Re-factored RuntimeDyld.

Added ExecutionEngine/MCJIT tests.

llvm-svn: 153221
This commit is contained in:
Danil Malyshev 2012-03-21 21:06:29 +00:00
parent c25c5e0ba2
commit 70186bef8b
56 changed files with 1815 additions and 1063 deletions

View File

@ -45,19 +45,9 @@ public:
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) = 0;
// Allocate ActualSize bytes, or more, for the named function. Return
// a pointer to the allocated memory and update Size to reflect how much
// memory was acutally allocated.
virtual uint8_t *startFunctionBody(const char *Name, uintptr_t &Size) = 0;
// Mark the end of the function, including how much of the allocated
// memory was actually used.
virtual void endFunctionBody(const char *Name, uint8_t *FunctionStart,
uint8_t *FunctionEnd) = 0;
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) = 0;
};
class RuntimeDyld {

View File

@ -33,12 +33,12 @@ public:
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) {
return JMM->allocateDataSection(Size, Alignment, SectionID);
return JMM->allocateSpace(Size, Alignment);
}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID) {
return JMM->allocateCodeSection(Size, Alignment, SectionID);
return JMM->allocateSpace(Size, Alignment);
}
virtual void *getPointerToNamedFunction(const std::string &Name,
@ -46,40 +46,6 @@ public:
return JMM->getPointerToNamedFunction(Name, AbortOnFailure);
}
// Allocate ActualSize bytes, or more, for the named function. Return
// a pointer to the allocated memory and update Size to reflect how much
// memory was acutally allocated.
uint8_t *startFunctionBody(const char *Name, uintptr_t &Size) {
// FIXME: This should really reference the MCAsmInfo to get the global
// prefix.
if (Name[0] == '_') ++Name;
Function *F = M->getFunction(Name);
// Some ObjC names have a prefixed \01 in the IR. If we failed to find
// the symbol and it's of the ObjC conventions (starts with "-" or
// "+"), try prepending a \01 and see if we can find it that way.
if (!F && (Name[0] == '-' || Name[0] == '+'))
F = M->getFunction((Twine("\1") + Name).str());
assert(F && "No matching function in JIT IR Module!");
return JMM->startFunctionBody(F, Size);
}
// Mark the end of the function, including how much of the allocated
// memory was actually used.
void endFunctionBody(const char *Name, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
// FIXME: This should really reference the MCAsmInfo to get the global
// prefix.
if (Name[0] == '_') ++Name;
Function *F = M->getFunction(Name);
// Some ObjC names have a prefixed \01 in the IR. If we failed to find
// the symbol and it's of the ObjC conventions (starts with "-" or
// "+"), try prepending a \01 and see if we can find it that way.
if (!F && (Name[0] == '-' || Name[0] == '+'))
F = M->getFunction((Twine("\1") + Name).str());
assert(F && "No matching function in JIT IR Module!");
JMM->endFunctionBody(F, FunctionStart, FunctionEnd);
}
};
} // End llvm namespace

View File

@ -26,45 +26,290 @@ RuntimeDyldImpl::~RuntimeDyldImpl() {}
namespace llvm {
void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
uint8_t *EndAddress) {
// FIXME: DEPRECATED in favor of by-section allocation.
// Allocate memory for the function via the memory manager.
uintptr_t Size = EndAddress - StartAddress + 1;
uintptr_t AllocSize = Size;
uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
"Memory manager failed to allocate enough memory!");
// Copy the function payload into the memory block.
memcpy(Mem, StartAddress, Size);
MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
// Remember where we put it.
unsigned SectionID = Sections.size();
Sections.push_back(sys::MemoryBlock(Mem, Size));
// Default the assigned address for this symbol to wherever this
// allocated it.
SymbolTable[Name] = SymbolLoc(SectionID, 0);
DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n");
}
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
// First, resolve relocations assotiated with external symbols.
resolveSymbols();
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
reassignSectionAddress(i, SectionLoadAddress[i]);
reassignSectionAddress(i, Sections[i].LoadAddress);
}
}
void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
uint64_t TargetAddress) {
assert(SectionLocalMemToID.count(LocalAddress) &&
"Attempting to remap address of unknown section!");
unsigned SectionID = SectionLocalMemToID[LocalAddress];
reassignSectionAddress(SectionID, TargetAddress);
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
if (Sections[i].Address == LocalAddress) {
reassignSectionAddress(i, TargetAddress);
return;
}
}
llvm_unreachable("Attempting to remap address of unknown section!");
}
bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) {
// FIXME: ObjectFile don't modify MemoryBuffer.
// It should use const MemoryBuffer as parameter.
ObjectFile *obj = ObjectFile::
createObjectFile(const_cast<MemoryBuffer*>(InputBuffer));
Arch = (Triple::ArchType)obj->getArch();
LocalSymbolMap LocalSymbols; // Functions and data symbols from the
// object file.
ObjSectionToIDMap LocalSections; // Used sections from the object file
error_code err;
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator it = obj->begin_symbols(), itEnd = obj->end_symbols();
it != itEnd; it.increment(err)) {
if (err) break;
object::SymbolRef::Type SymType;
StringRef Name;
if ((bool)(err = it->getType(SymType))) break;
if ((bool)(err = it->getName(Name))) break;
if (SymType == object::SymbolRef::ST_Function ||
SymType == object::SymbolRef::ST_Data) {
uint64_t FileOffset;
uint32_t flags;
StringRef sData;
section_iterator sIt = obj->end_sections();
if ((bool)(err = it->getFileOffset(FileOffset))) break;
if ((bool)(err = it->getFlags(flags))) break;
if ((bool)(err = it->getSection(sIt))) break;
if (sIt == obj->end_sections()) continue;
if ((bool)(err = sIt->getContents(sData))) break;
const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
(uintptr_t)FileOffset;
uintptr_t SectOffset = (uintptr_t)(SymPtr - (const uint8_t*)sData.begin());
unsigned SectionID =
findOrEmitSection(*sIt,
SymType == object::SymbolRef::ST_Function,
LocalSections);
bool isGlobal = flags & SymbolRef::SF_Global;
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
<< " flags: " << flags
<< " SID: " << SectionID
<< " Offset: " << format("%p", SectOffset));
if (isGlobal)
SymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
}
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
}
if (err) {
report_fatal_error(err.message());
}
// Parse and proccess relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator sIt = obj->begin_sections(),
sItEnd = obj->end_sections(); sIt != sItEnd; sIt.increment(err)) {
if (err) break;
bool isFirstRelocation = true;
unsigned SectionID = 0;
StubMap Stubs;
for (relocation_iterator it = sIt->begin_relocations(),
itEnd = sIt->end_relocations(); it != itEnd; it.increment(err)) {
if (err) break;
// If it's first relocation in this section, find its SectionID
if (isFirstRelocation) {
SectionID = findOrEmitSection(*sIt, true, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
isFirstRelocation = false;
}
ObjRelocationInfo RI;
RI.SectionID = SectionID;
if ((bool)(err = it->getAdditionalInfo(RI.AdditionalInfo))) break;
if ((bool)(err = it->getOffset(RI.Offset))) break;
if ((bool)(err = it->getSymbol(RI.Symbol))) break;
if ((bool)(err = it->getType(RI.Type))) break;
DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
<< " Offset: " << format("%p", (uintptr_t)RI.Offset)
<< " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
<< "\n");
processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
}
if (err) {
report_fatal_error(err.message());
}
}
return false;
}
unsigned RuntimeDyldImpl::emitSection(const SectionRef &Section,
bool IsCode) {
unsigned StubBufSize = 0,
StubSize = getMaxStubSize();
error_code err;
if (StubSize > 0) {
for (relocation_iterator it = Section.begin_relocations(),
itEnd = Section.end_relocations(); it != itEnd; it.increment(err))
StubBufSize += StubSize;
}
StringRef data;
uint64_t Alignment64;
if ((bool)(err = Section.getContents(data))) report_fatal_error(err.message());
if ((bool)(err = Section.getAlignment(Alignment64)))
report_fatal_error(err.message());
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
unsigned DataSize = data.size();
unsigned Allocate = DataSize + StubBufSize;
unsigned SectionID = Sections.size();
const char *pData = data.data();
uint8_t *Addr = IsCode
? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID);
memcpy(Addr, pData, DataSize);
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate
<< "\n");
Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
return SectionID;
}
unsigned RuntimeDyldImpl::
findOrEmitSection(const SectionRef &Section, bool IsCode,
ObjSectionToIDMap &LocalSections) {
unsigned SectionID = 0;
ObjSectionToIDMap::iterator sIDIt = LocalSections.find(Section);
if (sIDIt != LocalSections.end())
SectionID = sIDIt->second;
else {
SectionID = emitSection(Section, IsCode);
LocalSections[Section] = SectionID;
}
return SectionID;
}
void RuntimeDyldImpl::AddRelocation(const RelocationValueRef &Value,
unsigned SectionID, uintptr_t Offset,
uint32_t RelType) {
DEBUG(dbgs() << "AddRelocation SymNamePtr: " << format("%p", Value.SymbolName)
<< " SID: " << Value.SectionID
<< " Addend: " << format("%p", Value.Addend)
<< " Offset: " << format("%p", Offset)
<< " RelType: " << format("%x", RelType)
<< "\n");
if (Value.SymbolName == 0) {
Relocations[Value.SectionID].push_back(RelocationEntry(
SectionID,
Offset,
RelType,
Value.Addend));
} else
SymbolRelocations[Value.SymbolName].push_back(RelocationEntry(
SectionID,
Offset,
RelType,
Value.Addend));
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
if (Arch == Triple::arm) {
uint32_t *StubAddr = (uint32_t*)Addr;
*StubAddr = 0xe51ff004; // ldr pc,<label>
return (uint8_t*)++StubAddr;
}
else
return Addr;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
Sections[SectionID].LoadAddress = Addr;
DEBUG(dbgs() << "Resolving relocations Section #" << SectionID
<< "\t" << format("%p", (uint8_t *)Addr)
<< "\n");
resolveRelocationList(Relocations[SectionID], Addr);
}
void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
uint64_t Value) {
uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset;
DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
<< " Data: " << RE.Data
<< " Addend: " << RE.Addend
<< "\n");
resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset,
Value, RE.Data, RE.Addend);
}
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
resolveRelocationEntry(Relocs[i], Value);
}
}
// resolveSymbols - Resolve any relocations to the specified symbols if
// we know where it lives.
void RuntimeDyldImpl::resolveSymbols() {
StringMap<RelocationList>::iterator it = SymbolRelocations.begin(),
itEnd = SymbolRelocations.end();
for (; it != itEnd; it++) {
StringRef Name = it->first();
RelocationList &Relocs = it->second;
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
if (Loc == SymbolTable.end()) {
// This is an external symbol, try to get it address from
// MemoryManager.
uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
true);
DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t" << format("%p", Addr)
<< "\n");
resolveRelocationList(Relocs, (uintptr_t)Addr);
} else {
// Change the relocation to be section relative rather than symbol
// relative and move it to the resolved relocation list.
DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
for (int i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry Entry = Relocs[i];
Entry.Addend += Loc->second.second;
Relocations[Loc->second.first].push_back(Entry);
}
Relocs.clear();
}
}
}
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {

