Prepare for inlining of SUM intrinsic

Find calls to FortranASum{Real8,Integer4}, check for dim and mask
arguments being absent - then produce an inlineable simple
version of the sum function.

(No longer a prototype, please review for push to llvm/main - not sure how to make Phabricator update the review with actual commit message)

Reviewed By: peixin, awarzynski

Differential Revision: https://reviews.llvm.org/D125407
This commit is contained in:
Mats Petersson 2022-04-29 15:24:37 +01:00
parent 6ff873ac86
commit 6e193b5cbb
5 changed files with 573 additions and 0 deletions

View File

@ -35,6 +35,8 @@ std::unique_ptr<mlir::Pass> createExternalNameConversionPass();
std::unique_ptr<mlir::Pass> createMemDataFlowOptPass();
std::unique_ptr<mlir::Pass> createPromoteToAffinePass();
std::unique_ptr<mlir::Pass> createMemoryAllocationPass();
std::unique_ptr<mlir::Pass> createSimplifyIntrinsicsPass();
std::unique_ptr<mlir::Pass>
createMemoryAllocationPass(bool dynOnHeap, std::size_t maxStackSize);
std::unique_ptr<mlir::Pass> createAnnotateConstantOperandsPass();

View File

@ -174,6 +174,20 @@ def MemRefDataFlowOpt : Pass<"fir-memref-dataflow-opt", "::mlir::func::FuncOp">
];
}
// This needs to be a "mlir::ModuleOp" pass, because it inserts simplified
// functions into the module, which is invalid if a finer grain mlir::Operation
// is used as the pass specification says to not touch things outside hte scope
// of the operation being processed.
def SimplifyIntrinsics : Pass<"simplify-intrinsics", "mlir::ModuleOp"> {
let summary = "Intrinsics simplification";
let description = [{
Qualifying intrinsics calls are replaced with calls to a specialized and
simplified function. The simplified function is added to the current module.
This function can be inlined by a general purpose inlining pass.
}];
let constructor = "::fir::createSimplifyIntrinsicsPass()";
}
def MemoryAllocationOpt : Pass<"memory-allocation-opt", "mlir::func::FuncOp"> {
let summary = "Convert stack to heap allocations and vice versa.";
let description = [{

View File

@ -11,6 +11,7 @@ add_flang_library(FIRTransforms
RewriteLoop.cpp
SimplifyRegionLite.cpp
AlgebraicSimplification.cpp
SimplifyIntrinsics.cpp
DEPENDS
FIRBuilder

