Revert r237579, as it broke windows buildbots

llvm-svn: 237583
This commit is contained in:
Oliver Stannard 2015-05-18 16:39:16 +00:00
parent f7e7017281
commit 6cb23465e0
15 changed files with 24 additions and 963 deletions

View File

@ -4054,9 +4054,10 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::write_register: {
Value *Reg = I.getArgOperand(0);
Value *RegValue = I.getArgOperand(1);
SDValue Chain = getValue(RegValue).getOperand(0);
SDValue RegName =
DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, getRoot(),
DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
RegName, getValue(RegValue)));
return nullptr;
}

View File

@ -156,9 +156,6 @@ public:
SDNode *SelectLIBM(SDNode *N);
SDNode *SelectReadRegister(SDNode *N);
SDNode *SelectWriteRegister(SDNode *N);
// Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"
@ -2117,115 +2114,6 @@ AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
return true;
}
// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
// of the string and obtains the integer values from them and combines these
// into a single value to be used in the MRS/MSR instruction.
static int getIntOperandFromRegisterString(StringRef RegString) {
SmallVector<StringRef, 5> Fields;
RegString.split(Fields, ":");
if (Fields.size() == 1)
return -1;
assert(Fields.size() == 5
&& "Invalid number of fields in read register string");
SmallVector<int, 5> Ops;
bool AllIntFields = true;
for (StringRef Field : Fields) {
unsigned IntField;
AllIntFields &= !Field.getAsInteger(10, IntField);
Ops.push_back(IntField);
}
assert(AllIntFields &&
"Unexpected non-integer value in special register string.");
// Need to combine the integer fields of the string into a single value
// based on the bit encoding of MRS/MSR instruction.
return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
(Ops[3] << 3) | (Ops[4]);
}
// Lower the read_register intrinsic to an MRS instruction node if the special
// register string argument is either of the form detailed in the ALCE (the
// form described in getIntOperandsFromRegsterString) or is a named register
// known by the MRS SysReg mapper.
SDNode *AArch64DAGToDAGISel::SelectReadRegister(SDNode *N) {
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(0));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
SDLoc DL(N);
int Reg = getIntOperandFromRegisterString(RegString->getString());
if (Reg != -1)
return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
CurDAG->getTargetConstant(Reg, DL, MVT::i32));
// Use the sysreg mapper to map the remaining possible strings to the
// value for the register to be used for the instruction operand.
AArch64SysReg::MRSMapper mapper;
bool IsValidSpecialReg;
Reg = mapper.fromString(RegString->getString(),
Subtarget->getFeatureBits(),
IsValidSpecialReg);
if (IsValidSpecialReg)
return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
CurDAG->getTargetConstant(Reg, DL, MVT::i32));
return nullptr;
}
// Lower the write_register intrinsic to an MSR instruction node if the special
// register string argument is either of the form detailed in the ALCE (the
// form described in getIntOperandsFromRegsterString) or is a named register
// known by the MSR SysReg mapper.
SDNode *AArch64DAGToDAGISel::SelectWriteRegister(SDNode *N) {
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
SDLoc DL(N);
int Reg = getIntOperandFromRegisterString(RegString->getString());
if (Reg != -1)
return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(2), N->getOperand(0));
// Check if the register was one of those allowed as the pstatefield value in
// the MSR (immediate) instruction. To accept the values allowed in the
// pstatefield for the MSR (immediate) instruction, we also require that an
// immediate value has been provided as an argument, we know that this is
// the case as it has been ensured by semantic checking.
AArch64PState::PStateMapper PMapper;
bool IsValidSpecialReg;
Reg = PMapper.fromString(RegString->getString(),
Subtarget->getFeatureBits(),
IsValidSpecialReg);
if (IsValidSpecialReg) {
assert (isa<ConstantSDNode>(N->getOperand(2))
&& "Expected a constant integer expression.");
uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
return CurDAG->getMachineNode(AArch64::MSRpstate, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
CurDAG->getTargetConstant(Immed, DL, MVT::i16),
N->getOperand(0));
}
// Use the sysreg mapper to attempt to map the remaining possible strings
// to the value for the register to be used for the MSR (register)
// instruction operand.
AArch64SysReg::MSRMapper Mapper;
Reg = Mapper.fromString(RegString->getString(),
Subtarget->getFeatureBits(),
IsValidSpecialReg);
if (IsValidSpecialReg)
return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(2), N->getOperand(0));
return nullptr;
}
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(errs() << "Selecting: ");
@ -2247,16 +2135,6 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
default:
break;
case ISD::READ_REGISTER:
if (SDNode *Res = SelectReadRegister(Node))
return Res;
break;
case ISD::WRITE_REGISTER:
if (SDNode *Res = SelectWriteRegister(Node))
return Res;
break;
case ISD::ADD:
if (SDNode *I = SelectMLAV64LaneV128(Node))
return I;

