forked from OSchip/llvm-project
[mlir][sparse][pytaco] add SDDMM test with two different ways of defining kernel
Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D119465
This commit is contained in:
parent
dd3f483335
commit
719b865be2
|
@ -0,0 +1,57 @@
|
|||
# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
|
||||
|
||||
import filecmp
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(_SCRIPT_PATH)
|
||||
|
||||
from tools import mlir_pytaco_api as pt
|
||||
from tools import testing_utils as utils
|
||||
|
||||
i, j, k = pt.get_index_vars(3)
|
||||
|
||||
# Set up dense matrices.
|
||||
A = pt.from_array(np.full((8, 8), 2.0))
|
||||
B = pt.from_array(np.full((8, 8), 3.0))
|
||||
|
||||
# Set up sparse matrices.
|
||||
S = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
|
||||
X = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
|
||||
Y = pt.tensor([8, 8], pt.compressed) # alternative syntax works too
|
||||
|
||||
S.insert([0, 7], 42.0)
|
||||
|
||||
# Define the SDDMM kernel. Since this performs the reduction as
|
||||
# sum(k, S[i, j] * A[i, k] * B[k, j])
|
||||
# we only compute the intermediate dense matrix product that are actually
|
||||
# needed to compute the result, with proper asymptotic complexity.
|
||||
X[i, j] = S[i, j] * A[i, k] * B[k, j]
|
||||
|
||||
# Alternative way to define SDDMM kernel. Since this performs the reduction as
|
||||
# sum(k, A[i, k] * B[k, j]) * S[i, j]
|
||||
# the MLIR lowering results in two separate tensor index expressions that
|
||||
# need to be fused properly to guarantee proper asymptotic complexity.
|
||||
Y[i, j] = A[i, k] * B[k, j] * S[i, j]
|
||||
|
||||
expected = """; extended FROSTT format
|
||||
2 1
|
||||
8 8
|
||||
1 8 2016
|
||||
"""
|
||||
|
||||
# Force evaluation of the kernels by writing out X and Y.
|
||||
with tempfile.TemporaryDirectory() as test_dir:
|
||||
x_file = os.path.join(test_dir, "X.tns")
|
||||
y_file = os.path.join(test_dir, "Y.tns")
|
||||
pt.write(x_file, X)
|
||||
pt.write(y_file, Y)
|
||||
#
|
||||
# CHECK: Compare result True True
|
||||
#
|
||||
x_data = utils.file_as_string(x_file)
|
||||
y_data = utils.file_as_string(y_file)
|
||||
print(f"Compare result {x_data == expected} {y_data == expected}")
|
|
@ -30,3 +30,9 @@ def compare_sparse_tns(expected: str, actual: str, rtol: float = 0.0001) -> bool
|
|||
actual_data = np.loadtxt(actual, np.float64, skiprows=3)
|
||||
expected_data = np.loadtxt(expected, np.float64, skiprows=3)
|
||||
return np.allclose(actual_data, expected_data, rtol=rtol)
|
||||
|
||||
|
||||
def file_as_string(file: str) -> str:
|
||||
"""Returns contents of file as string."""
|
||||
with open(file, "r") as f:
|
||||
return f.read()
|
||||
|
|
Loading…
Reference in New Issue