View File

@ -0,0 +1,237 @@
//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for suitable calls to runtime library for intrinsics that
/// can be simplified/specialized and replaces with a specialized function.
///
/// For example, SUM(arr) can be specialized as a simple function with one loop,
/// compared to the three arguments (plus file & line info) that the runtime
/// call has - when the argument is a 1D-array (multiple loops may be needed
// for higher dimension arrays, of course)
///
/// The general idea is that besides making the call simpler, it can also be
/// inlined by other passes that run after this pass, which further improves
/// performance, particularly when the work done in the function is trivial
/// and small in size.
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
namespace {
class SimplifyIntrinsicsPass
: public fir::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
public:
mlir::func::FuncOp getOrCreateFunction(const mlir::Location &loc,
fir::FirOpBuilder &builder,
const mlir::Type &type,
const mlir::StringRef &basename);
void runOnOperation() override;
};
} // namespace
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
const mlir::Location &loc, fir::FirOpBuilder &builder,
const mlir::Type &type, const mlir::StringRef &baseName) {
// In future, the idea is that instead of building the function inside
// this function, this does the base creation, and calls a callback
// function (e.g. a lambda function) that fills in the actual content.
// For now, check that it's the ONLY the SUM runtime call.
assert(baseName.startswith("_FortranASum"));
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
mlir::ModuleOp module = builder.getModule();
// If we already have a function, just return it.
mlir::func::FuncOp newFunc =
fir::FirOpBuilder::getNamedFunction(module, replacementName);
if (newFunc)
return newFunc;
// Need to build the function!
// Basic idea:
// function FortranASum<T>_simplified(arr)
// T, dimension(:) :: arr
// T sum = 0
// integer iter
// do iter = 0, extent(arr)
// sum = sum + arr[iter]
// end do
// FortranASum<T>_simplified = sum
// end function FortranASum<T>_simplified
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
mlir::FunctionType fType =
mlir::FunctionType::get(builder.getContext(), {boxType}, {type});
newFunc =
fir::FirOpBuilder::createFunction(loc, module, replacementName, fType);
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
auto linkage =
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
newFunc->setAttr("llvm.linkage", linkage);
// Save the position of the original call.
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
builder.setInsertionPointToEnd(newFunc.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero = type.isa<mlir::FloatType>()
? builder.createRealConstant(loc, type, 0.0)
: builder.createIntegerConstant(loc, type, 0);
mlir::Value sum = builder.create<fir::AllocaOp>(loc, type);
builder.create<fir::StoreOp>(loc, zero, sum);
mlir::Block::BlockArgListType args = newFunc.front().getArguments();
mlir::Value arg = args[0];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
mlir::Type arrTy = fir::SequenceType::get(flatShape, type);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, zeroIdx);
mlir::Value len = dims.getResult(1);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value step = one;
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step);
// Begin loop code
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
mlir::Type eleRefTy = builder.getRefType(type);
mlir::Value index = loop.getInductionVar();
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, index);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value sumVal = builder.create<fir::LoadOp>(loc, sum);
mlir::Value res;
if (type.isa<mlir::FloatType>())
res = builder.create<mlir::arith::AddFOp>(loc, elem, sumVal);
else if (type.isa<mlir::IntegerType>())
res = builder.create<mlir::arith::AddIOp>(loc, elem, sumVal);
else
TODO(loc, "Unsupported type");
builder.create<fir::StoreOp>(loc, res, sum);
// End of loop.
builder.restoreInsertionPoint(loopEndPt);
mlir::Value resultVal = builder.create<fir::LoadOp>(loc, sum);
builder.create<mlir::func::ReturnOp>(loc, resultVal);
// Now back to where we were adding code earlier...
builder.restoreInsertionPoint(insertPt);
return newFunc;
}
static bool isOperandAbsent(mlir::Value val) {
if (mlir::Operation *op = val.getDefiningOp())
return mlir::isa_and_nonnull<fir::AbsentOp>(
op->getOperand(0).getDefiningOp());
return false;
}
static bool isZero(mlir::Value val) {
if (mlir::Operation *op = val.getDefiningOp())
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
return mlir::matchPattern(defOp, mlir::m_Zero());
return false;
}
static mlir::Value findShape(mlir::Value val) {
mlir::Operation *defOp = val.getDefiningOp();
while (defOp) {
defOp = defOp->getOperand(0).getDefiningOp();
if (fir::EmboxOp box = mlir::dyn_cast_or_null<fir::EmboxOp>(defOp))
return box.getShape();
}
return {};
}
static unsigned getDimCount(mlir::Value val) {
if (mlir::Value shapeVal = findShape(val)) {
mlir::Type resType = shapeVal.getDefiningOp()->getResultTypes()[0];
return fir::getRankOfShapeType(resType);
}
return 0;
}
void SimplifyIntrinsicsPass::runOnOperation() {
mlir::ModuleOp module = getOperation();
fir::KindMapping kindMap = fir::getKindMapping(module);
module.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
mlir::StringRef funcName = callee.getLeafReference().getValue();
// Replace call to runtime function for SUM when it has single
// argument (no dim or mask argument) for 1D arrays with either
// Integer4 or Real8 types. Other forms are ignored.
// The new function is added to the module.
//
// Prototype for runtime call (from sum.cpp):
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
// int dim, const Descriptor *mask)
if (funcName.startswith("_FortranASum")) {
mlir::Operation::operand_range args = call.getArgs();
// args[1] and args[2] are source filename and line number, ignored.
const mlir::Value &dim = args[3];
const mlir::Value &mask = args[4];
// dim is zero when it is absent, which is an implementation
// detail in the runtime library.
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
unsigned rank = getDimCount(args[0]);
if (dimAndMaskAbsent && rank == 1) {
mlir::Location loc = call.getLoc();
mlir::Type type;
fir::FirOpBuilder builder(op, kindMap);
if (funcName.endswith("Integer4")) {
type = mlir::IntegerType::get(builder.getContext(), 32);
} else if (funcName.endswith("Real8")) {
type = mlir::FloatType::getF64(builder.getContext());
} else {
return;
}
mlir::func::FuncOp newFunc =
getOrCreateFunction(loc, builder, type, funcName);
auto newCall = builder.create<fir::CallOp>(
loc, newFunc, mlir::ValueRange{args[0]});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
}
}
}
}
});
}
std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() {
return std::make_unique<SimplifyIntrinsicsPass>();
}