View File

@ -4064,8 +4064,7 @@ unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
.Default(0);
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
report_fatal_error("Invalid register name global variable");
}
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,

View File

@ -15,7 +15,6 @@
#include "ARMBaseInstrInfo.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@ -252,9 +251,6 @@ private:
// Select special operations if node forms integer ABS pattern
SDNode *SelectABSOp(SDNode *N);
SDNode *SelectReadRegister(SDNode *N);
SDNode *SelectWriteRegister(SDNode *N);
SDNode *SelectInlineAsm(SDNode *N);
SDNode *SelectConcatVector(SDNode *N);
@ -2461,18 +2457,6 @@ SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
switch (N->getOpcode()) {
default: break;
case ISD::WRITE_REGISTER: {
SDNode *ResNode = SelectWriteRegister(N);
if (ResNode)
return ResNode;
break;
}
case ISD::READ_REGISTER: {
SDNode *ResNode = SelectReadRegister(N);
if (ResNode)
return ResNode;
break;
}
case ISD::INLINEASM: {
SDNode *ResNode = SelectInlineAsm(N);
if (ResNode)
@ -3352,413 +3336,6 @@ SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
return SelectCode(N);
}
// Inspect a register string of the form
// cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
// cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
// and obtain the integer operands from them, adding these operands to the
// provided vector.
static void getIntOperandsFromRegisterString(StringRef RegString,
SelectionDAG *CurDAG, SDLoc DL,
std::vector<SDValue>& Ops) {
SmallVector<StringRef, 5> Fields;
RegString.split(Fields, ":");
if (Fields.size() > 1) {
bool AllIntFields = true;
for (StringRef Field : Fields) {
// Need to trim out leading 'cp' characters and get the integer field.
unsigned IntField;
AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
}
assert(AllIntFields &&
"Unexpected non-integer value in special register string.");
}
}
// Maps a Banked Register string to its mask value. The mask value returned is
// for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
// mask operand, which expresses which register is to be used, e.g. r8, and in
// which mode it is to be used, e.g. usr. Returns -1 to signify that the string
// was invalid.
static inline int getBankedRegisterMask(StringRef RegString) {
return StringSwitch<int>(RegString.lower())
.Case("r8_usr", 0x00)
.Case("r9_usr", 0x01)
.Case("r10_usr", 0x02)
.Case("r11_usr", 0x03)
.Case("r12_usr", 0x04)
.Case("sp_usr", 0x05)
.Case("lr_usr", 0x06)
.Case("r8_fiq", 0x08)
.Case("r9_fiq", 0x09)
.Case("r10_fiq", 0x0a)
.Case("r11_fiq", 0x0b)
.Case("r12_fiq", 0x0c)
.Case("sp_fiq", 0x0d)
.Case("lr_fiq", 0x0e)
.Case("lr_irq", 0x10)
.Case("sp_irq", 0x11)
.Case("lr_svc", 0x12)
.Case("sp_svc", 0x13)
.Case("lr_abt", 0x14)
.Case("sp_abt", 0x15)
.Case("lr_und", 0x16)
.Case("sp_und", 0x17)
.Case("lr_mon", 0x1c)
.Case("sp_mon", 0x1d)
.Case("elr_hyp", 0x1e)
.Case("sp_hyp", 0x1f)
.Case("spsr_fiq", 0x2e)
.Case("spsr_irq", 0x30)
.Case("spsr_svc", 0x32)
.Case("spsr_abt", 0x34)
.Case("spsr_und", 0x36)
.Case("spsr_mon", 0x3c)
.Case("spsr_hyp", 0x3e)
.Default(-1);
}
// Maps a MClass special register string to its value for use in the
// t2MRS_M / t2MSR_M instruction nodes as the SYSm value operand.
// Returns -1 to signify that the string was invalid.
static inline int getMClassRegisterSYSmValueMask(StringRef RegString) {
return StringSwitch<int>(RegString.lower())
.Case("apsr", 0x0)
.Case("iapsr", 0x1)
.Case("eapsr", 0x2)
.Case("xpsr", 0x3)
.Case("ipsr", 0x5)
.Case("epsr", 0x6)
.Case("iepsr", 0x7)
.Case("msp", 0x8)
.Case("psp", 0x9)
.Case("primask", 0x10)
.Case("basepri", 0x11)
.Case("basepri_max", 0x12)
.Case("faultmask", 0x13)
.Case("control", 0x14)
.Default(-1);
}
// The flags here are common to those allowed for apsr in the A class cores and
// those allowed for the special registers in the M class cores. Returns a
// value representing which flags were present, -1 if invalid.
static inline int getMClassFlagsMask(StringRef Flags) {
if (Flags.empty())
return 0x3;
return StringSwitch<int>(Flags)
.Case("g", 0x1)
.Case("nzcvq", 0x2)
.Case("nzcvqg", 0x3)
.Default(-1);
}
static int getMClassRegisterMask(StringRef Reg, StringRef Flags, bool IsRead,
const ARMSubtarget *Subtarget) {
// Ensure that the register (without flags) was a valid M Class special
// register.
int SYSmvalue = getMClassRegisterSYSmValueMask(Reg);
if (SYSmvalue == -1)
return -1;