View File

@ -25,222 +25,58 @@ using namespace llvm::object;
namespace llvm {
namespace {
// FIXME: this function should probably not live here...
//
// Returns the name and address of an unrelocated symbol in an ELF section
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
//FIXME: error checking here required to catch corrupt ELF objects...
error_code Err = Sym->getName(Name);
uint64_t AddrInSection;
Err = Sym->getAddress(AddrInSection);
SectionRef empty_section;
section_iterator Section(empty_section);
Err = Sym->getSection(Section);
StringRef SectionContents;
Section->getContents(SectionContents);
Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
}
}
bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
if (!isCompatibleFormat(InputBuffer))
return true;
OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
Arch = Obj->getArch();
// Map address in the Object file image to function names
IntervalMap<uint64_t, StringRef>::Allocator A;
IntervalMap<uint64_t, StringRef> FuncMap(A);
// This is a bit of a hack. The ObjectFile we've just loaded reports
// section addresses as 0 and doesn't provide access to the section
// offset (from which we could calculate the address. Instead,
// we're storing the address when it comes up in the ST_Debug case
// below.
//
StringMap<uint64_t> DebugSymbolMap;
symbol_iterator SymEnd = Obj->end_symbols();
error_code Err;
for (symbol_iterator Sym = Obj->begin_symbols();
Sym != SymEnd; Sym.increment(Err)) {
SymbolRef::Type Type;
Sym->getType(Type);
if (Type == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
uint64_t Size;
Err = Sym->getSize(Size);
uint8_t *Start;
uint8_t *End;
Start = reinterpret_cast<uint8_t*>(Addr);
End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
extractFunction(Name, Start, End);
FuncMap.insert(Addr, Addr + Size - 1, Name);
} else if (Type == SymbolRef::ST_Debug) {
// This case helps us find section addresses
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
DebugSymbolMap[Name] = Addr;
}
}
// Iterate through the relocations for this object
section_iterator SecEnd = Obj->end_sections();
for (section_iterator Sec = Obj->begin_sections();
Sec != SecEnd; Sec.increment(Err)) {
StringRef SecName;
uint64_t SecAddr;
Sec->getName(SecName);
// Ignore sections that aren't in our map
if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
continue;
}
SecAddr = DebugSymbolMap[SecName];
relocation_iterator RelEnd = Sec->end_relocations();
for (relocation_iterator Rel = Sec->begin_relocations();
Rel != RelEnd; Rel.increment(Err)) {
uint64_t RelOffset;
uint64_t RelType;
int64_t RelAddend;
SymbolRef RelSym;
StringRef SymName;
uint64_t SymAddr;
uint64_t SymOffset;
Rel->getAddress(RelOffset);
Rel->getType(RelType);
Rel->getAdditionalInfo(RelAddend);
Rel->getSymbol(RelSym);
RelSym.getName(SymName);
RelSym.getAddress(SymAddr);
RelSym.getFileOffset(SymOffset);
// If this relocation is inside a function, we want to store the
// function name and a function-relative offset
IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
= FuncMap.find(SecAddr + RelOffset);
if (ContainingFunc.valid()) {
// Re-base the relocation to make it relative to the target function
RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
RelOffset,
RelType,
RelAddend,
true));
} else {
Relocations[SymName].push_back(RelocationEntry(SecName,
RelOffset,
RelType,
RelAddend,
false));
}
}
}
return false;
}
void RuntimeDyldELF::resolveRelocations() {
// FIXME: deprecated. should be changed to use the by-section
// allocation and relocation scheme.
// Just iterate over the symbols in our symbol table and assign their
// addresses.
StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
StringMap<SymbolLoc>::iterator e = SymbolTable.end();
for (;i != e; ++i) {
assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
reassignSymbolAddress(i->getKey(),
(uint8_t*)Sections[i->getValue().first].base());
}
}
void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
llvm_unreachable("Non-function relocation not implemented yet!");
}
switch (RE.Type) {
default: llvm_unreachable("Relocation type not implemented yet!");
void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
switch (Type) {
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_X86_64_64: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
uint64_t *Target = (uint64_t*)(LocalAddress);
*Target = Value + Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
Value += Addend;
// FIXME: Handle the possibility of this assertion failing
assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
(RE.Type == ELF::R_X86_64_32S &&
assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
(Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint64_t RealOffset = *Placeholder +
reinterpret_cast<uint64_t>(Addr) +
RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
assert((RealOffset & 0xFFFFFFFF) == RealOffset);
uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
assert(RealOffset <= 214783647 && RealOffset >= -214783648);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
llvm_unreachable("Non-function relocation not implemented yet!");
}
switch (RE.Type) {
void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
switch (Type) {
case ELF::R_386_32: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
uint32_t *Target = (uint32_t*)(LocalAddress);
*Target = Value + Addend;
break;
}
case ELF::R_386_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
*Placeholder = RealOffset;
break;
}
@ -248,57 +84,173 @@ void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
llvm_unreachable("Relocation type not implemented yet!");
break;
}
}
void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
// TODO: Add Thumb relocations.
uint32_t* TargetPtr = (uint32_t*)LocalAddress;
Value += Addend;
DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
<< " FinalAddress: " << format("%p",FinalAddress)
<< " Value: " << format("%x",Value)
<< " Type: " << format("%x",Type)
<< " Addend: " << format("%x",Addend)
<< "\n");
switch(Type) {
default:
llvm_unreachable("Not implemented relocation type!");
// Just write 32bit value to relocation address
case ELF::R_ARM_ABS32 :
*TargetPtr = Value;
break;
// Write first 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
case ELF::R_ARM_MOVW_ABS_NC :
Value = Value & 0xFFFF;
*TargetPtr |= Value & 0xFFF;
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
// Write last 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
case ELF::R_ARM_MOVT_ABS :
Value = (Value >> 16) & 0xFFFF;
*TargetPtr |= Value & 0xFFF;
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
// Write 24 bit relative value to the branch instruction.
case ELF::R_ARM_PC24 : // Fall through.
case ELF::R_ARM_CALL : // Fall through.
case ELF::R_ARM_JUMP24 :
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
RelValue = (RelValue & 0x03FFFFFC) >> 2;
*TargetPtr &= 0xFF000000;
*TargetPtr |= RelValue;
break;
}
}
void RuntimeDyldELF::resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(Name, Addr, RE);
resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
break;
case Triple::x86:
resolveX86Relocation(Name, Addr, RE);
resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
case Triple::arm:
resolveArmRelocation(Name, Addr, RE);
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
// FIXME: deprecated. switch to reassignSectionAddress() instead.
//
// Actually moving the symbol address requires by-section mapping.
assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
"Unable to relocate section in by-function JIT allocation model!");
void RuntimeDyldELF::
processRelocationRef(const ObjRelocationInfo &Rel, const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols, StubMap &Stubs) {
RelocationList &Relocs = Relocations[Name];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
resolveRelocation(Name, Addr, RE);
uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
RelocationValueRef Value;
StringRef TargetName;
const SymbolRef &Symbol = Rel.Symbol;
Symbol.getName(TargetName);
DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
<< " TargetName: " << TargetName
<< "\n");
// First look the symbol in object file symbols.
LocalSymbolMap::iterator it = Symbols.find(TargetName.data());
if (it != Symbols.end()) {
Value.SectionID = it->second.first;
Value.Addend = it->second.second;
} else {
// Second look the symbol in global symbol table.
StringMap<SymbolLoc>::iterator itS = SymbolTable.find(TargetName.data());
if (itS != SymbolTable.end()) {
Value.SectionID = itS->second.first;
Value.Addend = itS->second.second;
} else {
SymbolRef::Type SymType;
Symbol.getType(SymType);
switch (SymType) {
case SymbolRef::ST_Debug: {
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
// and can be changed by another developers. Maybe best way is add
// a new symbol type ST_Section to SymbolRef and use it.
section_iterator sIt = Obj.end_sections();
Symbol.getSection(sIt);
if (sIt == Obj.end_sections())
llvm_unreachable("Symbol section not found, bad object file format!");
DEBUG(dbgs() << "\t\tThis is section symbol\n");
Value.SectionID = findOrEmitSection((*sIt), true, ObjSectionToID);
Value.Addend = Addend;
break;
}
case SymbolRef::ST_Unknown: {
Value.SymbolName = TargetName.data();
Value.Addend = Addend;
break;
}
default:
llvm_unreachable("Unresolved symbol type!");
break;
}
}
}
}
DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
<< " Rel.Offset: " << Rel.Offset
<< "\n");
if (Arch == Triple::arm &&
(RelType == ELF::R_ARM_PC24 ||
RelType == ELF::R_ARM_CALL ||
RelType == ELF::R_ARM_JUMP24)) {
// This is an ARM branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
SectionEntry &Section = Sections[Rel.SectionID];
uint8_t *Target = Section.Address + Rel.Offset;
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
assert(0);
// Look up for existing stub.
StubMap::const_iterator stubIt = Stubs.find(Value);
if (stubIt != Stubs.end()) {
resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
stubIt->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
AddRelocation(Value, Rel.SectionID,
StubTargetAddr - Section.Address, ELF::R_ARM_ABS32);
resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address +
Section.StubOffset, RelType, 0);
Section.StubOffset += getMaxStubSize();
}
} else
AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {

View File

@ -21,158 +21,42 @@ using namespace llvm;
namespace llvm {
class RuntimeDyldELF : public RuntimeDyldImpl {
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
struct RelocationEntry {
// Function or section this relocation is contained in.
std::string Target;
// Offset into the target function or section for the relocation.
uint32_t Offset;
// Relocation type
uint32_t Type;
// Addend encoded in the instruction itself, if any.
int32_t Addend;
// Has the relocation been recalcuated as an offset within a function?
bool IsFunctionRelative;
// Has this relocation been resolved previously?
bool isResolved;
protected:
void resolveX86_64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend);
RelocationEntry(StringRef t,
uint32_t offset,
uint32_t type,
int32_t addend,
bool isFunctionRelative)
: Target(t)
, Offset(offset)
, Type(type)
, Addend(addend)
, IsFunctionRelative(isFunctionRelative)
, isResolved(false) { }
};
typedef SmallVector<RelocationEntry, 4> RelocationList;
StringMap<RelocationList> Relocations;
unsigned Arch;
void resolveX86Relocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend);
void resolveRelocations();
void resolveARMRelocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend);
void resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
virtual void resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend);
void resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols, StubMap &Stubs);
public:
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
bool loadObject(MemoryBuffer *InputBuffer);
void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
};
} // end namespace llvm
#endif
//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ELF support for MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIME_DYLD_ELF_H
#define LLVM_RUNTIME_DYLD_ELF_H
#include "RuntimeDyldImpl.h"
using namespace llvm;
namespace llvm {
class RuntimeDyldELF : public RuntimeDyldImpl {
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
struct RelocationEntry {
// Function or section this relocation is contained in.
std::string Target;
// Offset into the target function or section for the relocation.
uint32_t Offset;
// Relocation type
uint32_t Type;
// Addend encoded in the instruction itself, if any.
int32_t Addend;
// Has the relocation been recalcuated as an offset within a function?
bool IsFunctionRelative;
// Has this relocation been resolved previously?
bool isResolved;
RelocationEntry(StringRef t,
uint32_t offset,
uint32_t type,
int32_t addend,
bool isFunctionRelative)
: Target(t)
, Offset(offset)
, Type(type)
, Addend(addend)
, IsFunctionRelative(isFunctionRelative)
, isResolved(false) { }
};
typedef SmallVector<RelocationEntry, 4> RelocationList;
StringMap<RelocationList> Relocations;
unsigned Arch;
void resolveRelocations();
void resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
void resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE);
public:
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
bool loadObject(MemoryBuffer *InputBuffer);
void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
};
} // end namespace llvm
#endif
#endif