View File

@ -0,0 +1,319 @@
// RUN: fir-opt --split-input-file --simplify-intrinsics %s | FileCheck %s
// Call to SUM with 1D I32 array is replaced.
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_1d_array_int(%arg0: !fir.ref<!fir.array<10xi32>> {fir.bindc_name = "a"}) -> i32 {
%c10 = arith.constant 10 : index
%0 = fir.alloca i32 {bindc_name = "test_sum_2", uniq_name = "_QFtest_sum_2Etest_sum_2"}
%1 = fir.shape %c10 : (index) -> !fir.shape<1>
%2 = fir.embox %arg0(%1) : (!fir.ref<!fir.array<10xi32>>, !fir.shape<1>) -> !fir.box<!fir.array<10xi32>>
%3 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%4 = fir.address_of(@_QQcl.2E2F6973756D5F322E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%5 = fir.convert %2 : (!fir.box<!fir.array<10xi32>>) -> !fir.box<none>
%6 = fir.convert %4 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%7 = fir.convert %c0 : (index) -> i32
%8 = fir.convert %3 : (!fir.box<i1>) -> !fir.box<none>
%9 = fir.call @_FortranASumInteger4(%5, %6, %c5_i32, %7, %8) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
fir.store %9 to %0 : !fir.ref<i32>
%10 = fir.load %0 : !fir.ref<i32>
return %10 : i32
}
func.func private @_FortranASumInteger4(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32 attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F322E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_2.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_1d_array_int(
// CHECK-SAME: %[[A:.*]]: !fir.ref<!fir.array<10xi32>> {fir.bindc_name = "a"}) -> i32 {
// CHECK: %[[SHAPE:.*]] = fir.shape %{{.*}} : (index) -> !fir.shape<1>
// CHECK: %[[A_BOX_I32:.*]] = fir.embox %[[A]](%[[SHAPE]]) : (!fir.ref<!fir.array<10xi32>>, !fir.shape<1>) -> !fir.box<!fir.array<10xi32>>
// CHECK: %[[A_BOX_NONE:.*]] = fir.convert %[[A_BOX_I32]] : (!fir.box<!fir.array<10xi32>>) -> !fir.box<none>
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: %[[RES:.*]] = fir.call @_FortranASumInteger4_simplified(%[[A_BOX_NONE]]) : (!fir.box<none>) -> i32
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: return %{{.*}} : i32
// CHECK: }
// CHECK: func.func private @_FortranASumInteger4(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32 attributes {fir.runtime}
// CHECK-LABEL: func.func private @_FortranASumInteger4_simplified(
// CHECK-SAME: %[[ARR:.*]]: !fir.box<none>) -> i32 attributes {llvm.linkage = #llvm.linkage<linkonce_odr>} {
// CHECK: %[[CI32_0:.*]] = arith.constant 0 : i32
// CHECK: %[[SUM:.*]] = fir.alloca i32
// CHECK: fir.store %[[CI32_0]] to %[[SUM]] : !fir.ref<i32>
// CHECK: %[[CINDEX_0:.*]] = arith.constant 0 : index
// CHECK: %[[ARR_BOX_I32:.*]] = fir.convert %[[ARR]] : (!fir.box<none>) -> !fir.box<!fir.array<?xi32>>
// CHECK: %[[DIMS:.*]]:3 = fir.box_dims %[[ARR_BOX_I32]], %[[CINDEX_0]] : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
// CHECK: %[[CINDEX_1:.*]] = arith.constant 1 : index
// CHECK: %[[EXTENT:.*]] = arith.subi %[[DIMS]]#1, %[[CINDEX_1]] : index
// CHECK: fir.do_loop %[[ITER:.*]] = %[[CINDEX_0]] to %[[EXTENT]] step %[[CINDEX_1]] {
// CHECK: %[[ITEM:.*]] = fir.coordinate_of %[[ARR_BOX_I32]], %[[ITER]] : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
// CHECK: %[[ITEM_VAL:.*]] = fir.load %[[ITEM]] : !fir.ref<i32>
// CHECK: %[[SUM_VAL:.*]] = fir.load %[[SUM]] : !fir.ref<i32>
// CHECK: %[[NEW_SUM:.*]] = arith.addi %[[ITEM_VAL]], %[[SUM_VAL]] : i32