// basepri, basepri_max and faultmask are only valid for V7m.
if (!Subtarget->hasV7Ops() && SYSmvalue >= 0x11 && SYSmvalue <= 0x13)
return -1;
// If it was a read then we won't be expecting flags and so at this point
// we can return the mask.
if (IsRead) {
assert (Flags.empty() && "Unexpected flags for reading M class register.");
return SYSmvalue;
}
// We know we are now handling a write so need to get the mask for the flags.
int Mask = getMClassFlagsMask(Flags);
// Only apsr, iapsr, eapsr, xpsr can have flags. The other register values
// shouldn't have flags present.
if ((SYSmvalue < 0x4 && Mask == -1) || (SYSmvalue > 0x4 && !Flags.empty()))
return -1;
// The _g and _nzcvqg versions are only valid if the DSP extension is
// available.
if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
return -1;
// The register was valid so need to put the mask in the correct place
// (the flags need to be in bits 11-10) and combine with the SYSmvalue to
// construct the operand for the instruction node.
if (SYSmvalue < 0x4)
return SYSmvalue | Mask << 10;
return SYSmvalue;
}
static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
// The mask operand contains the special register (R Bit) in bit 4, whether
// the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
// bits 3-0 contains the fields to be accessed in the special register, set by
// the flags provided with the register.
int Mask = 0;
if (Reg == "apsr") {
// The flags permitted for apsr are the same flags that are allowed in
// M class registers. We get the flag value and then shift the flags into
// the correct place to combine with the mask.
Mask = getMClassFlagsMask(Flags);
if (Mask == -1)
return -1;
return Mask << 2;
}
if (Reg != "cpsr" && Reg != "spsr") {
return -1;
}
// This is the same as if the flags were "fc"
if (Flags.empty() || Flags == "all")
return Mask | 0x9;
// Inspect the supplied flags string and set the bits in the mask for
// the relevant and valid flags allowed for cpsr and spsr.
for (char Flag : Flags) {
int FlagVal;
switch (Flag) {
case 'c':
FlagVal = 0x1;
break;
case 'x':
FlagVal = 0x2;
break;
case 's':
FlagVal = 0x4;
break;
case 'f':
FlagVal = 0x8;
break;
default:
FlagVal = 0;
}
// This avoids allowing strings where the same flag bit appears twice.
if (!FlagVal || (Mask & FlagVal))
return -1;
Mask |= FlagVal;
}
// If the register is spsr then we need to set the R bit.
if (Reg == "spsr")
Mask |= 0x10;
return Mask;
}
// Lower the read_register intrinsic to ARM specific DAG nodes
// using the supplied metadata string to select the instruction node to use
// and the registers/masks to construct as operands for the node.
SDNode *ARMDAGToDAGISel::SelectReadRegister(SDNode *N){
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(0));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
bool IsThumb2 = Subtarget->isThumb2();
SDLoc DL(N);
std::vector<SDValue> Ops;
getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
if (!Ops.empty()) {
// If the special register string was constructed of fields (as defined
// in the ACLE) then need to lower to MRC node (32 bit) or
// MRRC node(64 bit), we can make the distinction based on the number of
// operands we have.
unsigned Opcode;
SmallVector<EVT, 2> ResTypes;
if (Ops.size() == 5){
Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
ResTypes = { MVT::i32 };
} else {
assert(Ops.size() == 3 &&
"Invalid number of fields in special register string.");
Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
ResTypes = { MVT::i32, MVT::i32 };
}
Ops.push_back(getAL(CurDAG, DL));
Ops.push_back(CurDAG->getRegister(0, MVT::i32));
return CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops);
}
std::string SpecialReg = RegString->getString().lower();
int BankedReg = getBankedRegisterMask(SpecialReg);
if (BankedReg != -1) {
Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
DL, MVT::i32, Ops);
}
// The VFP registers are read by creating SelectionDAG nodes with opcodes
// corresponding to the register that is being read from. So we switch on the
// string to find which opcode we need to use.
unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
.Case("fpscr", ARM::VMRS)
.Case("fpexc", ARM::VMRS_FPEXC)
.Case("fpsid", ARM::VMRS_FPSID)
.Case("mvfr0", ARM::VMRS_MVFR0)
.Case("mvfr1", ARM::VMRS_MVFR1)
.Case("mvfr2", ARM::VMRS_MVFR2)
.Case("fpinst", ARM::VMRS_FPINST)
.Case("fpinst2", ARM::VMRS_FPINST2)
.Default(0);