View File

@ -15,45 +15,125 @@
#define LLVM_RUNTIME_DYLD_IMPL_H
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/Triple.h"
#include <map>
#include "llvm/Support/Format.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
class SectionEntry {
public:
uint8_t* Address;
size_t Size;
uint64_t LoadAddress; // For each section, the address it will be
// considered to live at for relocations. The same
// as the pointer to the above memory block for
// hosted JITs.
uintptr_t StubOffset; // It's used for architecturies with stub
// functions for far relocations like ARM.
uintptr_t ObjAddress; // Section address in object file. It's use for
// calculate MachO relocation addend
SectionEntry(uint8_t* address, size_t size, uintptr_t stubOffset,
uintptr_t objAddress)
: Address(address), Size(size), LoadAddress((uintptr_t)address),
StubOffset(stubOffset), ObjAddress(objAddress) {}
};
class RelocationEntry {
public:
unsigned SectionID; // Section the relocation is contained in.
uintptr_t Offset; // Offset into the section for the relocation.
uint32_t Data; // Relocatino data. Including type of relocation
// and another flags and parameners from
intptr_t Addend; // Addend encoded in the instruction itself, if any,
// plus the offset into the source section for
// the symbol once the relocation is resolvable.
RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
: SectionID(id), Offset(offset), Data(data), Addend(addend) {}
};
// Raw relocation data from object file
class ObjRelocationInfo {
public:
unsigned SectionID;
uint64_t Offset;
SymbolRef Symbol;
uint64_t Type;
int64_t AdditionalInfo;
};
class RelocationValueRef {
public:
unsigned SectionID;
intptr_t Addend;
const char *SymbolName;
RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {}
inline bool operator==(const RelocationValueRef &Other) const {
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0;
}
inline bool operator <(const RelocationValueRef &Other) const {
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0;
}
};
class RuntimeDyldImpl {
protected:
unsigned CPUType;
unsigned CPUSubtype;
// The MemoryManager to load objects into.
RTDyldMemoryManager *MemMgr;
// For each section, we have a MemoryBlock of it's data.
// Indexed by SectionID.
SmallVector<sys::MemoryBlock, 32> Sections;
// For each section, the address it will be considered to live at for
// relocations. The same as the pointer to the above memory block for hosted
// JITs. Indexed by SectionID.
SmallVector<uint64_t, 32> SectionLoadAddress;
// A list of emmitted sections.
typedef SmallVector<SectionEntry, 64> SectionList;
SectionList Sections;
// Keep a map of starting local address to the SectionID which references it.
// Lookup function for when we assign virtual addresses.
DenseMap<void *, unsigned> SectionLocalMemToID;
// Keep a map of sections from object file to the SectionID which
// references it.
typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
// Master symbol table. As modules are loaded and external symbols are
// resolved, their addresses are stored here as a SectionID/Offset pair.
typedef std::pair<unsigned, uint64_t> SymbolLoc;
typedef std::pair<unsigned, uintptr_t> SymbolLoc;
StringMap<SymbolLoc> SymbolTable;
typedef DenseMap<const char*, SymbolLoc> LocalSymbolMap;
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
// The symbol (or section) the relocation is sourced from is the Key
// in the relocation list where it's stored.
typedef SmallVector<RelocationEntry, 64> RelocationList;
// Relocations to sections already loaded. Indexed by SectionID which is the
// source of the address. The target where the address will be writen is
// SectionID/Offset in the relocation itself.
DenseMap<unsigned, RelocationList> Relocations;
// Relocations to external symbols that are not yet resolved.
// Indexed by symbol name.
StringMap<RelocationList> SymbolRelocations;
typedef std::map<RelocationValueRef, uintptr_t> StubMap;
Triple::ArchType Arch;
inline unsigned getMaxStubSize() {
if (Arch == Triple::arm || Arch == Triple::thumb)
return 8; // 32-bit instruction and 32-bit address
else
return 0;
}
bool HasError;
std::string ErrorStr;
@ -66,17 +146,62 @@ protected:
}
uint8_t *getSectionAddress(unsigned SectionID) {
return (uint8_t*)Sections[SectionID].base();
return (uint8_t*)Sections[SectionID].Address;
}
void extractFunction(StringRef Name, uint8_t *StartAddress,
uint8_t *EndAddress);
/// \brief Emits section data from the object file to the MemoryManager.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned emitSection(const SectionRef &Section, bool IsCode);
/// \brief Find Section in LocalSections. If the secton is not found - emit
/// it and store in LocalSections.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned findOrEmitSection(const SectionRef &Section, bool IsCode,
ObjSectionToIDMap &LocalSections);
/// \brief If Value.SymbolName is NULL then store relocation to the
/// Relocations, else store it in the SymbolRelocations.
void AddRelocation(const RelocationValueRef &Value, unsigned SectionID,
uintptr_t Offset, uint32_t RelType);
/// \brief Emits long jump instruction to Addr.
/// \return Pointer to the memory area for emitting target address.
uint8_t* createStubFunction(uint8_t *Addr);
/// \brief Resolves relocations from Relocs list with address from Value.
void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
/// \brief A object file specific relocation resolver
/// \param Address Address to apply the relocation action
/// \param Value Target symbol address to apply the relocation action
/// \param Type object file specific relocation type
/// \param Addend A constant addend used to compute the value to be stored
/// into the relocatable field
virtual void resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) = 0;
/// \brief Parses the object file relocation and store it to Relocations
/// or SymbolRelocations. Its depend from object file type.
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols, StubMap &Stubs) = 0;
void resolveSymbols();
public:
RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
virtual ~RuntimeDyldImpl();
virtual bool loadObject(MemoryBuffer *InputBuffer) = 0;
bool loadObject(const MemoryBuffer *InputBuffer);
void *getSymbolAddress(StringRef Name) {
// FIXME: Just look up as a function for now. Overly simple of course.
@ -87,9 +212,9 @@ public:
return getSectionAddress(Loc.first) + Loc.second;
}
virtual void resolveRelocations();
void resolveRelocations();
virtual void reassignSectionAddress(unsigned SectionID, uint64_t Addr) = 0;
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress);
@ -103,6 +228,7 @@ public:
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
};
} // end namespace llvm

