forked from OSchip/llvm-project
Fill out codegen SSA updater. It's not yet tested.
llvm-svn: 90395
This commit is contained in:
parent
2ca285fc5c
commit
7145382389
|
@ -320,6 +320,11 @@ public:
|
|||
/// loads the instruction does are invariant (if it does multiple loads).
|
||||
bool isInvariantLoad(AliasAnalysis *AA) const;
|
||||
|
||||
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
||||
/// merges together the same virtual register, return the register, otherwise
|
||||
/// return 0.
|
||||
unsigned isConstantValuePHI() const;
|
||||
|
||||
//
|
||||
// Debugging support
|
||||
//
|
||||
|
|
|
@ -16,13 +16,18 @@
|
|||
|
||||
namespace llvm {
|
||||
class MachineBasicBlock;
|
||||
class MachineFunction;
|
||||
class MachineInstr;
|
||||
class MachineOperand;
|
||||
class MachineRegisterInfo;
|
||||
class TargetInstrInfo;
|
||||
class TargetRegisterClass;
|
||||
template<typename T> class SmallVectorImpl;
|
||||
|
||||
/// SSAUpdater - This class updates SSA form for a set of values defined in
|
||||
/// multiple blocks. This is used when code duplication or another unstructured
|
||||
/// transformation wants to rewrite a set of uses of one value with uses of a
|
||||
/// set of values.
|
||||
/// MachineSSAUpdater - This class updates SSA form for a set of virtual
|
||||
/// registers defined in multiple blocks. This is used when code duplication
|
||||
/// or another unstructured transformation wants to rewrite a set of uses of one
|
||||
/// vreg with uses of a set of vregs.
|
||||
class MachineSSAUpdater {
|
||||
/// AvailableVals - This keeps track of which value to use on a per-block
|
||||
/// basis. When we insert PHI nodes, we keep track of them here.
|
||||
|
@ -35,18 +40,28 @@ class MachineSSAUpdater {
|
|||
//std::vector<std::pair<MachineBasicBlock*, unsigned > > IncomingPredInfo;
|
||||
void *IPI;
|
||||
|
||||
/// VR - Current virtual register whose uses are being updated.
|
||||
unsigned VR;
|
||||
|
||||
/// VRC - Register class of the current virtual register.
|
||||
const TargetRegisterClass *VRC;
|
||||
|
||||
/// InsertedPHIs - If this is non-null, the MachineSSAUpdater adds all PHI
|
||||
/// nodes that it creates to the vector.
|
||||
SmallVectorImpl<MachineInstr*> *InsertedPHIs;
|
||||
|
||||
const TargetInstrInfo *TII;
|
||||
MachineRegisterInfo *MRI;
|
||||
public:
|
||||
/// MachineSSAUpdater constructor. If InsertedPHIs is specified, it will be
|
||||
/// filled in with all PHI Nodes created by rewriting.
|
||||
explicit MachineSSAUpdater(SmallVectorImpl<MachineInstr*> *InsertedPHIs = 0);
|
||||
explicit MachineSSAUpdater(MachineFunction &MF,
|
||||
SmallVectorImpl<MachineInstr*> *InsertedPHIs = 0);
|
||||
~MachineSSAUpdater();
|
||||
|
||||
/// Initialize - Reset this object to get ready for a new set of SSA
|
||||
/// updates.
|
||||
void Initialize();
|
||||
void Initialize(unsigned V);
|
||||
|
||||
/// AddAvailableValue - Indicate that a rewritten value is available at the
|
||||
/// end of the specified block with the specified value.
|
||||
|
@ -86,7 +101,7 @@ public:
|
|||
/// will not work if the use is supposed to be rewritten to a value defined in
|
||||
/// the same block as the use, but above it. Any 'AddAvailableValue's added
|
||||
/// for the use's block will be considered to be below it.