// If an opcode was found then we can lower the read to a VFP instruction.
if (Opcode) {
if (!Subtarget->hasVFP2())
return nullptr;
if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8())
return nullptr;
Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Ops);
}
// If the target is M Class then need to validate that the register string
// is an acceptable value, so check that a mask can be constructed from the
// string.
if (Subtarget->isMClass()) {
int SYSmValue = getMClassRegisterMask(SpecialReg, "", true, Subtarget);
if (SYSmValue == -1)
return nullptr;
SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
getAL(CurDAG, DL),
CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, Ops);
}
// Here we know the target is not M Class so we need to check if it is one
// of the remaining possible values which are apsr, cpsr or spsr.
if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS, DL,
MVT::i32, Ops);
}
if (SpecialReg == "spsr") {
Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys,
DL, MVT::i32, Ops);
}
return nullptr;
}
// Lower the write_register intrinsic to ARM specific DAG nodes
// using the supplied metadata string to select the instruction node to use
// and the registers/masks to use in the nodes
SDNode *ARMDAGToDAGISel::SelectWriteRegister(SDNode *N){
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
bool IsThumb2 = Subtarget->isThumb2();
SDLoc DL(N);
std::vector<SDValue> Ops;
getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
if (!Ops.empty()) {
// If the special register string was constructed of fields (as defined
// in the ACLE) then need to lower to MCR node (32 bit) or
// MCRR node(64 bit), we can make the distinction based on the number of
// operands we have.
unsigned Opcode;
if (Ops.size() == 5) {
Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
Ops.insert(Ops.begin()+2, N->getOperand(2));
} else {
assert(Ops.size() == 3 &&
"Invalid number of fields in special register string.");
Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
}
Ops.push_back(getAL(CurDAG, DL));
Ops.push_back(CurDAG->getRegister(0, MVT::i32));
Ops.push_back(N->getOperand(0));
return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
}
std::string SpecialReg = RegString->getString().lower();
int BankedReg = getBankedRegisterMask(SpecialReg);
if (BankedReg != -1) {
Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
N->getOperand(0) };
return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
DL, MVT::Other, Ops);
}
// The VFP registers are written to by creating SelectionDAG nodes with
// opcodes corresponding to the register that is being written. So we switch
// on the string to find which opcode we need to use.
unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
.Case("fpscr", ARM::VMSR)
.Case("fpexc", ARM::VMSR_FPEXC)
.Case("fpsid", ARM::VMSR_FPSID)
.Case("fpinst", ARM::VMSR_FPINST)
.Case("fpinst2", ARM::VMSR_FPINST2)
.Default(0);
if (Opcode) {
if (!Subtarget->hasVFP2())
return nullptr;
Ops = { N->getOperand(2), getAL(CurDAG, DL),
CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
}
SmallVector<StringRef, 5> Fields;
StringRef(SpecialReg).split(Fields, "_", 1, false);
std::string Reg = Fields[0].str();
StringRef Flags = Fields.size() == 2 ? Fields[1] : "";
// If the target was M Class then need to validate the special register value
// and retrieve the mask for use in the instruction node.
if (Subtarget->isMClass()) {
// basepri_max gets split so need to correct Reg and Flags.
if (SpecialReg == "basepri_max") {
Reg = SpecialReg;
Flags = "";
}
int SYSmValue = getMClassRegisterMask(Reg, Flags, false, Subtarget);
if (SYSmValue == -1)
return nullptr;
SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
N->getOperand(2), getAL(CurDAG, DL),
CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
return CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops);
}
// We then check to see if a valid mask can be constructed for one of the
// register string values permitted for the A and R class cores. These values
// are apsr, spsr and cpsr; these are also valid on older cores.
int Mask = getARClassRegisterMask(Reg, Flags);
if (Mask != -1) {
Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
N->getOperand(0) };
return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
DL, MVT::Other, Ops);
}
return nullptr;
}
SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
std::vector<SDValue> AsmNodeOperands;
unsigned Flag, Kind;

