Remove the -color-ss-with-regs option.

It was off by default.

The new register allocators don't have the problems that made it
necessary to reallocate registers during stack slot coloring.

llvm-svn: 144481
This commit is contained in:
Jakob Stoklund Olesen 2011-11-13 00:31:23 +00:00
parent 5343da6497
commit 6ddb767fb5
2 changed files with 2 additions and 361 deletions

View File

@ -40,18 +40,9 @@ DisableSharing("no-stack-slot-sharing",
cl::init(false), cl::Hidden,
cl::desc("Suppress slot sharing during stack coloring"));
static cl::opt<bool>
ColorWithRegsOpt("color-ss-with-regs",
cl::init(false), cl::Hidden,
cl::desc("Color stack slots with free registers"));
static cl::opt<int> DCELimit("ssc-dce-limit", cl::init(-1), cl::Hidden);
STATISTIC(NumEliminated, "Number of stack slots eliminated due to coloring");
STATISTIC(NumRegRepl, "Number of stack slot refs replaced with reg refs");
STATISTIC(NumLoadElim, "Number of loads eliminated");
STATISTIC(NumStoreElim, "Number of stores eliminated");
STATISTIC(NumDead, "Number of trivially dead stack accesses eliminated");
namespace {
@ -127,22 +118,8 @@ namespace {
bool OverlapWithAssignments(LiveInterval *li, int Color) const;
int ColorSlot(LiveInterval *li);
bool ColorSlots(MachineFunction &MF);
bool ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
SmallVector<SmallVector<int, 4>, 16> &RevMap,
BitVector &SlotIsReg);
void RewriteInstruction(MachineInstr *MI, int OldFI, int NewFI,
MachineFunction &MF);
bool PropagateBackward(MachineBasicBlock::iterator MII,
MachineBasicBlock *MBB,
unsigned OldReg, unsigned NewReg);
bool PropagateForward(MachineBasicBlock::iterator MII,
MachineBasicBlock *MBB,
unsigned OldReg, unsigned NewReg);
void UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
unsigned Reg, const TargetRegisterClass *RC,
SmallSet<unsigned, 4> &Defs,
MachineFunction &MF);
bool AllMemRefsCanBeUnfolded(int SS);
bool RemoveDeadStores(MachineBasicBlock* MBB);
};
} // end anonymous namespace
@ -248,79 +225,6 @@ StackSlotColoring::OverlapWithAssignments(LiveInterval *li, int Color) const {
return false;
}
/// ColorSlotsWithFreeRegs - If there are any free registers available, try
/// replacing spill slots references with registers instead.
bool
StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
SmallVector<SmallVector<int, 4>, 16> &RevMap,
BitVector &SlotIsReg) {
if (!(ColorWithRegs || ColorWithRegsOpt) || !VRM->HasUnusedRegisters())
return false;
bool Changed = false;
DEBUG(dbgs() << "Assigning unused registers to spill slots:\n");
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
int SS = TargetRegisterInfo::stackSlot2Index(li->reg);
if (!UsedColors[SS] || li->weight < 20)
// If the weight is < 20, i.e. two references in a loop with depth 1,
// don't bother with it.
continue;
// These slots allow to share the same registers.
bool AllColored = true;
SmallVector<unsigned, 4> ColoredRegs;
for (unsigned j = 0, ee = RevMap[SS].size(); j != ee; ++j) {
int RSS = RevMap[SS][j];
const TargetRegisterClass *RC = LS->getIntervalRegClass(RSS);
// If it's not colored to another stack slot, try coloring it
// to a "free" register.
if (!RC) {
AllColored = false;
continue;
}
unsigned Reg = VRM->getFirstUnusedRegister(RC);
if (!Reg) {
AllColored = false;
continue;
}
if (!AllMemRefsCanBeUnfolded(RSS)) {
AllColored = false;
continue;
} else {
DEBUG(dbgs() << "Assigning fi#" << RSS << " to "
<< TRI->getName(Reg) << '\n');
ColoredRegs.push_back(Reg);
SlotMapping[RSS] = Reg;
SlotIsReg.set(RSS);
Changed = true;
}
}
// Register and its sub-registers are no longer free.
while (!ColoredRegs.empty()) {
unsigned Reg = ColoredRegs.back();
ColoredRegs.pop_back();
VRM->setRegisterUsed(Reg);
// If reg is a callee-saved register, it will have to be spilled in