View File

@ -21,33 +21,47 @@ using namespace llvm::object;
namespace llvm {
bool RuntimeDyldMachO::
resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
bool isPCRel,
unsigned Type,
unsigned Size,
int64_t Addend) {
void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
bool isPCRel = (Type >> 24) & 1;
unsigned MachoType = (Type >> 28) & 0xf;
unsigned Size = 1 << ((Type >> 25) & 3);
DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress)
<< " FinalAddress: " << format("%p", FinalAddress)
<< " Value: " << format("%p", Value)
<< " Addend: " << Addend
<< " isPCRel: " << isPCRel
<< " MachoType: " << MachoType
<< " Size: " << Size
<< "\n");
// This just dispatches to the proper target specific routine.
switch (CPUType) {
switch (Arch) {
default: llvm_unreachable("Unsupported CPU type!");
case mach::CTM_x86_64:
return resolveX86_64Relocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
Type,
Size,
Addend);
case mach::CTM_ARM:
return resolveARMRelocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
Type,
Size,
Addend);
case Triple::x86_64: // Fall through.
case Triple::x86:
resolveX86_64Relocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
MachoType,
Size,
Addend);
break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
MachoType,
Size,
Addend);
break;
}
}
@ -153,503 +167,83 @@ resolveARMRelocation(uint8_t *LocalAddress,
return false;
}
bool RuntimeDyldMachO::
loadSegment32(const MachOObject *Obj,
const MachOObject::LoadCommandInfo *SegmentLCI,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
// FIXME: This should really be combined w/ loadSegment64. Templatized
// function on the 32/64 datatypes maybe?
InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
if (!SegmentLC)
return Error("unable to load segment load command");
void RuntimeDyldMachO::
processRelocationRef(const ObjRelocationInfo &Rel, const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols, StubMap &Stubs) {
uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
RelocationValueRef Value;
SectionEntry &Section = Sections[Rel.SectionID];
uint8_t *Target = Section.Address + Rel.Offset;
SmallVector<unsigned, 16> SectionMap;
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section> Sect;
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
// Allocate memory via the MM for the section.
uint8_t *Buffer;
uint32_t SectionID = Sections.size();
if (Sect->Flags == 0x80000400)
Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
else
Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);
DEBUG(dbgs() << "Loading "
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
<< " (ID #" << SectionID << ")"
<< " '" << Sect->SegmentName << ","
<< Sect->Name << "' of size " << Sect->Size
<< " to address " << Buffer << ".\n");
// Copy the payload from the object file into the allocated buffer.
uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
SegmentLC->FileSize).data();
memcpy(Buffer, Base + Sect->Address, Sect->Size);
// Remember what got allocated for this SectionID.
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
SectionLocalMemToID[Buffer] = SectionID;
// By default, the load address of a section is its memory buffer.
SectionLoadAddress.push_back((uint64_t)Buffer);
// Keep a map of object file section numbers to corresponding SectionIDs
// while processing the file.
SectionMap.push_back(SectionID);
}
// Process the symbol table.
SmallVector<StringRef, 64> SymbolNames;
processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);
// Process the relocations for each section we're loading.
Relocations.grow(Relocations.size() + SegmentLC->NumSections);
Referrers.grow(Referrers.size() + SegmentLC->NumSections);
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section> Sect;
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
InMemoryStruct<macho::RelocationEntry> RE;
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
if (RE->Word0 & macho::RF_Scattered)
return Error("NOT YET IMPLEMENTED: scattered relocations.");
// Word0 of the relocation is the offset into the section where the
// relocation should be applied. We need to translate that into an
// offset into a function since that's our atom.
uint32_t Offset = RE->Word0;
bool isExtern = (RE->Word1 >> 27) & 1;
// FIXME: Get the relocation addend from the target address.
// FIXME: VERY imporant for internal relocations.
// Figure out the source symbol of the relocation. If isExtern is true,
// this relocation references the symbol table, otherwise it references
// a section in the same object, numbered from 1 through NumSections
// (SectionBases is [0, NumSections-1]).
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
if (!isExtern) {
assert(SourceNum > 0 && "Invalid relocation section number!");
unsigned SectionID = SectionMap[SourceNum - 1];
unsigned TargetID = SectionMap[SectNum];
DEBUG(dbgs() << "Internal relocation at Section #"
<< TargetID << " + " << Offset
<< " from Section #"
<< SectionID << " (Word1: "
<< format("0x%x", RE->Word1) << ")\n");
// Store the relocation information. It will get resolved when
// the section addresses are assigned.
uint32_t RelocationIndex = Relocations[SectionID].size();
Relocations[SectionID].push_back(RelocationEntry(TargetID,
Offset,
RE->Word1,
0 /*Addend*/));
Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
} else {
StringRef SourceName = SymbolNames[SourceNum];
// Now store the relocation information. Associate it with the source
// symbol. Just add it to the unresolved list and let the general
// path post-load resolve it if we know where the symbol is.
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
Offset,
RE->Word1,
0 /*Addend*/));
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
<< " from '" << SourceName << "(Word1: "
<< format("0x%x", RE->Word1) << ")\n");
}
bool isExtern = (RelType >> 27) & 1;
if (isExtern) {
StringRef TargetName;
const SymbolRef &Symbol = Rel.Symbol;
Symbol.getName(TargetName);
// First look the symbol in object file symbols.
LocalSymbolMap::iterator it = Symbols.find(TargetName.data());
if (it != Symbols.end()) {
Value.SectionID = it->second.first;
Value.Addend = it->second.second;
} else {
// Second look the symbol in global symbol table.
StringMap<SymbolLoc>::iterator itS = SymbolTable.find(TargetName.data());
if (itS != SymbolTable.end()) {
Value.SectionID = itS->second.first;
Value.Addend = itS->second.second;
} else
Value.SymbolName = TargetName.data();
}
}
// Resolve the addresses of any symbols that were defined in this segment.
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
resolveSymbol(SymbolNames[i]);
return false;
}
bool RuntimeDyldMachO::
loadSegment64(const MachOObject *Obj,
const MachOObject::LoadCommandInfo *SegmentLCI,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
if (!Segment64LC)
return Error("unable to load segment load command");
SmallVector<unsigned, 16> SectionMap;
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section64> Sect;
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
// Allocate memory via the MM for the section.
uint8_t *Buffer;
uint32_t SectionID = Sections.size();
unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
if (Sect->Flags == 0x80000400)
Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
else
Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);
DEBUG(dbgs() << "Loading "
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
<< " (ID #" << SectionID << ")"
<< " '" << Sect->SegmentName << ","
<< Sect->Name << "' of size " << Sect->Size
<< " (align " << Align << ")"
<< " to address " << Buffer << ".\n");
// Copy the payload from the object file into the allocated buffer.
uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
Segment64LC->FileSize).data();
memcpy(Buffer, Base + Sect->Address, Sect->Size);
// Remember what got allocated for this SectionID.
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
SectionLocalMemToID[Buffer] = SectionID;
// By default, the load address of a section is its memory buffer.
SectionLoadAddress.push_back((uint64_t)Buffer);
// Keep a map of object file section numbers to corresponding SectionIDs
// while processing the file.
SectionMap.push_back(SectionID);
}
// Process the symbol table.
SmallVector<StringRef, 64> SymbolNames;
processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);
// Process the relocations for each section we're loading.
Relocations.grow(Relocations.size() + Segment64LC->NumSections);
Referrers.grow(Referrers.size() + Segment64LC->NumSections);
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section64> Sect;
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
InMemoryStruct<macho::RelocationEntry> RE;
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
if (RE->Word0 & macho::RF_Scattered)
return Error("NOT YET IMPLEMENTED: scattered relocations.");
// Word0 of the relocation is the offset into the section where the
// relocation should be applied. We need to translate that into an
// offset into a function since that's our atom.
uint32_t Offset = RE->Word0;
bool isExtern = (RE->Word1 >> 27) & 1;
// FIXME: Get the relocation addend from the target address.
// FIXME: VERY imporant for internal relocations.
// Figure out the source symbol of the relocation. If isExtern is true,
// this relocation references the symbol table, otherwise it references
// a section in the same object, numbered from 1 through NumSections
// (SectionBases is [0, NumSections-1]).
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
if (!isExtern) {
assert(SourceNum > 0 && "Invalid relocation section number!");
unsigned SectionID = SectionMap[SourceNum - 1];
unsigned TargetID = SectionMap[SectNum];
DEBUG(dbgs() << "Internal relocation at Section #"
<< TargetID << " + " << Offset
<< " from Section #"
<< SectionID << " (Word1: "
<< format("0x%x", RE->Word1) << ")\n");
// Store the relocation information. It will get resolved when
// the section addresses are assigned.
uint32_t RelocationIndex = Relocations[SectionID].size();
Relocations[SectionID].push_back(RelocationEntry(TargetID,
Offset,
RE->Word1,
0 /*Addend*/));
Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
} else {
StringRef SourceName = SymbolNames[SourceNum];
// Now store the relocation information. Associate it with the source
// symbol. Just add it to the unresolved list and let the general
// path post-load resolve it if we know where the symbol is.
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
Offset,
RE->Word1,
0 /*Addend*/));
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
<< " from '" << SourceName << "(Word1: "
<< format("0x%x", RE->Word1) << ")\n");
}
}
}
// Resolve the addresses of any symbols that were defined in this segment.
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
resolveSymbol(SymbolNames[i]);
return false;
}
bool RuntimeDyldMachO::
processSymbols32(const MachOObject *Obj,
SmallVectorImpl<unsigned> &SectionMap,
SmallVectorImpl<StringRef> &SymbolNames,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
// FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
InMemoryStruct<macho::SymbolTableEntry> STE;
Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
if (!STE)
return Error("unable to read symbol: '" + Twine(i) + "'");
// Get the symbol name.
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
SymbolNames.push_back(Name);
// FIXME: Check the symbol type and flags.
if (STE->Type != 0xF) // external, defined in this segment.
continue;
// Flags in the upper nibble we don't care about.
if ((STE->Flags & 0xf) != 0x0)
continue;
// Remember the symbol.
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
<< (getSectionAddress(SectionID) + STE->Value)
<< "\n");
}
return false;
}
bool RuntimeDyldMachO::
processSymbols64(const MachOObject *Obj,
SmallVectorImpl<unsigned> &SectionMap,
SmallVectorImpl<StringRef> &SymbolNames,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
InMemoryStruct<macho::Symbol64TableEntry> STE;
Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
if (!STE)
return Error("unable to read symbol: '" + Twine(i) + "'");
// Get the symbol name.
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
SymbolNames.push_back(Name);
// FIXME: Check the symbol type and flags.
if (STE->Type != 0xF) // external, defined in this segment.
continue;
// Flags in the upper nibble we don't care about.
if ((STE->Flags & 0xf) != 0x0)
continue;
// Remember the symbol.
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
<< (getSectionAddress(SectionID) + STE->Value)
<< "\n");
}
return false;
}
// resolveSymbol - Resolve any relocations to the specified symbol if
// we know where it lives.
void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
if (Loc == SymbolTable.end())
return;
RelocationList &Relocs = UnresolvedRelocations[Name];
DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
for (int i = 0, e = Relocs.size(); i != e; ++i) {
// Change the relocation to be section relative rather than symbol
// relative and move it to the resolved relocation list.
RelocationEntry Entry = Relocs[i];
Entry.Addend += Loc->second.second;
uint32_t RelocationIndex = Relocations[Loc->second.first].size();
Relocations[Loc->second.first].push_back(Entry);
Referrers[Entry.SectionID].push_back(Referrer(Loc->second.first, RelocationIndex));
}
// FIXME: Keep a worklist of the relocations we've added so that we can
// resolve more selectively later.
Relocs.clear();
}
bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
// If the linker is in an error state, don't do anything.
if (hasError())
return true;
// Load the Mach-O wrapper object.
std::string ErrorStr;
OwningPtr<MachOObject> Obj(
MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
if (!Obj)
return Error("unable to load object: '" + ErrorStr + "'");
// Get the CPU type information from the header.
const macho::Header &Header = Obj->getHeader();
// FIXME: Error checking that the loaded object is compatible with
// the system we're running on.
CPUType = Header.CPUType;
CPUSubtype = Header.CPUSubtype;
// Validate that the load commands match what we expect.
const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
*DysymtabLCI = 0;
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
switch (LCI.Command.Type) {
case macho::LCT_Segment:
case macho::LCT_Segment64:
if (SegmentLCI)
return Error("unexpected input object (multiple segments)");
SegmentLCI = &LCI;
break;
case macho::LCT_Symtab:
if (SymtabLCI)
return Error("unexpected input object (multiple symbol tables)");
SymtabLCI = &LCI;
break;
case macho::LCT_Dysymtab:
if (DysymtabLCI)
return Error("unexpected input object (multiple symbol tables)");
DysymtabLCI = &LCI;
break;
default:
return Error("unexpected input object (unexpected load command");
}
}
if (!SymtabLCI)
return Error("no symbol table found in object");
if (!SegmentLCI)
return Error("no segments found in object");
// Read and register the symbol table data.
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
if (!SymtabLC)
return Error("unable to load symbol table load command");
Obj->RegisterStringTable(*SymtabLC);
// Read the dynamic link-edit information, if present (not present in static
// objects).
if (DysymtabLCI) {
InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
if (!DysymtabLC)
return Error("unable to load dynamic link-exit load command");
// FIXME: We don't support anything interesting yet.
// if (DysymtabLC->LocalSymbolsIndex != 0)
// return Error("NOT YET IMPLEMENTED: local symbol entries");
// if (DysymtabLC->ExternalSymbolsIndex != 0)
// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
}
// Load the segment load command.
if (SegmentLCI->Command.Type == macho::LCT_Segment) {
if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
return true;
} else {
if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
return true;
error_code err;
uint8_t sIdx = static_cast<uint8_t>(RelType & 0xFF);
section_iterator sIt = Obj.begin_sections(),
sItEnd = Obj.end_sections();
for (uint8_t i = 1; i < sIdx; i++) {
error_code err;
sIt.increment(err);
if (sIt == sItEnd)
break;
}
assert(sIt != sItEnd && "No section containing relocation!");
Value.SectionID = findOrEmitSection(*sIt, true, ObjSectionToID);
Value.Addend = *(const intptr_t *)Target;
if (Value.Addend) {
// The MachO addend is offset from the current section, we need set it
// as offset from destination section
Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
}
}
// Assign the addresses of the sections from the object so that any
// relocations to them get set properly.
// FIXME: This is done directly from the client at the moment. We should
// default the values to the local storage, at least when the target arch
// is the same as the host arch.
if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) {
// This is an ARM branch relocation, need to use a stub function.
return false;
// Look up for existing stub.
StubMap::const_iterator stubIt = Stubs.find(Value);
if (stubIt != Stubs.end())
resolveRelocation(Target, (uint64_t)Target,
(uint64_t)Section.Address + stubIt->second,
RelType, 0);
else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address,
macho::RIT_Vanilla);
resolveRelocation(Target, (uint64_t)Target,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
Section.StubOffset += getMaxStubSize();
}
} else
AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
SectionLoadAddress[SectionID] = Addr;
RelocationList &Relocs = Relocations[SectionID];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
bool isPCRel = (RE.Data >> 24) & 1;
unsigned Type = (RE.Data >> 28) & 0xf;
unsigned Size = 1 << ((RE.Data >> 25) & 3);
DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
<< " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
<< "(" << (isPCRel ? "pcrel" : "absolute")
<< ", type: " << Type << ", Size: " << Size << ", Addend: "
<< RE.Addend << ").\n");
resolveRelocation(Target,
FinalTarget,
Addr,
isPCRel,
Type,
Size,
RE.Addend);
}
ReferrerList &Refers = Referrers[SectionID];
for (unsigned i = 0, e = Refers.size(); i != e; ++i) {
Referrer &R = Refers[i];
RelocationEntry &RE = Relocations[R.SectionID][R.Index];
uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
bool isPCRel = (RE.Data >> 24) & 1;
unsigned Type = (RE.Data >> 28) & 0xf;
unsigned Size = 1 << ((RE.Data >> 25) & 3);
DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
<< " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
<< "(" << (isPCRel ? "pcrel" : "absolute")
<< ", type: " << Type << ", Size: " << Size << ", Addend: "
<< RE.Addend << ").\n");
resolveRelocation(Target,
FinalTarget,
Addr,
isPCRel,
Type,
Size,
RE.Addend);
}
}
bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
if (Magic == "\xFE\xED\xFA\xCE") return true;
if (Magic == "\xCE\xFA\xED\xFE") return true;

View File

@ -25,55 +25,7 @@ using namespace llvm::object;
namespace llvm {
class RuntimeDyldMachO : public RuntimeDyldImpl {
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
// The symbol (or section) the relocation is sourced from is the Key
// in the relocation list where it's stored.
struct RelocationEntry {
unsigned SectionID; // Section the relocation is contained in.
uint64_t Offset; // Offset into the section for the relocation.
uint32_t Data; // Second word of the raw macho relocation entry.
int64_t Addend; // Addend encoded in the instruction itself, if any,
// plus the offset into the source section for
// the symbol once the relocation is resolvable.
RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
: SectionID(id), Offset(offset), Data(data), Addend(addend) {}
};
typedef SmallVector<RelocationEntry, 4> RelocationList;
// For each section, keep a list of referrers in that section that are clients
// of relocations in other sections. Whenever a relocation gets created,
// create a corresponding referrer. Whenever relocations are re-resolved,
// re-resolve the referrers' relocations as well.
struct Referrer {
unsigned SectionID; // Section whose RelocationList contains the relocation.
uint32_t Index; // Index of the RelocatonEntry in that RelocationList.
Referrer(unsigned id, uint32_t index)
: SectionID(id), Index(index) {}
};
typedef SmallVector<Referrer, 4> ReferrerList;
// Relocations to sections already loaded. Indexed by SectionID which is the
// source of the address. The target where the address will be writen is
// SectionID/Offset in the relocation itself.
IndexedMap<RelocationList> Relocations;
// Referrers corresponding to Relocations.
IndexedMap<ReferrerList> Referrers;
// Relocations to symbols that are not yet resolved. Must be external
// relocations by definition. Indexed by symbol name.
StringMap<RelocationList> UnresolvedRelocations;
bool resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
bool isPCRel,
unsigned Type,
unsigned Size,
int64_t Addend);
protected:
bool resolveX86_64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
@ -89,35 +41,21 @@ class RuntimeDyldMachO : public RuntimeDyldImpl {
unsigned Size,
int64_t Addend);
bool loadSegment32(const MachOObject *Obj,
const MachOObject::LoadCommandInfo *SegmentLCI,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
bool loadSegment64(const MachOObject *Obj,
const MachOObject::LoadCommandInfo *SegmentLCI,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
bool processSymbols32(const MachOObject *Obj,
SmallVectorImpl<unsigned> &SectionMap,
SmallVectorImpl<StringRef> &SymbolNames,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
bool processSymbols64(const MachOObject *Obj,
SmallVectorImpl<unsigned> &SectionMap,
SmallVectorImpl<StringRef> &SymbolNames,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
void resolveSymbol(StringRef Name);
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols, StubMap &Stubs);
public:
virtual void resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend);
RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
bool loadObject(MemoryBuffer *InputBuffer);
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
static bool isKnownFormat(const MemoryBuffer *InputBuffer);
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
return isKnownFormat(InputBuffer);
}
bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
};
} // end namespace llvm