View File

@ -426,9 +426,6 @@ ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
@ -2382,24 +2379,6 @@ bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
return !Subtarget->isThumb1Only();
}
// Trying to write a 64 bit value so need to split into two 32 bit values first,
// and pass the lower and high parts through.
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue WriteValue = Op->getOperand(2);
// This function is only supposed to be called for i64 type argument.
assert(WriteValue.getValueType() == MVT::i64
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(1, DL, MVT::i32));
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
@ -4107,27 +4086,9 @@ unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
.Default(0);
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
report_fatal_error("Invalid register name global variable");
}
// Result is 64 bit value so split into two 32 bit values and return as a
// pair of values.
static SDValue ExpandREAD_REGISTER(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
// This function is only supposed to be called for i64 type destination.
assert(N->getValueType(0) == MVT::i64
&& "ExpandREAD_REGISTER called for non-i64 type result.");
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
DAG.getVTList(MVT::i32, MVT::i32), Op);
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
Read.getValue(1));
}
/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
@ -6395,7 +6356,6 @@ static void ReplaceREADCYCLECOUNTER(SDNode *N,
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress:
@ -6480,9 +6440,6 @@ void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::READ_REGISTER:
Res = ExpandREAD_REGISTER(N, DAG);
break;
case ISD::BITCAST:
Res = ExpandBITCAST(N, DAG);
break;
@ -7957,7 +7914,7 @@ static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
// Get widened type and narrowed type.
MVT widenType;
unsigned numElem = VT.getVectorNumElements();
EVT inputLaneType = Vec.getValueType().getVectorElementType();
switch (inputLaneType.getSimpleVT().SimpleTy) {
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;

