[mlir][sparse][pytaco] add SDDMM test with two different ways of defining kernel

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D119465
This commit is contained in:
Aart Bik 2022-02-10 11:33:38 -08:00
parent dd3f483335
commit 719b865be2
2 changed files with 63 additions and 0 deletions

View File

@ -0,0 +1,57 @@
# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
import filecmp
import numpy as np
import os
import sys
import tempfile
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import mlir_pytaco_api as pt
from tools import testing_utils as utils
i, j, k = pt.get_index_vars(3)
# Set up dense matrices.
A = pt.from_array(np.full((8, 8), 2.0))
B = pt.from_array(np.full((8, 8), 3.0))
# Set up sparse matrices.
S = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
X = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
Y = pt.tensor([8, 8], pt.compressed) # alternative syntax works too
S.insert([0, 7], 42.0)
# Define the SDDMM kernel. Since this performs the reduction as
# sum(k, S[i, j] * A[i, k] * B[k, j])
# we only compute the intermediate dense matrix product that are actually
# needed to compute the result, with proper asymptotic complexity.
X[i, j] = S[i, j] * A[i, k] * B[k, j]
# Alternative way to define SDDMM kernel. Since this performs the reduction as
# sum(k, A[i, k] * B[k, j]) * S[i, j]
# the MLIR lowering results in two separate tensor index expressions that
# need to be fused properly to guarantee proper asymptotic complexity.
Y[i, j] = A[i, k] * B[k, j] * S[i, j]
expected = """; extended FROSTT format
2 1
8 8
1 8 2016
"""
# Force evaluation of the kernels by writing out X and Y.
with tempfile.TemporaryDirectory() as test_dir:
x_file = os.path.join(test_dir, "X.tns")
y_file = os.path.join(test_dir, "Y.tns")
pt.write(x_file, X)
pt.write(y_file, Y)
#
# CHECK: Compare result True True
#
x_data = utils.file_as_string(x_file)
y_data = utils.file_as_string(y_file)
print(f"Compare result {x_data == expected} {y_data == expected}")

View File

@ -30,3 +30,9 @@ def compare_sparse_tns(expected: str, actual: str, rtol: float = 0.0001) -> bool
actual_data = np.loadtxt(actual, np.float64, skiprows=3)
expected_data = np.loadtxt(expected, np.float64, skiprows=3)
return np.allclose(actual_data, expected_data, rtol=rtol)
def file_as_string(file: str) -> str:
"""Returns contents of file as string."""
with open(file, "r") as f:
return f.read()