View File

@ -0,0 +1,37 @@
; RUN: %lli -use-mcjit %s > /dev/null
@.LC0 = internal global [10 x i8] c"argc: %d\0A\00" ; <[10 x i8]*> [#uses=1]
declare i32 @puts(i8*)
define void @getoptions(i32* %argc) {
bb0:
ret void
}
declare i32 @printf(i8*, ...)
define i32 @main(i32 %argc, i8** %argv) {
bb0:
call i32 (i8*, ...)* @printf( i8* getelementptr ([10 x i8]* @.LC0, i64 0, i64 0), i32 %argc ) ; <i32>:0 [#uses=0]
%cast224 = bitcast i8** %argv to i8* ; <i8*> [#uses=1]
%local = alloca i8* ; <i8**> [#uses=3]
store i8* %cast224, i8** %local
%cond226 = icmp sle i32 %argc, 0 ; <i1> [#uses=1]
br i1 %cond226, label %bb3, label %bb2
bb2: ; preds = %bb2, %bb0
%cann-indvar = phi i32 [ 0, %bb0 ], [ %add1-indvar, %bb2 ] ; <i32> [#uses=2]
%add1-indvar = add i32 %cann-indvar, 1 ; <i32> [#uses=2]
%cann-indvar-idxcast = sext i32 %cann-indvar to i64 ; <i64> [#uses=1]
%CT = bitcast i8** %local to i8*** ; <i8***> [#uses=1]
%reg115 = load i8*** %CT ; <i8**> [#uses=1]
%cast235 = getelementptr i8** %reg115, i64 %cann-indvar-idxcast ; <i8**> [#uses=1]
%reg117 = load i8** %cast235 ; <i8*> [#uses=1]
%reg236 = call i32 @puts( i8* %reg117 ) ; <i32> [#uses=0]
%cond239 = icmp slt i32 %add1-indvar, %argc ; <i1> [#uses=1]
br i1 %cond239, label %bb2, label %bb3
bb3: ; preds = %bb2, %bb0
%cast243 = bitcast i8** %local to i32* ; <i32*> [#uses=1]
call void @getoptions( i32* %cast243 )
ret i32 0
}

View File

@ -0,0 +1,13 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @foo(i32 %X, i32 %Y, double %A) {
%cond212 = fcmp une double %A, 1.000000e+00 ; <i1> [#uses=1]
%cast110 = zext i1 %cond212 to i32 ; <i32> [#uses=1]
ret i32 %cast110
}
define i32 @main() {
%reg212 = call i32 @foo( i32 0, i32 1, double 1.000000e+00 ) ; <i32> [#uses=1]
ret i32 %reg212
}

View File

@ -0,0 +1,20 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
call i32 @mylog( i32 4 ) ; <i32>:1 [#uses=0]
ret i32 0
}
define internal i32 @mylog(i32 %num) {
bb0:
br label %bb2
bb2: ; preds = %bb2, %bb0
%reg112 = phi i32 [ 10, %bb2 ], [ 1, %bb0 ] ; <i32> [#uses=1]
%cann-indvar = phi i32 [ %cann-indvar, %bb2 ], [ 0, %bb0 ] ; <i32> [#uses=1]
%reg114 = add i32 %reg112, 1 ; <i32> [#uses=2]
%cond222 = icmp slt i32 %reg114, %num ; <i1> [#uses=1]
br i1 %cond222, label %bb2, label %bb3
bb3: ; preds = %bb2
ret i32 %reg114
}

View File

@ -0,0 +1,12 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
; <label>:0
br label %Loop
Loop: ; preds = %Loop, %0
%X = phi i32 [ 0, %0 ], [ 1, %Loop ] ; <i32> [#uses=1]
br i1 true, label %Out, label %Loop
Out: ; preds = %Loop
ret i32 %X
}

View File

@ -0,0 +1,11 @@
; RUN: %lli -use-mcjit %s > /dev/null
; We were accidentally inverting the signedness of right shifts. Whoops.
define i32 @main() {
%X = ashr i32 -1, 16 ; <i32> [#uses=1]
%Y = ashr i32 %X, 16 ; <i32> [#uses=1]
%Z = add i32 %Y, 1 ; <i32> [#uses=1]
ret i32 %Z
}

View File

@ -0,0 +1,10 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%X = fadd double 0.000000e+00, 1.000000e+00 ; <double> [#uses=1]
%Y = fsub double 0.000000e+00, 1.000000e+00 ; <double> [#uses=2]
%Z = fcmp oeq double %X, %Y ; <i1> [#uses=0]
fadd double %Y, 0.000000e+00 ; <double>:1 [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,17 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @bar(i8* %X) {
; pointer should be 4 byte aligned!
%P = alloca double ; <double*> [#uses=1]
%R = ptrtoint double* %P to i32 ; <i32> [#uses=1]
%A = and i32 %R, 3 ; <i32> [#uses=1]
ret i32 %A
}
define i32 @main() {
%SP = alloca i8 ; <i8*> [#uses=1]
%X = add i32 0, 0 ; <i32> [#uses=1]
alloca i8, i32 %X ; <i8*>:1 [#uses=0]
call i32 @bar( i8* %SP ) ; <i32>:2 [#uses=1]
ret i32 %2
}

View File

@ -0,0 +1,19 @@
; This testcase should return with an exit code of 1.
;
; RUN: not %lli -use-mcjit %s
@test = global i64 0 ; <i64*> [#uses=1]
define internal i64 @test.upgrd.1() {
%tmp.0 = load i64* @test ; <i64> [#uses=1]
%tmp.1 = add i64 %tmp.0, 1 ; <i64> [#uses=1]
ret i64 %tmp.1
}
define i32 @main() {
%L = call i64 @test.upgrd.1( ) ; <i64> [#uses=1]
%I = trunc i64 %L to i32 ; <i32> [#uses=1]
ret i32 %I
}

View File

@ -0,0 +1,11 @@
; RUN: %lli -use-mcjit %s test
declare i32 @puts(i8*)
define i32 @main(i32 %argc.1, i8** %argv.1) {
%tmp.5 = getelementptr i8** %argv.1, i64 1 ; <i8**> [#uses=1]
%tmp.6 = load i8** %tmp.5 ; <i8*> [#uses=1]
%tmp.0 = call i32 @puts( i8* %tmp.6 ) ; <i32> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,15 @@
; RUN: %lli -use-mcjit %s > /dev/null
target datalayout = "e-p:32:32"
define i32 @main() {
entry:
br label %endif
then: ; No predecessors!
br label %endif
endif: ; preds = %then, %entry
%x = phi i32 [ 4, %entry ], [ 27, %then ] ; <i32> [#uses=0]
%result = phi i32 [ 32, %then ], [ 0, %entry ] ; <i32> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,19 @@
; RUN: %lli -use-mcjit %s > /dev/null
; Testcase distilled from 256.bzip2.
target datalayout = "e-p:32:32"
define i32 @main() {
entry:
br label %loopentry.0
loopentry.0: ; preds = %loopentry.0, %entry
%h.0 = phi i32 [ %tmp.2, %loopentry.0 ], [ -1, %entry ] ; <i32> [#uses=1]
%tmp.2 = add i32 %h.0, 1 ; <i32> [#uses=3]
%tmp.4 = icmp ne i32 %tmp.2, 0 ; <i1> [#uses=1]
br i1 %tmp.4, label %loopentry.0, label %loopentry.1
loopentry.1: ; preds = %loopentry.0
%h.1 = phi i32 [ %tmp.2, %loopentry.0 ] ; <i32> [#uses=1]
ret i32 %h.1
}

View File

@ -0,0 +1,17 @@
; RUN: %lli -use-mcjit %s > /dev/null
; Testcase distilled from 256.bzip2.
target datalayout = "e-p:32:32"
define i32 @main() {
entry:
%X = add i32 1, -1 ; <i32> [#uses=3]
br label %Next
Next: ; preds = %entry
%A = phi i32 [ %X, %entry ] ; <i32> [#uses=0]
%B = phi i32 [ %X, %entry ] ; <i32> [#uses=0]
%C = phi i32 [ %X, %entry ] ; <i32> [#uses=1]
ret i32 %C
}

View File

@ -0,0 +1,11 @@
; RUN: %lli -use-mcjit %s > /dev/null
; This testcase failed to work because two variable sized allocas confused the
; local register allocator.
define i32 @main(i32 %X) {
%A = alloca i32, i32 %X ; <i32*> [#uses=0]
%B = alloca float, i32 %X ; <float*> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,21 @@
; RUN: %lli -use-mcjit %s > /dev/null
;
; Regression Test: EnvironmentTest.ll
;
; Description:
; This is a regression test that verifies that the JIT passes the
; environment to the main() function.
;
declare i32 @strlen(i8*)
define i32 @main(i32 %argc.1, i8** %argv.1, i8** %envp.1) {
%tmp.2 = load i8** %envp.1 ; <i8*> [#uses=1]
%tmp.3 = call i32 @strlen( i8* %tmp.2 ) ; <i32> [#uses=1]
%T = icmp eq i32 %tmp.3, 0 ; <i1> [#uses=1]
%R = zext i1 %T to i32 ; <i32> [#uses=1]
ret i32 %R
}

View File

@ -0,0 +1,34 @@
; RUN: %lli -use-mcjit %s > /dev/null
; This testcase exposes a bug in the local register allocator where it runs out
; of registers (due to too many overlapping live ranges), but then attempts to
; use the ESP register (which is not allocatable) to hold a value.
define i32 @main(i32 %A) {
; ESP gets used again...
%Ap2 = alloca i32, i32 %A ; <i32*> [#uses=11]
; Produce lots of overlapping live ranges
%B = add i32 %A, 1 ; <i32> [#uses=1]
%C = add i32 %A, 2 ; <i32> [#uses=1]
%D = add i32 %A, 3 ; <i32> [#uses=1]
%E = add i32 %A, 4 ; <i32> [#uses=1]
%F = add i32 %A, 5 ; <i32> [#uses=1]
%G = add i32 %A, 6 ; <i32> [#uses=1]
%H = add i32 %A, 7 ; <i32> [#uses=1]
%I = add i32 %A, 8 ; <i32> [#uses=1]
%J = add i32 %A, 9 ; <i32> [#uses=1]
%K = add i32 %A, 10 ; <i32> [#uses=1]
; Uses of all of the values
store i32 %A, i32* %Ap2
store i32 %B, i32* %Ap2
store i32 %C, i32* %Ap2
store i32 %D, i32* %Ap2
store i32 %E, i32* %Ap2
store i32 %F, i32* %Ap2
store i32 %G, i32* %Ap2
store i32 %H, i32* %Ap2
store i32 %I, i32* %Ap2
store i32 %J, i32* %Ap2
store i32 %K, i32* %Ap2
ret i32 0
}

View File

@ -0,0 +1,23 @@
; RUN: %lli -use-mcjit %s > /dev/null
@A = global i32 0 ; <i32*> [#uses=1]
define i32 @main() {
%Ret = call i32 @test( i1 true, i32 0 ) ; <i32> [#uses=1]
ret i32 %Ret
}
define i32 @test(i1 %c, i32 %A) {
br i1 %c, label %Taken1, label %NotTaken
Cont: ; preds = %Taken1, %NotTaken
%V = phi i32 [ 0, %NotTaken ], [ sub (i32 ptrtoint (i32* @A to i32), i32 1234), %Taken1 ] ; <i32> [#uses=0]
ret i32 0
NotTaken: ; preds = %0
br label %Cont
Taken1: ; preds = %0
%B = icmp eq i32 %A, 0 ; <i1> [#uses=1]
br i1 %B, label %Cont, label %ExitError
ExitError: ; preds = %Taken1
ret i32 12
}

View File

@ -0,0 +1,22 @@
; PR672
; RUN: %lli -use-mcjit %s
; XFAIL: mcjit-ia32
define i32 @main() {
%f = bitcast i32 (i32, i32*, i32)* @check_tail to i32* ; <i32*> [#uses=1]
%res = tail call fastcc i32 @check_tail( i32 10, i32* %f, i32 10 ) ; <i32> [#uses=1]
ret i32 %res
}
define fastcc i32 @check_tail(i32 %x, i32* %f, i32 %g) {
%tmp1 = icmp sgt i32 %x, 0 ; <i1> [#uses=1]
br i1 %tmp1, label %if-then, label %if-else
if-then: ; preds = %0
%fun_ptr = bitcast i32* %f to i32 (i32, i32*, i32)* ; <i32 (i32, i32*, i32)*> [#uses=1]
%arg1 = add i32 %x, -1 ; <i32> [#uses=1]
%res = tail call fastcc i32 %fun_ptr( i32 %arg1, i32* %f, i32 %g ) ; <i32> [#uses=1]
ret i32 %res
if-else: ; preds = %0
ret i32 %x
}

View File

@ -0,0 +1,19 @@
; RUN: %lli -use-mcjit -force-interpreter %s
; PR1836
define i32 @main() {
entry:
%retval = alloca i32 ; <i32*> [#uses=2]
%tmp = alloca i32 ; <i32*> [#uses=2]
%x = alloca i75, align 16 ; <i75*> [#uses=1]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
store i75 999, i75* %x, align 16
store i32 0, i32* %tmp, align 4
%tmp1 = load i32* %tmp, align 4 ; <i32> [#uses=1]
store i32 %tmp1, i32* %retval, align 4
br label %return
return: ; preds = %entry
%retval2 = load i32* %retval ; <i32> [#uses=1]
ret i32 %retval2
}

View File

@ -0,0 +1,59 @@
; RUN: %lli -use-mcjit -force-interpreter=true %s | grep 1
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32"
target triple = "i686-pc-linux-gnu"
@.str = internal constant [10 x i8] c"MSB = %d\0A\00" ; <[10 x i8]*> [#uses=1]
define i65 @foo(i65 %x) {
entry:
%x_addr = alloca i65 ; <i65*> [#uses=2]
%retval = alloca i65 ; <i65*> [#uses=2]
%tmp = alloca i65 ; <i65*> [#uses=2]
%"alloca point" = bitcast i65 0 to i65 ; <i65> [#uses=0]
store i65 %x, i65* %x_addr
%tmp1 = load i65* %x_addr, align 4 ; <i65> [#uses=1]
%tmp2 = ashr i65 %tmp1, 65 ; <i65> [#uses=1]
store i65 %tmp2, i65* %tmp, align 4
%tmp3 = load i65* %tmp, align 4 ; <i65> [#uses=1]
store i65 %tmp3, i65* %retval, align 4
br label %return
return: ; preds = %entry
%retval4 = load i65* %retval ; <i65> [#uses=1]
ret i65 %retval4
}
define i32 @main() {
entry:
%retval = alloca i32 ; <i32*> [#uses=1]
%iftmp.0 = alloca i32 ; <i32*> [#uses=3]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
%tmp = call i65 @foo( i65 -9 ) ; <i65> [#uses=1]
%tmp1 = lshr i65 %tmp, 64 ; <i65> [#uses=1]
%tmp2 = xor i65 %tmp1, 1 ; <i65> [#uses=1]
%tmp3 = and i65 %tmp2, 1 ; <i65> [#uses=1]
%tmp34 = trunc i65 %tmp3 to i8 ; <i8> [#uses=1]
%toBool = icmp ne i8 %tmp34, 0 ; <i1> [#uses=1]
br i1 %toBool, label %cond_true, label %cond_false
cond_true: ; preds = %entry
store i32 0, i32* %iftmp.0, align 4
br label %cond_next
cond_false: ; preds = %entry
store i32 1, i32* %iftmp.0, align 4
br label %cond_next
cond_next: ; preds = %cond_false, %cond_true
%tmp5 = getelementptr [10 x i8]* @.str, i32 0, i32 0 ; <i8*> [#uses=1]
%tmp6 = load i32* %iftmp.0, align 4 ; <i32> [#uses=1]
%tmp7 = call i32 (i8*, ...)* @printf( i8* noalias %tmp5, i32 %tmp6 ) nounwind ; <i32> [#uses=0]
br label %return
return: ; preds = %cond_next
store i32 0, i32* %retval, align 4
%retval8 = load i32* %retval ; <i32> [#uses=1]
ret i32 %retval8
}
declare i32 @printf(i8* noalias , ...) nounwind

View File

@ -0,0 +1,8 @@
; RUN: %lli -use-mcjit -force-interpreter=true %s
define i32 @main() {
%a = add i32 0, undef
%b = fadd float 0.0, undef
%c = fadd double 0.0, undef
ret i32 0
}

View File

@ -0,0 +1,20 @@
; RUN: %lli -use-mcjit -force-interpreter=true %s | grep 40091eb8
;
define i32 @test(double %x) {
entry:
%x46.i = bitcast double %x to i64
%tmp343.i = lshr i64 %x46.i, 32
%tmp344.i = trunc i64 %tmp343.i to i32
ret i32 %tmp344.i
}
define i32 @main()
{
%res = call i32 @test(double 3.14)
%ptr = getelementptr [4 x i8]* @format, i32 0, i32 0
call i32 (i8*,...)* @printf(i8* %ptr, i32 %res)
ret i32 0
}
declare i32 @printf(i8*, ...)
@format = internal constant [4 x i8] c"%x\0A\00"

View File

@ -0,0 +1,11 @@
; RUN: %lli -use-mcjit %s > /dev/null
@.LC0 = internal global [12 x i8] c"Hello World\00" ; <[12 x i8]*> [#uses=1]
declare i32 @puts(i8*)
define i32 @main() {
%reg210 = call i32 @puts( i8* getelementptr ([12 x i8]* @.LC0, i64 0, i64 0) ) ; <i32> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,17 @@
; RUN: %lli -use-mcjit %s > /dev/null
@X = global i32 7 ; <i32*> [#uses=0]
@msg = internal global [13 x i8] c"Hello World\0A\00" ; <[13 x i8]*> [#uses=1]
declare void @printf([13 x i8]*, ...)
define void @bar() {
call void ([13 x i8]*, ...)* @printf( [13 x i8]* @msg )
ret void
}
define i32 @main() {
call void @bar( )
ret i32 0
}

View File

@ -0,0 +1,17 @@
config.suffixes = ['.ll', '.c', '.cpp']
def getRoot(config):
if not config.parent:
return config
return getRoot(config.parent)
root = getRoot(config)
targets = set(root.targets_to_build.split())
if ('X86' in targets) | ('ARM' in targets):
config.unsupported = False
else:
config.unsupported = True
if root.host_os in ['Win32', 'Cygwin', 'MingW']:
config.unsupported = True

View File

@ -0,0 +1,6 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
ret i32 0
}

View File

@ -0,0 +1,11 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @bar() {
ret i32 0
}
define i32 @main() {
%r = call i32 @bar( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,34 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%A = add i8 0, 12 ; <i8> [#uses=1]
%B = sub i8 %A, 1 ; <i8> [#uses=2]
%C = mul i8 %B, %B ; <i8> [#uses=2]
%D = sdiv i8 %C, %C ; <i8> [#uses=2]
%E = srem i8 %D, %D ; <i8> [#uses=0]
%F = udiv i8 5, 6 ; <i8> [#uses=0]
%G = urem i8 6, 5 ; <i8> [#uses=0]
%A.upgrd.1 = add i16 0, 12 ; <i16> [#uses=1]
%B.upgrd.2 = sub i16 %A.upgrd.1, 1 ; <i16> [#uses=2]
%C.upgrd.3 = mul i16 %B.upgrd.2, %B.upgrd.2 ; <i16> [#uses=2]
%D.upgrd.4 = sdiv i16 %C.upgrd.3, %C.upgrd.3 ; <i16> [#uses=2]
%E.upgrd.5 = srem i16 %D.upgrd.4, %D.upgrd.4 ; <i16> [#uses=0]
%F.upgrd.6 = udiv i16 5, 6 ; <i16> [#uses=0]
%G.upgrd.7 = urem i32 6, 5 ; <i32> [#uses=0]
%A.upgrd.8 = add i32 0, 12 ; <i32> [#uses=1]
%B.upgrd.9 = sub i32 %A.upgrd.8, 1 ; <i32> [#uses=2]
%C.upgrd.10 = mul i32 %B.upgrd.9, %B.upgrd.9 ; <i32> [#uses=2]
%D.upgrd.11 = sdiv i32 %C.upgrd.10, %C.upgrd.10 ; <i32> [#uses=2]
%E.upgrd.12 = srem i32 %D.upgrd.11, %D.upgrd.11 ; <i32> [#uses=0]
%F.upgrd.13 = udiv i32 5, 6 ; <i32> [#uses=0]
%G1 = urem i32 6, 5 ; <i32> [#uses=0]
%A.upgrd.14 = add i64 0, 12 ; <i64> [#uses=1]
%B.upgrd.15 = sub i64 %A.upgrd.14, 1 ; <i64> [#uses=2]
%C.upgrd.16 = mul i64 %B.upgrd.15, %B.upgrd.15 ; <i64> [#uses=2]
%D.upgrd.17 = sdiv i64 %C.upgrd.16, %C.upgrd.16 ; <i64> [#uses=2]
%E.upgrd.18 = srem i64 %D.upgrd.17, %D.upgrd.17 ; <i64> [#uses=0]
%F.upgrd.19 = udiv i64 5, 6 ; <i64> [#uses=0]
%G.upgrd.20 = urem i64 6, 5 ; <i64> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,12 @@
; RUN: %lli -use-mcjit %s > /dev/null
; test unconditional branch
define i32 @main() {
br label %Test
Test: ; preds = %Test, %0
%X = icmp eq i32 0, 4 ; <i1> [#uses=1]
br i1 %X, label %Test, label %Label
Label: ; preds = %Test
ret i32 0
}

View File

@ -0,0 +1,14 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @_Z14func_exit_codev() nounwind uwtable {
entry:
ret i32 0
}
define i32 @main() nounwind uwtable {
entry:
%retval = alloca i32, align 4
store i32 0, i32* %retval
%call = call i32 @_Z14func_exit_codev()
ret i32 %call
}

View File

@ -0,0 +1,21 @@
; RUN: %lli -use-mcjit %s > /dev/null
declare void @exit(i32)
define i32 @test(i8 %C, i16 %S) {
%X = trunc i16 %S to i8 ; <i8> [#uses=1]
%Y = zext i8 %X to i32 ; <i32> [#uses=1]
ret i32 %Y
}
define void @FP(void (i32)* %F) {
%X = call i32 @test( i8 123, i16 1024 ) ; <i32> [#uses=1]
call void %F( i32 %X )
ret void
}
define i32 @main() {
call void @FP( void (i32)* @exit )
ret i32 1
}