View File

@ -5039,8 +5039,10 @@ def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn,
imm:$CRm, imm:$opc2),
(MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag> pattern = []>
: ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
class MovRRCopro<string opc, bit direction, list<dag> pattern = []>
: ABI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm),
NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
let Inst{23-21} = 0b010;
let Inst{20} = direction;
@ -5058,13 +5060,9 @@ class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag> patter
}
def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
(outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt, GPRnopc:$Rt2,
c_imm:$CRm),
[(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, imm:$CRm)]>;
def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
(outs GPRnopc:$Rt, GPRnopc:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */>;
class MovRRCopro2<string opc, bit direction, list<dag> pattern = []>
: ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,

View File

@ -4141,9 +4141,11 @@ class t2MovRCopro<bits<4> Op, string opc, bit direction, dag oops, dag iops,
let Inst{19-16} = CRn;
}
class t2MovRRCopro<bits<4> Op, string opc, bit direction, dag oops, dag iops,
class t2MovRRCopro<bits<4> Op, string opc, bit direction,
list<dag> pattern = []>
: T2Cop<Op, oops, iops, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
: T2Cop<Op, (outs),
(ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2, c_imm:$CRm),
opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
let Inst{27-24} = 0b1100;
let Inst{23-21} = 0b010;
let Inst{20} = direction;
@ -4208,23 +4210,19 @@ def : T2v6Pat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
/* from ARM core register to coprocessor */
def t2MCRR : t2MovRRCopro<0b1110, "mcrr", 0, (outs),
(ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2, c_imm:$CRm),
[(int_arm_mcrr imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2,
def t2MCRR : t2MovRRCopro<0b1110, "mcrr", 0,
[(int_arm_mcrr imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2,
imm:$CRm)]>;
def t2MCRR2 : t2MovRRCopro<0b1111, "mcrr2", 0, (outs),
(ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2, c_imm:$CRm),
[(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt,
def t2MCRR2 : t2MovRRCopro<0b1111, "mcrr2", 0,
[(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt,
GPR:$Rt2, imm:$CRm)]> {
let Predicates = [IsThumb2, PreV8];
}
/* from coprocessor to ARM core register */
def t2MRRC : t2MovRRCopro<0b1110, "mrrc", 1, (outs GPR:$Rt, GPR:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm)>;
def t2MRRC : t2MovRRCopro<0b1110, "mrrc", 1>;
def t2MRRC2 : t2MovRRCopro<0b1111, "mrrc2", 1, (outs GPR:$Rt, GPR:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm)> {
def t2MRRC2 : t2MovRRCopro<0b1111, "mrrc2", 1> {
let Predicates = [IsThumb2, PreV8];
}

View File

@ -4,7 +4,7 @@
define i32 @get_stack() nounwind {
entry:
; FIXME: Include an allocatable-specific error message
; CHECK: Invalid register name "x5".
; CHECK: Invalid register name global variable
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}

View File

@ -3,7 +3,7 @@
define i32 @get_stack() nounwind {
entry:
; CHECK: Invalid register name "notareg".
; CHECK: Invalid register name global variable
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}