// CHECK: fir.store %[[NEW_SUM]] to %[[SUM]] : !fir.ref<i32>
// CHECK: }
// CHECK: %[[RET:.*]] = fir.load %[[SUM]] : !fir.ref<i32>
// CHECK: return %[[RET]] : i32
// CHECK: }
// -----
// Call to SUM with 2D I32 arrays is not replaced.
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_2d_array_int(%arg0: !fir.ref<!fir.array<10x10xi32>> {fir.bindc_name = "a"}) -> i32 {
%c10 = arith.constant 10 : index
%c10_0 = arith.constant 10 : index
%0 = fir.alloca i32 {bindc_name = "test_sum_3", uniq_name = "_QFtest_sum_3Etest_sum_3"}
%1 = fir.shape %c10, %c10_0 : (index, index) -> !fir.shape<2>
%2 = fir.embox %arg0(%1) : (!fir.ref<!fir.array<10x10xi32>>, !fir.shape<2>) -> !fir.box<!fir.array<10x10xi32>>
%3 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%4 = fir.address_of(@_QQcl.2E2F6973756D5F332E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%5 = fir.convert %2 : (!fir.box<!fir.array<10x10xi32>>) -> !fir.box<none>
%6 = fir.convert %4 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%7 = fir.convert %c0 : (index) -> i32
%8 = fir.convert %3 : (!fir.box<i1>) -> !fir.box<none>
%9 = fir.call @_FortranASumInteger4(%5, %6, %c5_i32, %7, %8) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
fir.store %9 to %0 : !fir.ref<i32>
%10 = fir.load %0 : !fir.ref<i32>
return %10 : i32
}
func.func private @_FortranASumInteger4(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32 attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F332E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_3.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_2d_array_int({{.*}} !fir.ref<!fir.array<10x10xi32>> {fir.bindc_name = "a"}) -> i32 {
// CHECK-NOT: fir.call @_FortranASumInteger4_simplified({{.*}})
// CHECK: fir.call @_FortranASumInteger4({{.*}}) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
// CHECK-NOT: fir.call @_FortranASumInteger4_simplified({{.*}})
// -----
// Call to SUM with 1D F64 is replaced.
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_1d_real(%arg0: !fir.ref<!fir.array<10xf64>> {fir.bindc_name = "a"}) -> f64 {
%c10 = arith.constant 10 : index
%0 = fir.alloca f64 {bindc_name = "sum_1d_real", uniq_name = "_QFsum_1d_realEsum_1d_real"}
%1 = fir.shape %c10 : (index) -> !fir.shape<1>
%2 = fir.embox %arg0(%1) : (!fir.ref<!fir.array<10xf64>>, !fir.shape<1>) -> !fir.box<!fir.array<10xf64>>
%3 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%4 = fir.address_of(@_QQcl.2E2F6973756D5F352E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%5 = fir.convert %2 : (!fir.box<!fir.array<10xf64>>) -> !fir.box<none>
%6 = fir.convert %4 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%7 = fir.convert %c0 : (index) -> i32
%8 = fir.convert %3 : (!fir.box<i1>) -> !fir.box<none>
%9 = fir.call @_FortranASumReal8(%5, %6, %c5_i32, %7, %8) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> f64
fir.store %9 to %0 : !fir.ref<f64>
%10 = fir.load %0 : !fir.ref<f64>
return %10 : f64
}
func.func private @_FortranASumReal8(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> f64 attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F352E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_5.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_1d_real(
// CHECK-SAME: %[[A:.*]]: !fir.ref<!fir.array<10xf64>> {fir.bindc_name = "a"}) -> f64 {
// CHECK: %[[CINDEX_10:.*]] = arith.constant 10 : index