// the prologue.
MRI->setPhysRegUsed(Reg);
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
VRM->setRegisterUsed(*AS);
MRI->setPhysRegUsed(*AS);
}
}
// This spill slot is dead after the rewrites
if (AllColored) {
MFI->RemoveStackObject(SS);
++NumEliminated;
}
}
DEBUG(dbgs() << '\n');
return Changed;
}
/// ColorSlot - Assign a "color" (stack slot) to the specified stack slot.
///
int StackSlotColoring::ColorSlot(LiveInterval *li) {
@ -372,7 +276,6 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
SmallVector<int, 16> SlotMapping(NumObjs, -1);
SmallVector<float, 16> SlotWeights(NumObjs, 0.0);
SmallVector<SmallVector<int, 4>, 16> RevMap(NumObjs);
BitVector SlotIsReg(NumObjs);
BitVector UsedColors(NumObjs);
DEBUG(dbgs() << "Color spill slot intervals:\n");
@ -404,31 +307,19 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
DEBUG(dbgs() << '\n');
#endif
// Can we "color" a stack slot with a unused register?
Changed |= ColorSlotsWithFreeRegs(SlotMapping, RevMap, SlotIsReg);
if (!Changed)
return false;
// Rewrite all MO_FrameIndex operands.
SmallVector<SmallSet<unsigned, 4>, 4> NewDefs(MF.getNumBlockIDs());
for (unsigned SS = 0, SE = SSRefs.size(); SS != SE; ++SS) {
bool isReg = SlotIsReg[SS];
int NewFI = SlotMapping[SS];
if (NewFI == -1 || (NewFI == (int)SS && !isReg))
if (NewFI == -1 || (NewFI == (int)SS))
continue;
const TargetRegisterClass *RC = LS->getIntervalRegClass(SS);
SmallVector<MachineInstr*, 8> &RefMIs = SSRefs[SS];
for (unsigned i = 0, e = RefMIs.size(); i != e; ++i)
if (!isReg)
RewriteInstruction(RefMIs[i], SS, NewFI, MF);
else {
// Rewrite to use a register instead.
unsigned MBBId = RefMIs[i]->getParent()->getNumber();
SmallSet<unsigned, 4> &Defs = NewDefs[MBBId];
UnfoldAndRewriteInstruction(RefMIs[i], SS, NewFI, RC, Defs, MF);
}
RewriteInstruction(RefMIs[i], SS, NewFI, MF);
}
// Delete unused stack slots.
@ -441,28 +332,6 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
return true;
}
/// AllMemRefsCanBeUnfolded - Return true if all references of the specified
/// spill slot index can be unfolded.
bool StackSlotColoring::AllMemRefsCanBeUnfolded(int SS) {
SmallVector<MachineInstr*, 8> &RefMIs = SSRefs[SS];
for (unsigned i = 0, e = RefMIs.size(); i != e; ++i) {
MachineInstr *MI = RefMIs[i];
if (TII->isLoadFromStackSlot(MI, SS) ||
TII->isStoreToStackSlot(MI, SS))
// Restore and spill will become copies.
return true;
if (!TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), false, false))
return false;
for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
MachineOperand &MO = MI->getOperand(j);
if (MO.isFI() && MO.getIndex() != SS)
// If it uses another frameindex, we can, currently* unfold it.
return false;
}
}
return true;
}
/// RewriteInstruction - Rewrite specified instruction by replacing references
/// to old frame index with new one.
void StackSlotColoring::RewriteInstruction(MachineInstr *MI, int OldFI,
@ -489,179 +358,6 @@ void StackSlotColoring::RewriteInstruction(MachineInstr *MI, int OldFI,
(*I)->setValue(NewSV);
}
/// PropagateBackward - Traverse backward and look for the definition of
/// OldReg. If it can successfully update all of the references with NewReg,
/// do so and return true.
bool StackSlotColoring::PropagateBackward(MachineBasicBlock::iterator MII,
MachineBasicBlock *MBB,
unsigned OldReg, unsigned NewReg) {
if (MII == MBB->begin())
return false;
SmallVector<MachineOperand*, 4> Uses;
SmallVector<MachineOperand*, 4> Refs;
while (--MII != MBB->begin()) {
bool FoundDef = false; // Not counting 2address def.
Uses.clear();
const MCInstrDesc &MCID = MII->getDesc();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (Reg == OldReg) {
if (MO.isImplicit())
return false;
// Abort the use is actually a sub-register def. We don't have enough