View File

@ -1,48 +0,0 @@
; RUN: llc < %s -mtriple=aarch64-none-eabi -mcpu=cortex-a57 2>&1 | FileCheck %s
define i64 @read_encoded_register() nounwind {
entry:
; CHECK-LABEL: read_encoded_register:
; CHECK: mrs x0, S1_2_C3_C4_5
%reg = call i64 @llvm.read_register.i64(metadata !0)
ret i64 %reg
}
define i64 @read_daif() nounwind {
entry:
; CHECK-LABEL: read_daif:
; CHECK: mrs x0, DAIF
%reg = call i64 @llvm.read_register.i64(metadata !1)
ret i64 %reg
}
define void @write_encoded_register(i64 %x) nounwind {
entry:
; CHECK-LABEL: write_encoded_register:
; CHECK: msr S1_2_C3_C4_5, x0
call void @llvm.write_register.i64(metadata !0, i64 %x)
ret void
}
define void @write_daif(i64 %x) nounwind {
entry:
; CHECK-LABEL: write_daif:
; CHECK: msr DAIF, x0
call void @llvm.write_register.i64(metadata !1, i64 %x)
ret void
}
define void @write_daifset() nounwind {
entry:
; CHECK-LABEL: write_daifset:
; CHECK: msr DAIFSET, #2
call void @llvm.write_register.i64(metadata !2, i64 2)
ret void
}
declare i64 @llvm.read_register.i64(metadata) nounwind
declare void @llvm.write_register.i64(metadata, i64) nounwind
!0 = !{!"1:2:3:4:5"}
!1 = !{!"daif"}
!2 = !{!"daifset"}

View File

@ -4,7 +4,7 @@
define i32 @get_stack() nounwind {
entry:
; FIXME: Include an allocatable-specific error message
; CHECK: Invalid register name "r5".
; CHECK: Invalid register name global variable
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}

View File

@ -3,7 +3,7 @@
define i32 @get_stack() nounwind {
entry:
; CHECK: Invalid register name "notareg".
; CHECK: Invalid register name global variable
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}

View File

@ -1,78 +0,0 @@
; RUN: llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ACORE
; RUN: not llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=MCORE
; MCORE: LLVM ERROR: Invalid register name "cpsr".
define i32 @read_cpsr() nounwind {
; ACORE-LABEL: read_cpsr:
; ACORE: mrs r0, apsr
%reg = call i32 @llvm.read_register.i32(metadata !1)
ret i32 %reg
}
define i32 @read_aclass_registers() nounwind {
entry:
; ACORE-LABEL: read_aclass_registers:
; ACORE: mrs r0, apsr
; ACORE: mrs r1, spsr
%0 = call i32 @llvm.read_register.i32(metadata !0)
%1 = call i32 @llvm.read_register.i32(metadata !1)
%add1 = add i32 %1, %0
%2 = call i32 @llvm.read_register.i32(metadata !2)
%add2 = add i32 %add1, %2
ret i32 %add2
}
define void @write_aclass_registers(i32 %x) nounwind {
entry:
; ACORE-LABEL: write_aclass_registers:
; ACORE: msr APSR_nzcvq, r0
; ACORE: msr APSR_g, r0
; ACORE: msr APSR_nzcvqg, r0
; ACORE: msr CPSR_c, r0
; ACORE: msr CPSR_x, r0
; ACORE: msr APSR_g, r0
; ACORE: msr APSR_nzcvq, r0
; ACORE: msr CPSR_fsxc, r0
; ACORE: msr SPSR_c, r0
; ACORE: msr SPSR_x, r0
; ACORE: msr SPSR_s, r0
; ACORE: msr SPSR_f, r0
; ACORE: msr SPSR_fsxc, r0
call void @llvm.write_register.i32(metadata !3, i32 %x)
call void @llvm.write_register.i32(metadata !4, i32 %x)
call void @llvm.write_register.i32(metadata !5, i32 %x)
call void @llvm.write_register.i32(metadata !6, i32 %x)
call void @llvm.write_register.i32(metadata !7, i32 %x)
call void @llvm.write_register.i32(metadata !8, i32 %x)
call void @llvm.write_register.i32(metadata !9, i32 %x)
call void @llvm.write_register.i32(metadata !10, i32 %x)
call void @llvm.write_register.i32(metadata !11, i32 %x)
call void @llvm.write_register.i32(metadata !12, i32 %x)
call void @llvm.write_register.i32(metadata !13, i32 %x)
call void @llvm.write_register.i32(metadata !14, i32 %x)
call void @llvm.write_register.i32(metadata !15, i32 %x)
ret void
}
declare i32 @llvm.read_register.i32(metadata) nounwind
declare void @llvm.write_register.i32(metadata, i32) nounwind
!0 = !{!"apsr"}
!1 = !{!"cpsr"}
!2 = !{!"spsr"}
!3 = !{!"apsr_nzcvq"}
!4 = !{!"apsr_g"}
!5 = !{!"apsr_nzcvqg"}
!6 = !{!"cpsr_c"}
!7 = !{!"cpsr_x"}
!8 = !{!"cpsr_s"}
!9 = !{!"cpsr_f"}
!10 = !{!"cpsr_cxsf"}
!11 = !{!"spsr_c"}
!12 = !{!"spsr_x"}
!13 = !{!"spsr_s"}
!14 = !{!"spsr_f"}
!15 = !{!"spsr_cxsf"}