// CHECK: %[[SHAPE:.*]] = fir.shape %[[CINDEX_10]] : (index) -> !fir.shape<1>
// CHECK: %[[A_BOX_F64:.*]] = fir.embox %[[A]](%[[SHAPE]]) : (!fir.ref<!fir.array<10xf64>>, !fir.shape<1>) -> !fir.box<!fir.array<10xf64>>
// CHECK: %[[A_BOX_NONE:.*]] = fir.convert %[[A_BOX_F64]] : (!fir.box<!fir.array<10xf64>>) -> !fir.box<none>
// CHECK-NOT: fir.call @_FortranASumReal8({{.*}})
// CHECK: %[[RES:.*]] = fir.call @_FortranASumReal8_simplified(%[[A_BOX_NONE]]) : (!fir.box<none>) -> f64
// CHECK-NOT: fir.call @_FortranASumReal8({{.*}})
// CHECK: return %{{.*}} : f64
// CHECK: }
// CHECK-LABEL: func.func private @_FortranASumReal8_simplified(
// CHECK-SAME: %[[ARR:.*]]: !fir.box<none>) -> f64 attributes {llvm.linkage = #llvm.linkage<linkonce_odr>} {
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[SUM:.*]] = fir.alloca f64
// CHECK: fir.store %[[ZERO]] to %[[SUM]] : !fir.ref<f64>
// CHECK: %[[CINDEX_0:.*]] = arith.constant 0 : index
// CHECK: %[[ARR_BOX_F64:.*]] = fir.convert %[[ARR]] : (!fir.box<none>) -> !fir.box<!fir.array<?xf64>>
// CHECK: %[[DIMS:.*]]:3 = fir.box_dims %[[ARR_BOX_F64]], %[[CINDEX_0]] : (!fir.box<!fir.array<?xf64>>, index) -> (index, index, index)
// CHECK: %[[CINDEX_1:.*]] = arith.constant 1 : index
// CHECK: %[[EXTENT:.*]] = arith.subi %[[DIMS]]#1, %[[CINDEX_1]] : index
// CHECK: fir.do_loop %[[ITER:.*]] = %[[CINDEX_0]] to %[[EXTENT]] step %[[CINDEX_1]] {
// CHECK: %[[ITEM:.*]] = fir.coordinate_of %[[ARR_BOX_F64]], %[[ITER]] : (!fir.box<!fir.array<?xf64>>, index) -> !fir.ref<f64>
// CHECK: %[[ITEM_VAL:.*]] = fir.load %[[ITEM]] : !fir.ref<f64>
// CHECK: %[[SUM_VAL:.*]] = fir.load %[[SUM]] : !fir.ref<f64>
// CHECK: %[[NEW_SUM:.*]] = arith.addf %[[ITEM_VAL]], %[[SUM_VAL]] : f64
// CHECK: fir.store %[[NEW_SUM]] to %[[SUM]] : !fir.ref<f64>
// CHECK: }
// CHECK: %[[RES:.*]] = fir.load %[[SUM]] : !fir.ref<f64>
// CHECK: return %[[RES]] : f64
// CHECK: }
// -----
// Call to SUM with 1D COMPLEX array is not replaced.
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_1d_complex(%arg0: !fir.ref<!fir.array<10x!fir.complex<4>>> {fir.bindc_name = "a"}) -> !fir.complex<4> {
%0 = fir.alloca !fir.complex<4>
%c10 = arith.constant 10 : index
%1 = fir.alloca !fir.complex<4> {bindc_name = "sum_1d_complex", uniq_name = "_QFsum_1d_complexEsum_1d_complex"}
%2 = fir.shape %c10 : (index) -> !fir.shape<1>
%3 = fir.embox %arg0(%2) : (!fir.ref<!fir.array<10x!fir.complex<4>>>, !fir.shape<1>) -> !fir.box<!fir.array<10x!fir.complex<4>>>
%4 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%5 = fir.address_of(@_QQcl.2E2F6973756D5F362E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%6 = fir.convert %0 : (!fir.ref<!fir.complex<4>>) -> !fir.ref<complex<f32>>
%7 = fir.convert %3 : (!fir.box<!fir.array<10x!fir.complex<4>>>) -> !fir.box<none>
%8 = fir.convert %5 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%9 = fir.convert %c0 : (index) -> i32
%10 = fir.convert %4 : (!fir.box<i1>) -> !fir.box<none>
%11 = fir.call @_FortranACppSumComplex4(%6, %7, %8, %c5_i32, %9, %10) : (!fir.ref<complex<f32>>, !fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> none
%12 = fir.load %0 : !fir.ref<!fir.complex<4>>
fir.store %12 to %1 : !fir.ref<!fir.complex<4>>
%13 = fir.load %1 : !fir.ref<!fir.complex<4>>
return %13 : !fir.complex<4>
}