|
||||
void RewriteUse(unsigned &U);
|
||||
void RewriteUse(MachineOperand &U);
|
||||
|
||||
private:
|
||||
unsigned GetValueAtEndOfBlockInternal(MachineBasicBlock *BB);
|
||||
|
|
|
@ -1058,6 +1058,20 @@ bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
||||
/// merges together the same virtual register, return the register, otherwise
|
||||
/// return 0.
|
||||
unsigned MachineInstr::isConstantValuePHI() const {
|
||||
if (getOpcode() != TargetInstrInfo::PHI)
|
||||
return 0;
|
||||
|
||||
unsigned Reg = getOperand(1).getReg();
|
||||
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
|
||||
if (getOperand(i).getReg() != Reg)
|
||||
return 0;
|
||||
return Reg;
|
||||
}
|
||||
|
||||
void MachineInstr::dump() const {
|
||||
errs() << " " << *this;
|
||||
}
|
||||
|
|
|
@ -7,16 +7,25 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the MachineSSAUpdater class.
|
||||
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
|
||||
// class in lib/Transforms/Utils.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
using namespace llvm;
|
||||
|
||||
typedef DenseMap<MachineBasicBlock*, unsigned > AvailableValsTy;
|
||||
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
|
||||
typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
|
||||
IncomingPredInfoTy;
|
||||
|
||||
|
@ -29,8 +38,12 @@ static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
|
|||
}
|
||||
|
||||
|
||||
MachineSSAUpdater::MachineSSAUpdater(SmallVectorImpl<MachineInstr*> *NewPHI)
|
||||
: AV(0), IPI(0), InsertedPHIs(NewPHI) {}
|
||||
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
|
||||
SmallVectorImpl<MachineInstr*> *NewPHI)
|
||||
: AV(0), IPI(0), InsertedPHIs(NewPHI) {
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
MRI = &MF.getRegInfo();
|
||||
}
|
||||
|
||||
MachineSSAUpdater::~MachineSSAUpdater() {
|
||||
delete &getAvailableVals(AV);
|
||||
|
@ -39,7 +52,7 @@ MachineSSAUpdater::~MachineSSAUpdater() {
|
|||
|
||||
/// Initialize - Reset this object to get ready for a new set of SSA
|
||||
/// updates. ProtoValue is the value used to name PHI nodes.
|
||||
void MachineSSAUpdater::Initialize() {
|
||||
void MachineSSAUpdater::Initialize(unsigned V) {
|
||||
if (AV == 0)
|
||||
AV = new AvailableValsTy();
|
||||
else
|
||||
|
@ -49,6 +62,9 @@ void MachineSSAUpdater::Initialize() {
|
|||
IPI = new IncomingPredInfoTy();
|
||||
else
|
||||
getIncomingPredInfo(IPI).clear();
|
||||
|
||||
VR = V;
|
||||
VRC = MRI->getRegClass(VR);
|
||||
}
|
||||
|
||||
/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
|
||||
|
@ -69,6 +85,18 @@ unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
|
|||
return GetValueAtEndOfBlockInternal(BB);
|
||||
}
|
||||
|
||||
/// InsertNewPHI - Insert an empty PHI instruction which define a value of the
|
||||
/// given register class at the start of the specified basic block. It returns
|
||||
/// the virtual register defined by the PHI instruction.
|
||||
static
|
||||
MachineInstr *InsertNewPHI(MachineBasicBlock *BB, const TargetRegisterClass *RC,
|
||||
MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
|
||||
unsigned NewVR = MRI->createVirtualRegister(RC);
|
||||
return BuildMI(*BB, BB->front(), BB->front().getDebugLoc(),
|
||||
TII->get(TargetInstrInfo::PHI), NewVR);
|
||||
}
|
||||
|
||||
|
||||
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
|
||||
/// is live in the middle of the specified block.
|
||||
///
|
||||
|
@ -89,14 +117,86 @@ unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
|
|||
/// merge the appropriate values, and this value isn't live out of the block.
|
||||
///
|
||||
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
|
||||
// If there is no definition of the renamed variable in this block, just use
|
||||
// GetValueAtEndOfBlock to do our work.