// information to figure out if it is really legal.
if (MO.getSubReg() || MII->isSubregToReg())
return false;
const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI);
if (RC && !RC->contains(NewReg))
return false;
if (MO.isUse()) {
Uses.push_back(&MO);
} else {
Refs.push_back(&MO);
if (!MII->isRegTiedToUseOperand(i))
FoundDef = true;
}
} else if (TRI->regsOverlap(Reg, NewReg)) {
return false;
} else if (TRI->regsOverlap(Reg, OldReg)) {
if (!MO.isUse() || !MO.isKill())
return false;
}
}
if (FoundDef) {
// Found non-two-address def. Stop here.
for (unsigned i = 0, e = Refs.size(); i != e; ++i)
Refs[i]->setReg(NewReg);
return true;
}
// Two-address uses must be updated as well.
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
Refs.push_back(Uses[i]);
}
return false;
}
/// PropagateForward - Traverse forward and look for the kill of OldReg. If
/// it can successfully update all of the uses with NewReg, do so and
/// return true.
bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII,
MachineBasicBlock *MBB,
unsigned OldReg, unsigned NewReg) {
if (MII == MBB->end())
return false;
SmallVector<MachineOperand*, 4> Uses;
while (++MII != MBB->end()) {
bool FoundKill = false;
const MCInstrDesc &MCID = MII->getDesc();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (Reg == OldReg) {
if (MO.isDef() || MO.isImplicit())
return false;
// Abort the use is actually a sub-register use. We don't have enough
// information to figure out if it is really legal.
if (MO.getSubReg())
return false;
const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI);
if (RC && !RC->contains(NewReg))
return false;
if (MO.isKill())
FoundKill = true;
Uses.push_back(&MO);
} else if (TRI->regsOverlap(Reg, NewReg) ||
TRI->regsOverlap(Reg, OldReg))
return false;
}
if (FoundKill) {
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
Uses[i]->setReg(NewReg);
return true;
}
}
return false;
}
/// UnfoldAndRewriteInstruction - Rewrite specified instruction by unfolding
/// folded memory references and replacing those references with register
/// references instead.
void
StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
unsigned Reg,
const TargetRegisterClass *RC,
SmallSet<unsigned, 4> &Defs,
MachineFunction &MF) {
MachineBasicBlock *MBB = MI->getParent();
if (unsigned DstReg = TII->isLoadFromStackSlot(MI, OldFI)) {
if (PropagateForward(MI, MBB, DstReg, Reg)) {
DEBUG(dbgs() << "Eliminated load: ");
DEBUG(MI->dump());
++NumLoadElim;
} else {
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
DstReg).addReg(Reg);
++NumRegRepl;
}
if (!Defs.count(Reg)) {
// If this is the first use of Reg in this MBB and it wasn't previously
// defined in MBB, add it to livein.
MBB->addLiveIn(Reg);
Defs.insert(Reg);
}
} else if (unsigned SrcReg = TII->isStoreToStackSlot(MI, OldFI)) {
if (MI->killsRegister(SrcReg) && PropagateBackward(MI, MBB, SrcReg, Reg)) {
DEBUG(dbgs() << "Eliminated store: ");
DEBUG(MI->dump());
++NumStoreElim;
} else {
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), Reg)
.addReg(SrcReg);
++NumRegRepl;
}
// Remember reg has been defined in MBB.
Defs.insert(Reg);
} else {
SmallVector<MachineInstr*, 4> NewMIs;
bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, false, false, NewMIs);
(void)Success; // Silence compiler warning.
assert(Success && "Failed to unfold!");
MachineInstr *NewMI = NewMIs[0];
MBB->insert(MI, NewMI);
++NumRegRepl;
if (NewMI->readsRegister(Reg)) {
if (!Defs.count(Reg))
// If this is the first use of Reg in this MBB and it wasn't previously
// defined in MBB, add it to livein.
MBB->addLiveIn(Reg);
Defs.insert(Reg);
}
}
MBB->erase(MI);
}
/// RemoveDeadStores - Scan through a basic block and look for loads followed
/// by stores. If they're both using the same stack slot, then the store is

View File

@ -1,55 +0,0 @@
; RUN: llc < %s -mtriple=i386-pc-linux-gnu -disable-fp-elim -color-ss-with-regs | not grep dil
; PR4552
target triple = "i386-pc-linux-gnu"
@g_8 = internal global i32 0 ; <i32*> [#uses=1]
@g_72 = internal global i32 0 ; <i32*> [#uses=1]
@llvm.used = appending global [1 x i8*] [i8* bitcast (i32 (i32, i8, i8)* @uint84 to i8*)], section "llvm.metadata" ; <[1 x i8*]*> [#uses=0]
define i32 @uint84(i32 %p_15, i8 signext %p_17, i8 signext %p_19) nounwind {
entry:
%g_72.promoted = load i32* @g_72 ; <i32> [#uses=1]
%g_8.promoted = load i32* @g_8 ; <i32> [#uses=1]
br label %bb
bb: ; preds = %func_40.exit, %entry
%g_8.tmp.1 = phi i32 [ %g_8.promoted, %entry ], [ %g_8.tmp.0, %func_40.exit ] ; <i32> [#uses=3]
%g_72.tmp.1 = phi i32 [ %g_72.promoted, %entry ], [ %g_72.tmp.0, %func_40.exit ] ; <i32> [#uses=3]
%retval12.i4.i.i = trunc i32 %g_8.tmp.1 to i8 ; <i8> [#uses=2]
%0 = trunc i32 %g_72.tmp.1 to i8 ; <i8> [#uses=2]
%1 = mul i8 %retval12.i4.i.i, %0 ; <i8> [#uses=1]
%2 = icmp eq i8 %1, 0 ; <i1> [#uses=1]
br i1 %2, label %bb2.i.i, label %bb.i.i
bb.i.i: ; preds = %bb
%3 = sext i8 %0 to i32 ; <i32> [#uses=1]
%4 = and i32 %3, 50295 ; <i32> [#uses=1]
%5 = icmp eq i32 %4, 0 ; <i1> [#uses=1]
br i1 %5, label %bb2.i.i, label %func_55.exit.i
bb2.i.i: ; preds = %bb.i.i, %bb
br label %func_55.exit.i
func_55.exit.i: ; preds = %bb2.i.i, %bb.i.i
%g_72.tmp.2 = phi i32 [ 1, %bb2.i.i ], [ %g_72.tmp.1, %bb.i.i ] ; <i32> [#uses=1]
%6 = phi i32 [ 1, %bb2.i.i ], [ %g_72.tmp.1, %bb.i.i ] ; <i32> [#uses=1]
%7 = trunc i32 %6 to i8 ; <i8> [#uses=2]
%8 = mul i8 %7, %retval12.i4.i.i ; <i8> [#uses=1]
%9 = icmp eq i8 %8, 0 ; <i1> [#uses=1]
br i1 %9, label %bb2.i4.i, label %bb.i3.i
bb.i3.i: ; preds = %func_55.exit.i
%10 = sext i8 %7 to i32 ; <i32> [#uses=1]
%11 = and i32 %10, 50295 ; <i32> [#uses=1]
%12 = icmp eq i32 %11, 0 ; <i1> [#uses=1]
br i1 %12, label %bb2.i4.i, label %func_40.exit
bb2.i4.i: ; preds = %bb.i3.i, %func_55.exit.i
br label %func_40.exit
func_40.exit: ; preds = %bb2.i4.i, %bb.i3.i
%g_72.tmp.0 = phi i32 [ 1, %bb2.i4.i ], [ %g_72.tmp.2, %bb.i3.i ] ; <i32> [#uses=1]
%phitmp = icmp sgt i32 %g_8.tmp.1, 0 ; <i1> [#uses=1]
%g_8.tmp.0 = select i1 %phitmp, i32 %g_8.tmp.1, i32 1 ; <i32> [#uses=1]
br label %bb
}