func.func private @_FortranACppSumComplex4(!fir.ref<complex<f32>>, !fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> none attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F362E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_6.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_1d_complex(%{{.*}}: !fir.ref<!fir.array<10x!fir.complex<4>>> {fir.bindc_name = "a"}) -> !fir.complex<4> {
// CHECK-NOT: fir.call @_FortranACppSumComplex4_simplified({{.*}})
// CHECK: fir.call @_FortranACppSumComplex4({{.*}}) : (!fir.ref<complex<f32>>, !fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> none
// CHECK-NOT: fir.call @_FortranACppSumComplex4_simplified({{.*}})
// -----
// Test that two functions calling the same SUM function
// generates only ONE function declaration (and that both
// calls are converted)
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_1d_calla(%arg0: !fir.ref<!fir.array<10xi32>> {fir.bindc_name = "a"}) -> i32 {
%c10 = arith.constant 10 : index
%0 = fir.alloca i32 {bindc_name = "sum_1d_calla", uniq_name = "_QFsum_1d_callaEsum_1d_calla"}
%1 = fir.shape %c10 : (index) -> !fir.shape<1>
%2 = fir.embox %arg0(%1) : (!fir.ref<!fir.array<10xi32>>, !fir.shape<1>) -> !fir.box<!fir.array<10xi32>>
%3 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%4 = fir.address_of(@_QQcl.2E2F6973756D5F372E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%5 = fir.convert %2 : (!fir.box<!fir.array<10xi32>>) -> !fir.box<none>
%6 = fir.convert %4 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%7 = fir.convert %c0 : (index) -> i32
%8 = fir.convert %3 : (!fir.box<i1>) -> !fir.box<none>
%9 = fir.call @_FortranASumInteger4(%5, %6, %c5_i32, %7, %8) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
fir.store %9 to %0 : !fir.ref<i32>
%10 = fir.load %0 : !fir.ref<i32>
return %10 : i32
}
func.func @sum_1d_callb(%arg0: !fir.ref<!fir.array<20xi32>> {fir.bindc_name = "a"}) -> i32 {
%c20 = arith.constant 20 : index
%0 = fir.alloca i32 {bindc_name = "sum_1d_callb", uniq_name = "_QFsum_1d_callbEsum_1d_callb"}
%1 = fir.shape %c20 : (index) -> !fir.shape<1>
%2 = fir.embox %arg0(%1) : (!fir.ref<!fir.array<20xi32>>, !fir.shape<1>) -> !fir.box<!fir.array<20xi32>>
%3 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%4 = fir.address_of(@_QQcl.2E2F6973756D5F372E66393000) : !fir.ref<!fir.char<1,13>>
%c12_i32 = arith.constant 12 : i32
%5 = fir.convert %2 : (!fir.box<!fir.array<20xi32>>) -> !fir.box<none>
%6 = fir.convert %4 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%7 = fir.convert %c0 : (index) -> i32
%8 = fir.convert %3 : (!fir.box<i1>) -> !fir.box<none>
%9 = fir.call @_FortranASumInteger4(%5, %6, %c12_i32, %7, %8) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
fir.store %9 to %0 : !fir.ref<i32>
%10 = fir.load %0 : !fir.ref<i32>
return %10 : i32
}
func.func private @_FortranASumInteger4(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32 attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F372E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_7.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_1d_calla(%{{.*}}) -> i32 {
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: fir.call @_FortranASumInteger4_simplified(%{{.*}})
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: }
// CHECK-LABEL: func.func @sum_1d_callb(%{{.*}}) -> i32 {
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: fir.call @_FortranASumInteger4_simplified(%{{.*}})
// CHECK-NOT: fir.call @_FortranASumInteger4({{.*}})
