
||||
}
|
||||
|
||||
// Now try symbolic BE count and more powerful methods.
|
||||
MaxBECount = computeMaxBackedgeTakenCount(AddRec->getLoop());
|
||||
if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
|
||||
getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
|
||||
AddRec->hasNoSelfWrap()) {
|
||||
auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
|
||||
AddRec, MaxBECount, BitWidth, SignHint);
|
||||
ConservativeResult =
|
||||
ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
|
||||
}
|
||||
}
|
||||
|
||||
return setRange(AddRec, SignHint, std::move(ConservativeResult));
|
||||
|
@ -5689,67 +5678,6 @@ ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
|
|||
return SR.intersectWith(UR, ConstantRange::Smallest);
|
||||
}
|
||||
|
||||
ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
|
||||
const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
|
||||
ScalarEvolution::RangeSignHint SignHint) {
|
||||
assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
|
||||
assert(AddRec->hasNoSelfWrap() &&
|
||||
"This only works for non-self-wrapping AddRecs!");
|
||||
const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
|
||||
const SCEV *Step = AddRec->getStepRecurrence(*this);
|
||||
// Let's make sure that we can prove that we do not self-wrap during
|
||||
// MaxBECount iterations. We need this because MaxBECount is a maximum
|
||||
// iteration count estimate, and we might infer nw from some exit for which we
|
||||
// do not know max exit count (or any other side reasoning).
|
||||
// TODO: Turn into assert at some point.
|
||||
MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
|
||||
const SCEV *RangeWidth = getNegativeSCEV(getOne(AddRec->getType()));
|
||||
const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
|
||||
const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
|
||||
if (!isKnownPredicate(ICmpInst::ICMP_ULE, MaxBECount, MaxItersWithoutWrap))
|
||||
return ConstantRange::getFull(BitWidth);
|
||||
|
||||
ICmpInst::Predicate LEPred =
|
||||
IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
|
||||
ICmpInst::Predicate GEPred =
|
||||
IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
|
||||
const SCEV *Start = AddRec->getStart();
|
||||
const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
|
||||
// We could handle non-constant End, but it harms compile time a lot.
|
||||
if (!isa<SCEVConstant>(End))
|
||||
return ConstantRange::getFull(BitWidth);
|
||||
|
||||
// We know that there is no self-wrap. Let's take Start and End values and
|
||||
// look at all intermediate values V1, V2, ..., Vn that IndVar takes during
|
||||
// the iteration. They either lie inside the range [Min(Start, End),
|
||||
// Max(Start, End)] or outside it:
|
||||
//
|
||||
// Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
|
||||
// Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
|
||||
//
|
||||
// No self wrap flag guarantees that the intermediate values cannot be BOTH
|
||||
// outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
|
||||
// knowledge, let's try to prove that we are dealing with Case 1. It is so if
|
||||
// Start <= End and step is positive, or Start >= End and step is negative.
|
||||
ConstantRange StartRange =
|
||||
IsSigned ? getSignedRange(Start) : getUnsignedRange(Start);
|
||||
ConstantRange EndRange =
|
||||
IsSigned ? getSignedRange(End) : getUnsignedRange(End);
|
||||
ConstantRange RangeBetween = StartRange.unionWith(EndRange);
|
||||
// If they already cover full iteration space, we will know nothing useful
|
||||
// even if we prove what we want to prove.
|
||||
if (RangeBetween.isFullSet())
|
||||
return RangeBetween;
|
||||
|
||||
if (isKnownPositive(Step) &&
|
||||
isKnownViaNonRecursiveReasoning(LEPred, Start, End))
|
||||
return RangeBetween;
|
||||
else if (isKnownNegative(Step) &&
|
||||
isKnownViaNonRecursiveReasoning(GEPred, Start, End))
|
||||
return RangeBetween;
|
||||
return ConstantRange::getFull(BitWidth);
|
||||
}
|
||||
|
||||
ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
|
||||
const SCEV *Step,
|
||||
const SCEV *MaxBECount,
|
||||
|
|
|
@ -7,7 +7,7 @@ define i32 @test_01(i32 %start, i32* %p, i32* %q) {
|
|||
; CHECK-NEXT: %0 = zext i32 %start to i64
|
||||
; CHECK-NEXT: --> (zext i32 %start to i64) U: [0,4294967296) S: [0,4294967296)
|
||||
; CHECK-NEXT: %indvars.iv = phi i64 [ %indvars.iv.next, %backedge ], [ %0, %entry ]
|
||||
; CHECK-NEXT: --> {(zext i32 %start to i64),+,-1}<nsw><%loop> U: [0,4294967296) S: [0,4294967296) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
|
||||
; CHECK-NEXT: --> {(zext i32 %start to i64),+,-1}<nsw><%loop> U: [-4294967295,4294967296) S: [-4294967295,4294967296) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
|
||||
; CHECK-NEXT: %iv = phi i32 [ %start, %entry ], [ %iv.next, %backedge ]
|
||||
; CHECK-NEXT: --> {%start,+,-1}<%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
|
||||
; CHECK-NEXT: %iv.next = add i32 %iv, -1
|
||||
|
@ -21,7 +21,7 @@ define i32 @test_01(i32 %start, i32* %p, i32* %q) {
|
|||
; CHECK-NEXT: %stop = load i32, i32* %load.addr, align 4
|
||||
; CHECK-NEXT: --> %stop U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
|
||||
; CHECK-NEXT: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
||||
; CHECK-NEXT: --> {(-1 + (zext i32 %start to i64))<nsw>,+,-1}<nsw><%loop> U: [-4294967296,4294967295) S: [-1,4294967295) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
|
||||
; CHECK-NEXT: --> {(-1 + (zext i32 %start to i64))<nsw>,+,-1}<nsw><%loop> U: [-4294967296,4294967295) S: [-4294967296,4294967295) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
|
||||
; CHECK-NEXT: Determining loop execution counts for: @test_01
|
||||
; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count.
|
||||
; CHECK-NEXT: exit count for loop: (zext i32 %start to i64)
|
||||
|
|
|
@ -474,7 +474,7 @@ define void @test_10(i32 %n) {
|
|||
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[TMP0]] to i64
|
||||
; CHECK-NEXT: [[TMP2:%.*]] = icmp ult i64 [[TMP1]], 90
|
||||
; CHECK-NEXT: [[UMIN:%.*]] = select i1 [[TMP2]], i64 [[TMP1]], i64 90
|
||||
; CHECK-NEXT: [[TMP3:%.*]] = add nuw nsw i64 [[UMIN]], -99
|
||||
; CHECK-NEXT: [[TMP3:%.*]] = add i64 [[UMIN]], -99
|
||||
; CHECK-NEXT: br label [[LOOP:%.*]]
|
||||
; CHECK: loop:
|
||||
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ -100, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LOOP]] ]
|
||||
|
|
|
@ -196,7 +196,7 @@ define void @promote_latch_condition_decrementing_loop_01(i32* %p, i32* %a) {
|
|||
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ [[TMP0]], [[PREHEADER]] ]
|
||||
; CHECK-NEXT: [[EL:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[INDVARS_IV]]
|
||||
; CHECK-NEXT: store atomic i32 0, i32* [[EL]] unordered, align 4
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp ult i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp slt i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nsw i64 [[INDVARS_IV]], -1
|
||||
; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOPEXIT_LOOPEXIT:%.*]], label [[LOOP]]
|
||||
;
|
||||
|
@ -241,7 +241,7 @@ define void @promote_latch_condition_decrementing_loop_02(i32* %p, i32* %a) {
|
|||
; CHECK-NEXT: [[EL:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[INDVARS_IV]]
|
||||
; CHECK-NEXT: store atomic i32 0, i32* [[EL]] unordered, align 4
|
||||
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nsw i64 [[INDVARS_IV]], -1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp ult i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp slt i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOPEXIT_LOOPEXIT:%.*]], label [[LOOP]]
|
||||
;
|
||||
|
||||
|
@ -285,7 +285,7 @@ define void @promote_latch_condition_decrementing_loop_03(i32* %p, i32* %a) {
|
|||
; CHECK-NEXT: [[EL:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[INDVARS_IV]]
|
||||
; CHECK-NEXT: store atomic i32 0, i32* [[EL]] unordered, align 4
|
||||
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nsw i64 [[INDVARS_IV]], -1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp ult i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp slt i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOPEXIT_LOOPEXIT:%.*]], label [[LOOP]]
|
||||
;
|
||||
|
||||
|
@ -336,7 +336,7 @@ define void @promote_latch_condition_decrementing_loop_04(i32* %p, i32* %a, i1 %
|
|||
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ [[TMP0]], [[PREHEADER]] ]
|
||||
; CHECK-NEXT: [[EL:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[INDVARS_IV]]
|
||||
; CHECK-NEXT: store atomic i32 0, i32* [[EL]] unordered, align 4
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp ult i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp slt i64 [[INDVARS_IV]], 1
|
||||
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nsw i64 [[INDVARS_IV]], -1
|
||||
; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOPEXIT_LOOPEXIT:%.*]], label [[LOOP]]
|
||||
;
|
||||
|
|
Loading…
Reference in New Issue