|
||||
if (!getAvailableVals(AV).count(BB))
|
||||
return GetValueAtEndOfBlock(BB);
|
||||
|
||||
if (BB->pred_empty())
|
||||
llvm_unreachable("Unreachable block!");
|
||||
|
||||
// Otherwise, we have the hard case. Get the live-in values for each
|
||||
// predecessor.
|
||||
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
|
||||
unsigned SingularValue = 0;
|
||||
|
||||
bool isFirstPred = true;
|
||||
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
||||
E = BB->pred_end(); PI != E; ++PI) {
|
||||
MachineBasicBlock *PredBB = *PI;
|
||||
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
||||
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
||||
|
||||
// Compute SingularValue.
|
||||
if (isFirstPred) {
|
||||
SingularValue = PredVal;
|
||||
isFirstPred = false;
|
||||
} else if (PredVal != SingularValue)
|
||||
SingularValue = 0;
|
||||
}
|
||||
|
||||
// Otherwise, if all the merged values are the same, just use it.
|
||||
if (SingularValue != 0)
|
||||
return SingularValue;
|
||||
|
||||
// Otherwise, we do need a PHI: insert one now.
|
||||
MachineInstr *InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII);
|
||||
|
||||
// Fill in all the predecessors of the PHI.
|
||||
MachineInstrBuilder MIB(InsertedPHI);
|
||||
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
||||
MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
|
||||
|
||||
// See if the PHI node can be merged to a single value. This can happen in
|
||||
// loop cases when we get a PHI of itself and one other value.
|
||||
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
|
||||
InsertedPHI->eraseFromParent();
|
||||
return ConstVal;
|
||||
}
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
||||
|
||||
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
||||
return InsertedPHI->getOperand(0).getReg();
|
||||
}
|
||||
|
||||
static
|
||||
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
|
||||
MachineOperand *U) {
|
||||
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
|
||||
if (&MI->getOperand(i) == U)
|
||||
return MI->getOperand(i+1).getMBB();
|
||||
}
|
||||
|
||||
llvm_unreachable("MachineOperand::getParent() failure?");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
|
||||
/// which use their value in the corresponding predecessor.
|
||||
void MachineSSAUpdater::RewriteUse(unsigned &U) {
|
||||
}
|
||||
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
|
||||
MachineInstr *UseMI = U.getParent();
|
||||
unsigned NewVR = 0;
|
||||
if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
|
||||
MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
|
||||
NewVR = GetValueAtEndOfBlock(SourceBB);
|
||||
} else {
|
||||
NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
|
||||
}
|
||||
|
||||
U.setReg(NewVR);
|
||||
}
|
||||
|
||||
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
||||
/// for the specified BB and if so, return it. If not, construct SSA form by
|
||||
|
@ -104,5 +204,126 @@ void MachineSSAUpdater::RewriteUse(unsigned &U) {
|
|||
/// where the value is available.
|
||||
///
|
||||
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
|
||||
return 0;
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
|
||||
// Query AvailableVals by doing an insertion of null.
|
||||
std::pair<AvailableValsTy::iterator, bool> InsertRes =
|
||||
AvailableVals.insert(std::make_pair(BB, 0));
|
||||
|
||||
// Handle the case when the insertion fails because we have already seen BB.
|
||||
if (!InsertRes.second) {
|
||||
// If the insertion failed, there are two cases. The first case is that the
|
||||
// value is already available for the specified block. If we get this, just
|
||||
// return the value.
|
||||
if (InsertRes.first->second != 0)
|
||||
return InsertRes.first->second;
|
||||
|
||||
// Otherwise, if the value we find is null, then this is the value is not
|
||||
// known but it is being computed elsewhere in our recursion. This means
|
||||
// that we have a cycle. Handle this by inserting a PHI node and returning
|
||||
// it. When we get back to the first instance of the recursion we will fill
|
||||
// in the PHI node.