// CHECK: }
// CHECK-LABEL: func.func private @_FortranASumInteger4_simplified({{.*}}) -> i32 {{.*}} {
// CHECK: return %{{.*}} : i32
// CHECK: }
// CHECK-NOT: func.func private @_FortranASumInteger4_simplified({{.*}})
// -----
module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.target_triple = "native"} {
func.func @sum_1d_stride(%arg0: !fir.ref<!fir.array<20xi32>> {fir.bindc_name = "a"}) -> i32 {
%c20 = arith.constant 20 : index
%0 = fir.alloca i32 {bindc_name = "sum_1d_stride", uniq_name = "_QFsum_1d_strideEsum_1d_stride"}
%c1 = arith.constant 1 : index
%c2_i64 = arith.constant 2 : i64
%1 = fir.convert %c2_i64 : (i64) -> index
%2 = arith.addi %c1, %c20 : index
%3 = arith.subi %2, %c1 : index
%4 = fir.shape %c20 : (index) -> !fir.shape<1>
%5 = fir.slice %c1, %3, %1 : (index, index, index) -> !fir.slice<1>
%6 = fir.embox %arg0(%4) [%5] : (!fir.ref<!fir.array<20xi32>>, !fir.shape<1>, !fir.slice<1>) -> !fir.box<!fir.array<?xi32>>
%7 = fir.absent !fir.box<i1>
%c0 = arith.constant 0 : index
%8 = fir.address_of(@_QQcl.2E2F6973756D5F382E66393000) : !fir.ref<!fir.char<1,13>>
%c5_i32 = arith.constant 5 : i32
%9 = fir.convert %6 : (!fir.box<!fir.array<?xi32>>) -> !fir.box<none>
%10 = fir.convert %8 : (!fir.ref<!fir.char<1,13>>) -> !fir.ref<i8>
%11 = fir.convert %c0 : (index) -> i32
%12 = fir.convert %7 : (!fir.box<i1>) -> !fir.box<none>
%13 = fir.call @_FortranASumInteger4(%9, %10, %c5_i32, %11, %12) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
fir.store %13 to %0 : !fir.ref<i32>
%14 = fir.load %0 : !fir.ref<i32>
return %14 : i32
}
func.func private @_FortranASumInteger4(!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32 attributes {fir.runtime}
fir.global linkonce @_QQcl.2E2F6973756D5F382E66393000 constant : !fir.char<1,13> {
%0 = fir.string_lit "./isum_8.f90\00"(13) : !fir.char<1,13>
fir.has_value %0 : !fir.char<1,13>
}
}
// CHECK-LABEL: func.func @sum_1d_stride(%{{.*}} -> i32 {
// CHECK: %[[CI64_2:.*]] = arith.constant 2 : i64
// CHECK: %[[CINDEX_2:.*]] = fir.convert %[[CI64_2]] : (i64) -> index
// CHECK: %[[SHAPE:.*]] = fir.shape %{{.*}}
// CHECK: %[[SLICE:.*]] = fir.slice %{{.*}}, %{{.*}}, %[[CINDEX_2]] : (index, index, index) -> !fir.slice<1>
// CHECK: %[[A_BOX_I32:.*]] = fir.embox %{{.*}}(%[[SHAPE]]) {{\[}}%[[SLICE]]] : (!fir.ref<!fir.array<20xi32>>, !fir.shape<1>, !fir.slice<1>) -> !fir.box<!fir.array<?xi32>>
// CHECK: %[[A_BOX_NONE:.*]] = fir.convert %[[A_BOX_I32]] : (!fir.box<!fir.array<?xi32>>) -> !fir.box<none>
// CHECK: %{{.*}} = fir.call @_FortranASumInteger4_simplified(%[[A_BOX_NONE]]) : (!fir.box<none>) -> i32
// CHECK: return %{{.*}} : i32
// CHECK: }
// CHECK-LABEL: func.func private @_FortranASumInteger4_simplified(%{{.*}}) -> i32 attributes {llvm.linkage = #llvm.linkage<linkonce_odr>} {
// CHECK: %[[ARR_BOX_I32:.*]] = fir.convert %{{.*}} : (!fir.box<none>) -> !fir.box<!fir.array<?xi32>>
// CHECK: %[[DIMS:.*]]:3 = fir.box_dims %[[ARR_BOX_I32]], %{{.*}} : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
// CHECK: %[[CINDEX_1:.*]] = arith.constant 1 : index
// CHECK: %[[EXTENT:.*]] = arith.subi %[[DIMS]]#1, %[[CINDEX_1]] : index
// CHECK: fir.do_loop %[[ITER:.*]] = %{{.*}} to %[[EXTENT]] step %[[CINDEX_1]] {
// CHECK: %{{.*}} = fir.coordinate_of %[[ARR_BOX_I32]], %[[ITER]] : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
// CHECK: }
// CHECK: return %{{.*}} : i32
// CHECK: }