View File

@ -0,0 +1,109 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @foo() {
ret i32 0
}
define i32 @main() {
icmp ne i1 true, false ; <i1>:1 [#uses=0]
zext i1 true to i8 ; <i8>:2 [#uses=0]
zext i1 true to i8 ; <i8>:3 [#uses=0]
zext i1 true to i16 ; <i16>:4 [#uses=0]
zext i1 true to i16 ; <i16>:5 [#uses=0]
zext i1 true to i32 ; <i32>:6 [#uses=0]
zext i1 true to i32 ; <i32>:7 [#uses=0]
zext i1 true to i64 ; <i64>:8 [#uses=0]
zext i1 true to i64 ; <i64>:9 [#uses=0]
uitofp i1 true to float ; <float>:10 [#uses=0]
uitofp i1 true to double ; <double>:11 [#uses=0]
icmp ne i8 0, 0 ; <i1>:12 [#uses=0]
icmp ne i8 1, 0 ; <i1>:13 [#uses=0]
bitcast i8 0 to i8 ; <i8>:14 [#uses=0]
bitcast i8 -1 to i8 ; <i8>:15 [#uses=0]
sext i8 4 to i16 ; <i16>:16 [#uses=0]
sext i8 4 to i16 ; <i16>:17 [#uses=0]
sext i8 4 to i64 ; <i64>:18 [#uses=0]
sext i8 4 to i64 ; <i64>:19 [#uses=0]
sitofp i8 4 to float ; <float>:20 [#uses=0]
sitofp i8 4 to double ; <double>:21 [#uses=0]
icmp ne i8 0, 0 ; <i1>:22 [#uses=0]
icmp ne i8 1, 0 ; <i1>:23 [#uses=0]
bitcast i8 0 to i8 ; <i8>:24 [#uses=0]
bitcast i8 1 to i8 ; <i8>:25 [#uses=0]
zext i8 4 to i16 ; <i16>:26 [#uses=0]
zext i8 4 to i16 ; <i16>:27 [#uses=0]
zext i8 4 to i64 ; <i64>:28 [#uses=0]
zext i8 4 to i64 ; <i64>:29 [#uses=0]
uitofp i8 0 to float ; <float>:30 [#uses=0]
uitofp i8 0 to double ; <double>:31 [#uses=0]
icmp ne i16 1, 0 ; <i1>:32 [#uses=0]
trunc i16 -1 to i8 ; <i8>:33 [#uses=0]
trunc i16 255 to i8 ; <i8>:34 [#uses=0]
bitcast i16 0 to i16 ; <i16>:35 [#uses=0]
bitcast i16 0 to i16 ; <i16>:36 [#uses=0]
sext i16 0 to i64 ; <i64>:37 [#uses=0]
sext i16 0 to i64 ; <i64>:38 [#uses=0]
sitofp i16 0 to float ; <float>:39 [#uses=0]
sitofp i16 0 to double ; <double>:40 [#uses=0]
icmp ne i16 1, 0 ; <i1>:41 [#uses=0]
trunc i16 1 to i8 ; <i8>:42 [#uses=0]
trunc i16 255 to i8 ; <i8>:43 [#uses=0]
bitcast i16 0 to i16 ; <i16>:44 [#uses=0]
bitcast i16 0 to i16 ; <i16>:45 [#uses=0]
zext i16 0 to i64 ; <i64>:46 [#uses=0]
zext i16 0 to i64 ; <i64>:47 [#uses=0]
uitofp i16 0 to float ; <float>:48 [#uses=0]
uitofp i16 0 to double ; <double>:49 [#uses=0]
icmp ne i32 6, 0 ; <i1>:50 [#uses=0]
trunc i32 -6 to i8 ; <i8>:51 [#uses=0]
trunc i32 6 to i8 ; <i8>:52 [#uses=0]
trunc i32 6 to i16 ; <i16>:53 [#uses=0]
bitcast i32 0 to i32 ; <i32>:54 [#uses=0]
sext i32 0 to i64 ; <i64>:55 [#uses=0]
sext i32 0 to i64 ; <i64>:56 [#uses=0]
sitofp i32 0 to float ; <float>:57 [#uses=0]
sitofp i32 0 to double ; <double>:58 [#uses=0]
icmp ne i32 6, 0 ; <i1>:59 [#uses=0]
trunc i32 7 to i8 ; <i8>:60 [#uses=0]
trunc i32 8 to i8 ; <i8>:61 [#uses=0]
trunc i32 9 to i16 ; <i16>:62 [#uses=0]
bitcast i32 10 to i32 ; <i32>:63 [#uses=0]
zext i32 0 to i64 ; <i64>:64 [#uses=0]
zext i32 0 to i64 ; <i64>:65 [#uses=0]
uitofp i32 0 to float ; <float>:66 [#uses=0]
uitofp i32 0 to double ; <double>:67 [#uses=0]
icmp ne i64 0, 0 ; <i1>:68 [#uses=0]
trunc i64 0 to i8 ; <i8>:69 [#uses=0]
trunc i64 0 to i8 ; <i8>:70 [#uses=0]
trunc i64 0 to i16 ; <i16>:71 [#uses=0]
trunc i64 0 to i16 ; <i16>:72 [#uses=0]
trunc i64 0 to i32 ; <i32>:73 [#uses=0]
trunc i64 0 to i32 ; <i32>:74 [#uses=0]
bitcast i64 0 to i64 ; <i64>:75 [#uses=0]
bitcast i64 0 to i64 ; <i64>:76 [#uses=0]
sitofp i64 0 to float ; <float>:77 [#uses=0]
sitofp i64 0 to double ; <double>:78 [#uses=0]
icmp ne i64 1, 0 ; <i1>:79 [#uses=0]
trunc i64 1 to i8 ; <i8>:80 [#uses=0]
trunc i64 1 to i8 ; <i8>:81 [#uses=0]
trunc i64 1 to i16 ; <i16>:82 [#uses=0]
trunc i64 1 to i16 ; <i16>:83 [#uses=0]
trunc i64 1 to i32 ; <i32>:84 [#uses=0]
trunc i64 1 to i32 ; <i32>:85 [#uses=0]
bitcast i64 1 to i64 ; <i64>:86 [#uses=0]
bitcast i64 1 to i64 ; <i64>:87 [#uses=0]
uitofp i64 1 to float ; <float>:88 [#uses=0]
uitofp i64 0 to double ; <double>:89 [#uses=0]
bitcast float 0.000000e+00 to float ; <float>:90 [#uses=0]
fpext float 0.000000e+00 to double ; <double>:91 [#uses=0]
fptosi double 0.000000e+00 to i8 ; <i8>:92 [#uses=0]
fptoui double 0.000000e+00 to i8 ; <i8>:93 [#uses=0]
fptosi double 0.000000e+00 to i16 ; <i16>:94 [#uses=0]
fptoui double 0.000000e+00 to i16 ; <i16>:95 [#uses=0]
fptosi double 0.000000e+00 to i32 ; <i32>:96 [#uses=0]
fptoui double 0.000000e+00 to i32 ; <i32>:97 [#uses=0]
fptosi double 0.000000e+00 to i64 ; <i64>:98 [#uses=0]
fptrunc double 0.000000e+00 to float ; <float>:99 [#uses=0]
bitcast double 0.000000e+00 to double ; <double>:100 [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,12 @@
; RUN: %lli -use-mcjit %s > /dev/null
; This tests to make sure that we can evaluate weird constant expressions
@A = global i32 5 ; <i32*> [#uses=1]
@B = global i32 6 ; <i32*> [#uses=1]
define i32 @main() {
%A = or i1 false, icmp slt (i32* @A, i32* @B) ; <i1> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,21 @@
; RUN: %lli -use-mcjit %s > /dev/null
define double @test(double* %DP, double %Arg) {
%D = load double* %DP ; <double> [#uses=1]
%V = fadd double %D, 1.000000e+00 ; <double> [#uses=2]
%W = fsub double %V, %V ; <double> [#uses=3]
%X = fmul double %W, %W ; <double> [#uses=2]
%Y = fdiv double %X, %X ; <double> [#uses=2]
%Q = fadd double %Y, %Arg ; <double> [#uses=1]
%R = bitcast double %Q to double ; <double> [#uses=1]
store double %Q, double* %DP
ret double %Y
}
define i32 @main() {
%X = alloca double ; <double*> [#uses=2]
store double 0.000000e+00, double* %X
call double @test( double* %X, double 2.000000e+00 ) ; <double>:1 [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,23 @@
; RUN: %lli -use-mcjit %s > /dev/null
define double @test(double* %DP, double %Arg) {
%D = load double* %DP ; <double> [#uses=1]
%V = fadd double %D, 1.000000e+00 ; <double> [#uses=2]
%W = fsub double %V, %V ; <double> [#uses=3]
%X = fmul double %W, %W ; <double> [#uses=2]
%Y = fdiv double %X, %X ; <double> [#uses=2]
%Z = frem double %Y, %Y ; <double> [#uses=3]
%Z1 = fdiv double %Z, %W ; <double> [#uses=0]
%Q = fadd double %Z, %Arg ; <double> [#uses=1]
%R = bitcast double %Q to double ; <double> [#uses=1]
store double %R, double* %DP
ret double %Z
}
define i32 @main() {
%X = alloca double ; <double*> [#uses=2]
store double 0.000000e+00, double* %X
call double @test( double* %X, double 2.000000e+00 ) ; <double>:1 [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,34 @@
; RUN: %lli -use-mcjit %s > /dev/null
@count = global i32 1, align 4
define i32 @main() nounwind uwtable {
entry:
%retval = alloca i32, align 4
%i = alloca i32, align 4
store i32 0, i32* %retval
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 49
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* @count, align 4
%inc = add nsw i32 %1, 1
store i32 %inc, i32* @count, align 4
br label %for.inc
for.inc: ; preds = %for.body
%2 = load i32* %i, align 4
%inc1 = add nsw i32 %2, 1
store i32 %inc1, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
%3 = load i32* @count, align 4
%sub = sub nsw i32 %3, 50
ret i32 %sub
}

View File

@ -0,0 +1,31 @@
; RUN: %lli -use-mcjit %s > /dev/null
define void @test(i8* %P, i16* %P.upgrd.1, i32* %P.upgrd.2, i64* %P.upgrd.3) {
%V = load i8* %P ; <i8> [#uses=1]
store i8 %V, i8* %P
%V.upgrd.4 = load i16* %P.upgrd.1 ; <i16> [#uses=1]
store i16 %V.upgrd.4, i16* %P.upgrd.1
%V.upgrd.5 = load i32* %P.upgrd.2 ; <i32> [#uses=1]
store i32 %V.upgrd.5, i32* %P.upgrd.2
%V.upgrd.6 = load i64* %P.upgrd.3 ; <i64> [#uses=1]
store i64 %V.upgrd.6, i64* %P.upgrd.3
ret void
}
define i32 @varalloca(i32 %Size) {
;; Variable sized alloca
%X = alloca i32, i32 %Size ; <i32*> [#uses=2]
store i32 %Size, i32* %X
%Y = load i32* %X ; <i32> [#uses=1]
ret i32 %Y
}
define i32 @main() {
%A = alloca i8 ; <i8*> [#uses=1]
%B = alloca i16 ; <i16*> [#uses=1]
%C = alloca i32 ; <i32*> [#uses=1]
%D = alloca i64 ; <i64*> [#uses=1]
call void @test( i8* %A, i16* %B, i32* %C, i64* %D )
call i32 @varalloca( i32 7 ) ; <i32>:1 [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,34 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() nounwind uwtable {
entry:
%retval = alloca i32, align 4
%count = alloca i32, align 4
%i = alloca i32, align 4
store i32 0, i32* %retval
store i32 0, i32* %count, align 4
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 50
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* %count, align 4
%inc = add nsw i32 %1, 1
store i32 %inc, i32* %count, align 4
br label %for.inc
for.inc: ; preds = %for.body
%2 = load i32* %i, align 4
%inc1 = add nsw i32 %2, 1
store i32 %inc1, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
%3 = load i32* %count, align 4
%sub = sub nsw i32 %3, 50
ret i32 %sub
}

View File

@ -0,0 +1,18 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%A = and i8 4, 8 ; <i8> [#uses=2]
%B = or i8 %A, 7 ; <i8> [#uses=1]
%C = xor i8 %B, %A ; <i8> [#uses=0]
%A.upgrd.1 = and i16 4, 8 ; <i16> [#uses=2]
%B.upgrd.2 = or i16 %A.upgrd.1, 7 ; <i16> [#uses=1]
%C.upgrd.3 = xor i16 %B.upgrd.2, %A.upgrd.1 ; <i16> [#uses=0]
%A.upgrd.4 = and i32 4, 8 ; <i32> [#uses=2]
%B.upgrd.5 = or i32 %A.upgrd.4, 7 ; <i32> [#uses=1]
%C.upgrd.6 = xor i32 %B.upgrd.5, %A.upgrd.4 ; <i32> [#uses=0]
%A.upgrd.7 = and i64 4, 8 ; <i64> [#uses=2]
%B.upgrd.8 = or i64 %A.upgrd.7, 7 ; <i64> [#uses=1]
%C.upgrd.9 = xor i64 %B.upgrd.8, %A.upgrd.7 ; <i64> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,14 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
; <label>:0
br label %Loop
Loop: ; preds = %Loop, %0
%I = phi i32 [ 0, %0 ], [ %i2, %Loop ] ; <i32> [#uses=1]
%i2 = add i32 %I, 1 ; <i32> [#uses=2]
%C = icmp eq i32 %i2, 10 ; <i1> [#uses=1]
br i1 %C, label %Out, label %Loop
Out: ; preds = %Loop
ret i32 0
}

View File

@ -0,0 +1,34 @@
; RUN: %lli -use-mcjit %s > /dev/null
; test phi node
@Y = global i32 6 ; <i32*> [#uses=1]
define void @blah(i32* %X) {
; <label>:0
br label %T
T: ; preds = %Dead, %0
phi i32* [ %X, %0 ], [ @Y, %Dead ] ; <i32*>:1 [#uses=0]
ret void
Dead: ; No predecessors!
br label %T
}
define i32 @test(i1 %C) {
; <label>:0
br i1 %C, label %T, label %T
T: ; preds = %0, %0
%X = phi i32 [ 123, %0 ], [ 123, %0 ] ; <i32> [#uses=1]
ret i32 %X
}
define i32 @main() {
; <label>:0
br label %Test
Test: ; preds = %Dead, %0
%X = phi i32 [ 0, %0 ], [ %Y, %Dead ] ; <i32> [#uses=1]
ret i32 %X
Dead: ; No predecessors!
%Y = ashr i32 12, 4 ; <i32> [#uses=1]
br label %Test
}