|
||||
MachineInstr *NewPHI = InsertNewPHI(BB, VRC, MRI, TII);
|
||||
unsigned NewVR = NewPHI->getOperand(0).getReg();
|
||||
InsertRes.first->second = NewVR;
|
||||
return NewVR;
|
||||
}
|
||||
|
||||
if (BB->pred_empty())
|
||||
llvm_unreachable("Unreachable block!");
|
||||
|
||||
// Okay, the value isn't in the map and we just inserted a null in the entry
|
||||
// to indicate that we're processing the block. Since we have no idea what
|
||||
// value is in this block, we have to recurse through our predecessors.
|
||||
//
|
||||
// While we're walking our predecessors, we keep track of them in a vector,
|
||||
// then insert a PHI node in the end if we actually need one. We could use a
|
||||
// smallvector here, but that would take a lot of stack space for every level
|
||||
// of the recursion, just use IncomingPredInfo as an explicit stack.
|
||||
IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
|
||||
unsigned FirstPredInfoEntry = IncomingPredInfo.size();
|
||||
|
||||
// As we're walking the predecessors, keep track of whether they are all
|
||||
// producing the same value. If so, this value will capture it, if not, it
|
||||
// will get reset to null. We distinguish the no-predecessor case explicitly
|
||||
// below.
|
||||
unsigned SingularValue = 0;
|
||||
bool isFirstPred = true;
|
||||
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
||||
E = BB->pred_end(); PI != E; ++PI) {
|
||||
MachineBasicBlock *PredBB = *PI;
|
||||
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
||||
IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
|
||||
|
||||
// Compute SingularValue.
|
||||
if (isFirstPred) {
|
||||
SingularValue = PredVal;
|
||||
isFirstPred = false;
|
||||
} else if (PredVal != SingularValue)
|
||||
SingularValue = 0;
|
||||
}
|
||||
|
||||
/// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
|
||||
/// this block is involved in a loop, a no-entry PHI node will have been
|
||||
/// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
|
||||
/// above.
|
||||
unsigned InsertedVal = AvailableVals[BB];
|
||||
|
||||
// If all the predecessor values are the same then we don't need to insert a
|
||||
// PHI. This is the simple and common case.
|
||||
if (SingularValue) {
|
||||
// If a PHI node got inserted, replace it with the singlar value and delete
|
||||
// it.
|
||||
if (InsertedVal) {
|
||||
MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
|
||||
// Be careful about dead loops. These RAUW's also update InsertedVal.
|
||||
assert(InsertedVal != SingularValue && "Dead loop?");
|
||||
MRI->replaceRegWith(InsertedVal, SingularValue);
|
||||
OldVal->eraseFromParent();
|
||||
} else {
|
||||
InsertedVal = SingularValue;
|
||||
}
|
||||
|
||||
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
||||
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
||||
IncomingPredInfo.end());
|
||||
return InsertedVal;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we do need a PHI: insert one now if we don't already have one.
|
||||
MachineInstr *InsertedPHI;
|
||||
if (InsertedVal == 0) {
|
||||
InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII);
|
||||
InsertedVal = InsertedPHI->getOperand(0).getReg();
|
||||
} else {
|
||||
InsertedPHI = MRI->getVRegDef(InsertedVal);
|
||||
}
|
||||
|
||||
// Fill in all the predecessors of the PHI.
|
||||
MachineInstrBuilder MIB(InsertedPHI);
|
||||
for (IncomingPredInfoTy::iterator I =
|
||||
IncomingPredInfo.begin()+FirstPredInfoEntry,
|
||||
E = IncomingPredInfo.end(); I != E; ++I)
|
||||
MIB.addReg(I->second).addMBB(I->first);
|
||||
|
||||
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
||||
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
||||
IncomingPredInfo.end());
|
||||
|
||||
// See if the PHI node can be merged to a single value. This can happen in
|
||||
// loop cases when we get a PHI of itself and one other value.
|
||||
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
|
||||
MRI->replaceRegWith(InsertedVal, ConstVal);
|
||||
InsertedPHI->eraseFromParent();
|
||||
InsertedVal = ConstVal;
|
||||
} else {
|
||||
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
||||
}
|
||||
|
||||
return InsertedVal;
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue