[mlir][tosa] Add tosa.gather lowering to linalg.indexed_generic

Lowering gather operation to linalg dialect.

Reviewed By: rsuderman

Differential Revision: https://reviews.llvm.org/D101200
This commit is contained in:
natashaknk 2021-04-23 22:30:08 -07:00 committed by Rob Suderman
parent 2205286095
commit 6f720d5eca
2 changed files with 80 additions and 0 deletions

View File

@ -1781,6 +1781,59 @@ public:
}
};
class GatherConverter : public OpConversionPattern<tosa::GatherOp> {
public:
using OpConversionPattern<tosa::GatherOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::GatherOp op, ArrayRef<Value> args,
ConversionPatternRewriter &rewriter) const final {
auto input = args[0];
auto indices = args[1];
auto inputTy = input.getType().cast<ShapedType>();
auto indicesTy = indices.getType().cast<ShapedType>();
auto resultTy = op.getType().cast<ShapedType>();
if (!inputTy.hasStaticShape() || !indicesTy.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "require input type to have static shape");
auto resultElementTy = resultTy.getElementType();
auto loc = op.getLoc();
auto initTensor =
rewriter
.create<linalg::InitTensorOp>(loc, ArrayRef<Value>{},
resultTy.getShape(), resultElementTy)
.result();
SmallVector<AffineMap, 2> affineMaps = {
AffineMap::get(
/*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
{rewriter.getAffineDimExpr(0), rewriter.getAffineDimExpr(1)},
rewriter.getContext()),
rewriter.getMultiDimIdentityMap(resultTy.getRank())};
auto genericOp = rewriter.create<linalg::IndexedGenericOp>(
loc, ArrayRef<Type>({resultTy}), ValueRange{indices},
ValueRange{initTensor}, affineMaps,
getNParallelLoopsAttrs(resultTy.getRank()),
[&](OpBuilder &b, Location loc, ValueRange indices, ValueRange args) {
auto indexValue = args[0];
auto index0 = indices[0];
Value index1 = rewriter.create<IndexCastOp>(
loc, rewriter.getIndexType(), indexValue);
auto index2 = indices[2];
Value extract = rewriter.create<tensor::ExtractOp>(
loc, input, ValueRange{index0, index1, index2});
rewriter.create<linalg::YieldOp>(loc, extract);
});
rewriter.replaceOp(op, genericOp.getResult(0));
return success();
}
};
// Lowerings the TableOp to a series of gathers and numerica operations. This
// includes interpolation between the high/low values. For the I8 varient, this
// simplifies to a single gather operation.
@ -2085,6 +2138,7 @@ void mlir::tosa::populateTosaToLinalgOnTensorsConversionPatterns(
ArgMaxConverter,
ConcatConverter,
Conv2DConverter,
GatherConverter,
PadConverter,
ReshapeConverter,
RescaleConverter,

View File

@ -833,6 +833,32 @@ func @argmax(%arg0 : tensor<3x2xi32>, %arg1 : tensor<6xf32>) -> () {
// -----
// CHECK-LABEL: @gather_float
func @gather_float(%arg0: tensor<2x3x2xf32>, %arg1: tensor<2x3xi32>) -> () {
// CHECK: %[[INIT:.+]] = linalg.init_tensor [2, 3, 2]
// CHECK: %[[GENERIC:.+]] = linalg.indexed_generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%arg1 : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xf32>)
// CHECK: ^bb0(%[[IDX0:.+]]: index, %[[IDX1:.+]]: index, %[[IDX2:.+]]: index, %[[ARG0:.+]]: i32, %[[ARG1:.+]]: f32)
// CHECK: %[[CAST:.+]] = index_cast %[[ARG0]]
// CHECK: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xf32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = "tosa.gather"(%arg0, %arg1) : (tensor<2x3x2xf32>, tensor<2x3xi32>) -> (tensor<2x3x2xf32>)
return
}
// CHECK-LABEL: @gather_int
func @gather_int(%arg0: tensor<2x3x2xi32>, %arg1: tensor<2x3xi32>) -> () {
// CHECK: %[[INIT:.+]] = linalg.init_tensor [2, 3, 2]
// CHECK: %[[GENERIC:.+]] = linalg.indexed_generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%arg1 : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xi32>)
// CHECK: ^bb0(%[[IDX0:.+]]: index, %[[IDX1:.+]]: index, %[[IDX2:.+]]: index, %[[ARG0:.+]]: i32, %[[ARG1:.+]]: i32)
// CHECK: %[[CAST:.+]] = index_cast %[[ARG0]]
// CHECK: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xi32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = "tosa.gather"(%arg0, %arg1) : (tensor<2x3x2xi32>, tensor<2x3xi32>) -> (tensor<2x3x2xi32>)
return
}
// -----
// CHECK-LABEL: @table8
func @table8(%arg0: tensor<6xi8>, %arg1: tensor<513xi8>) -> () {
// CHECK: %[[INIT:.+]] = linalg.init_tensor [6]