View File

@ -0,0 +1,46 @@
; RUN: %lli -use-mcjit %s > /dev/null
; test return instructions
define void @test1() {
ret void
}
define i8 @test2() {
ret i8 1
}
define i8 @test3() {
ret i8 1
}
define i16 @test4() {
ret i16 -1
}
define i16 @test5() {
ret i16 -1
}
define i32 @main() {
ret i32 0
}
define i32 @test6() {
ret i32 4
}
define i64 @test7() {
ret i64 0
}
define i64 @test8() {
ret i64 0
}
define float @test9() {
ret float 1.000000e+00
}
define double @test10() {
ret double 2.000000e+00
}

View File

@ -0,0 +1,8 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() nounwind uwtable {
entry:
%retval = alloca i32, align 4
store i32 0, i32* %retval
ret i32 0
}

View File

@ -0,0 +1,24 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%double1 = fadd double 0.000000e+00, 0.000000e+00 ; <double> [#uses=6]
%double2 = fadd double 0.000000e+00, 0.000000e+00 ; <double> [#uses=6]
%float1 = fadd float 0.000000e+00, 0.000000e+00 ; <float> [#uses=6]
%float2 = fadd float 0.000000e+00, 0.000000e+00 ; <float> [#uses=6]
%test49 = fcmp oeq float %float1, %float2 ; <i1> [#uses=0]
%test50 = fcmp oge float %float1, %float2 ; <i1> [#uses=0]
%test51 = fcmp ogt float %float1, %float2 ; <i1> [#uses=0]
%test52 = fcmp ole float %float1, %float2 ; <i1> [#uses=0]
%test53 = fcmp olt float %float1, %float2 ; <i1> [#uses=0]
%test54 = fcmp une float %float1, %float2 ; <i1> [#uses=0]
%test55 = fcmp oeq double %double1, %double2 ; <i1> [#uses=0]
%test56 = fcmp oge double %double1, %double2 ; <i1> [#uses=0]
%test57 = fcmp ogt double %double1, %double2 ; <i1> [#uses=0]
%test58 = fcmp ole double %double1, %double2 ; <i1> [#uses=0]
%test59 = fcmp olt double %double1, %double2 ; <i1> [#uses=0]
%test60 = fcmp une double %double1, %double2 ; <i1> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,69 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%int1 = add i32 0, 0 ; <i32> [#uses=6]
%int2 = add i32 0, 0 ; <i32> [#uses=6]
%long1 = add i64 0, 0 ; <i64> [#uses=6]
%long2 = add i64 0, 0 ; <i64> [#uses=6]
%sbyte1 = add i8 0, 0 ; <i8> [#uses=6]
%sbyte2 = add i8 0, 0 ; <i8> [#uses=6]
%short1 = add i16 0, 0 ; <i16> [#uses=6]
%short2 = add i16 0, 0 ; <i16> [#uses=6]
%ubyte1 = add i8 0, 0 ; <i8> [#uses=6]
%ubyte2 = add i8 0, 0 ; <i8> [#uses=6]
%uint1 = add i32 0, 0 ; <i32> [#uses=6]
%uint2 = add i32 0, 0 ; <i32> [#uses=6]
%ulong1 = add i64 0, 0 ; <i64> [#uses=6]
%ulong2 = add i64 0, 0 ; <i64> [#uses=6]
%ushort1 = add i16 0, 0 ; <i16> [#uses=6]
%ushort2 = add i16 0, 0 ; <i16> [#uses=6]
%test1 = icmp eq i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test2 = icmp uge i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test3 = icmp ugt i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test4 = icmp ule i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test5 = icmp ult i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test6 = icmp ne i8 %ubyte1, %ubyte2 ; <i1> [#uses=0]
%test7 = icmp eq i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test8 = icmp uge i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test9 = icmp ugt i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test10 = icmp ule i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test11 = icmp ult i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test12 = icmp ne i16 %ushort1, %ushort2 ; <i1> [#uses=0]
%test13 = icmp eq i32 %uint1, %uint2 ; <i1> [#uses=0]
%test14 = icmp uge i32 %uint1, %uint2 ; <i1> [#uses=0]
%test15 = icmp ugt i32 %uint1, %uint2 ; <i1> [#uses=0]
%test16 = icmp ule i32 %uint1, %uint2 ; <i1> [#uses=0]
%test17 = icmp ult i32 %uint1, %uint2 ; <i1> [#uses=0]
%test18 = icmp ne i32 %uint1, %uint2 ; <i1> [#uses=0]
%test19 = icmp eq i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test20 = icmp uge i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test21 = icmp ugt i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test22 = icmp ule i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test23 = icmp ult i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test24 = icmp ne i64 %ulong1, %ulong2 ; <i1> [#uses=0]
%test25 = icmp eq i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test26 = icmp sge i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test27 = icmp sgt i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test28 = icmp sle i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test29 = icmp slt i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test30 = icmp ne i8 %sbyte1, %sbyte2 ; <i1> [#uses=0]
%test31 = icmp eq i16 %short1, %short2 ; <i1> [#uses=0]
%test32 = icmp sge i16 %short1, %short2 ; <i1> [#uses=0]
%test33 = icmp sgt i16 %short1, %short2 ; <i1> [#uses=0]
%test34 = icmp sle i16 %short1, %short2 ; <i1> [#uses=0]
%test35 = icmp slt i16 %short1, %short2 ; <i1> [#uses=0]
%test36 = icmp ne i16 %short1, %short2 ; <i1> [#uses=0]
%test37 = icmp eq i32 %int1, %int2 ; <i1> [#uses=0]
%test38 = icmp sge i32 %int1, %int2 ; <i1> [#uses=0]
%test39 = icmp sgt i32 %int1, %int2 ; <i1> [#uses=0]
%test40 = icmp sle i32 %int1, %int2 ; <i1> [#uses=0]
%test41 = icmp slt i32 %int1, %int2 ; <i1> [#uses=0]
%test42 = icmp ne i32 %int1, %int2 ; <i1> [#uses=0]
%test43 = icmp eq i64 %long1, %long2 ; <i1> [#uses=0]
%test44 = icmp sge i64 %long1, %long2 ; <i1> [#uses=0]
%test45 = icmp sgt i64 %long1, %long2 ; <i1> [#uses=0]
%test46 = icmp sle i64 %long1, %long2 ; <i1> [#uses=0]
%test47 = icmp slt i64 %long1, %long2 ; <i1> [#uses=0]
%test48 = icmp ne i64 %long1, %long2 ; <i1> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,32 @@
; RUN: %lli -use-mcjit %s > /dev/null
define i32 @main() {
%shamt = add i8 0, 1 ; <i8> [#uses=8]
%shift.upgrd.1 = zext i8 %shamt to i32 ; <i32> [#uses=1]
%t1.s = shl i32 1, %shift.upgrd.1 ; <i32> [#uses=0]
%t2.s = shl i32 1, 4 ; <i32> [#uses=0]
%shift.upgrd.2 = zext i8 %shamt to i32 ; <i32> [#uses=1]
%t1 = shl i32 1, %shift.upgrd.2 ; <i32> [#uses=0]
%t2 = shl i32 1, 5 ; <i32> [#uses=0]
%t2.s.upgrd.3 = shl i64 1, 4 ; <i64> [#uses=0]
%t2.upgrd.4 = shl i64 1, 5 ; <i64> [#uses=0]
%shift.upgrd.5 = zext i8 %shamt to i32 ; <i32> [#uses=1]
%tr1.s = ashr i32 1, %shift.upgrd.5 ; <i32> [#uses=0]
%tr2.s = ashr i32 1, 4 ; <i32> [#uses=0]
%shift.upgrd.6 = zext i8 %shamt to i32 ; <i32> [#uses=1]
%tr1 = lshr i32 1, %shift.upgrd.6 ; <i32> [#uses=0]
%tr2 = lshr i32 1, 5 ; <i32> [#uses=0]
%tr1.l = ashr i64 1, 4 ; <i64> [#uses=0]
%shift.upgrd.7 = zext i8 %shamt to i64 ; <i64> [#uses=1]
%tr2.l = ashr i64 1, %shift.upgrd.7 ; <i64> [#uses=0]
%tr3.l = shl i64 1, 4 ; <i64> [#uses=0]
%shift.upgrd.8 = zext i8 %shamt to i64 ; <i64> [#uses=1]
%tr4.l = shl i64 1, %shift.upgrd.8 ; <i64> [#uses=0]
%tr1.u = lshr i64 1, 5 ; <i64> [#uses=0]
%shift.upgrd.9 = zext i8 %shamt to i64 ; <i64> [#uses=1]
%tr2.u = lshr i64 1, %shift.upgrd.9 ; <i64> [#uses=0]
%tr3.u = shl i64 1, 5 ; <i64> [#uses=0]
%shift.upgrd.10 = zext i8 %shamt to i64 ; <i64> [#uses=1]
%tr4.u = shl i64 1, %shift.upgrd.10 ; <i64> [#uses=0]
ret i32 0
}

View File

@ -171,6 +171,7 @@ lit.site.cfg: site.exp
@$(ECHOPATH) s=@ENABLE_ASSERTIONS@=$(ENABLE_ASSERTIONS)=g >> lit.tmp
@$(ECHOPATH) s=@TARGETS_TO_BUILD@=$(TARGETS_TO_BUILD)=g >> lit.tmp
@$(ECHOPATH) s=@LLVM_BINDINGS@=$(BINDINGS_TO_BUILD)=g >> lit.tmp
@$(ECHOPATH) s=@HOST_OS@=$(HOST_OS)=g >> lit.tmp
@sed -f lit.tmp $(PROJ_SRC_DIR)/lit.site.cfg.in > $@
@-rm -f lit.tmp
@ -184,5 +185,6 @@ Unit/lit.site.cfg: $(PROJ_OBJ_DIR)/Unit/.dir FORCE
@$(ECHOPATH) s=@ENABLE_SHARED@=$(ENABLE_SHARED)=g >> unit.tmp
@$(ECHOPATH) s=@SHLIBDIR@=$(SharedLibDir)=g >> unit.tmp
@$(ECHOPATH) s=@SHLIBPATH_VAR@=$(SHLIBPATH_VAR)=g >> unit.tmp
@$(ECHOPATH) s=@HOST_OS@=$(HOST_OS)=g >> unit.tmp
@sed -f unit.tmp $(PROJ_SRC_DIR)/Unit/lit.site.cfg.in > $@
@-rm -f unit.tmp

View File

@ -9,6 +9,7 @@ config.enable_shared = @ENABLE_SHARED@
config.enable_assertions = @ENABLE_ASSERTIONS@
config.targets_to_build = "@TARGETS_TO_BUILD@"
config.llvm_bindings = "@LLVM_BINDINGS@"
config.host_os = "@HOST_OS@"
# Support substitution of the tools_dir with user parameters. This is
# used when we can't determine the tool dir at configuration time.

View File

@ -58,10 +58,6 @@ public:
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID);
uint8_t *startFunctionBody(const char *Name, uintptr_t &Size);
void endFunctionBody(const char *Name, uint8_t *FunctionStart,
uint8_t *FunctionEnd);
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) {
return 0;
@ -81,18 +77,6 @@ uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
return (uint8_t*)sys::Memory::AllocateRWX(Size, 0, 0).base();
}
uint8_t *TrivialMemoryManager::startFunctionBody(const char *Name,
uintptr_t &Size) {
return (uint8_t*)sys::Memory::AllocateRWX(Size, 0, 0).base();
}
void TrivialMemoryManager::endFunctionBody(const char *Name,
uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
uintptr_t Size = FunctionEnd - FunctionStart + 1;
FunctionMemory.push_back(sys::MemoryBlock(FunctionStart, Size));
}
static const char *ProgramName;
static void Message(const char *Type, const Twine &Msg) {