View File

@ -1,143 +0,0 @@
; RUN: llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=MCORE
; RUN: not llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m3 2>&1 | FileCheck %s --check-prefix=M3CORE
; RUN: not llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ACORE
; ACORE: LLVM ERROR: Invalid register name "control".
; M3CORE: LLVM ERROR: Invalid register name "control".
define i32 @read_mclass_registers() nounwind {
entry:
; MCORE-LABEL: read_mclass_registers:
; MCORE: mrs r0, apsr
; MCORE: mrs r1, iapsr
; MCORE: mrs r1, eapsr
; MCORE: mrs r1, xpsr
; MCORE: mrs r1, ipsr
; MCORE: mrs r1, epsr
; MCORE: mrs r1, iepsr
; MCORE: mrs r1, msp
; MCORE: mrs r1, psp
; MCORE: mrs r1, primask
; MCORE: mrs r1, basepri
; MCORE: mrs r1, basepri_max
; MCORE: mrs r1, faultmask
; MCORE: mrs r1, control
%0 = call i32 @llvm.read_register.i32(metadata !0)
%1 = call i32 @llvm.read_register.i32(metadata !4)
%add1 = add i32 %1, %0
%2 = call i32 @llvm.read_register.i32(metadata !8)
%add2 = add i32 %add1, %2
%3 = call i32 @llvm.read_register.i32(metadata !12)
%add3 = add i32 %add2, %3
%4 = call i32 @llvm.read_register.i32(metadata !16)
%add4 = add i32 %add3, %4
%5 = call i32 @llvm.read_register.i32(metadata !17)
%add5 = add i32 %add4, %5
%6 = call i32 @llvm.read_register.i32(metadata !18)
%add6 = add i32 %add5, %6
%7 = call i32 @llvm.read_register.i32(metadata !19)
%add7 = add i32 %add6, %7
%8 = call i32 @llvm.read_register.i32(metadata !20)
%add8 = add i32 %add7, %8
%9 = call i32 @llvm.read_register.i32(metadata !21)
%add9 = add i32 %add8, %9
%10 = call i32 @llvm.read_register.i32(metadata !22)
%add10 = add i32 %add9, %10
%11 = call i32 @llvm.read_register.i32(metadata !23)
%add11 = add i32 %add10, %11
%12 = call i32 @llvm.read_register.i32(metadata !24)
%add12 = add i32 %add11, %12
%13 = call i32 @llvm.read_register.i32(metadata !25)
%add13 = add i32 %add12, %13
ret i32 %add13
}
define void @write_mclass_registers(i32 %x) nounwind {
entry:
; MCORE-LABEL: write_mclass_registers:
; MCORE: msr apsr_nzcvqg, r0
; MCORE: msr apsr_nzcvq, r0
; MCORE: msr apsr_g, r0
; MCORE: msr apsr_nzcvqg, r0
; MCORE: msr iapsr_nzcvqg, r0
; MCORE: msr iapsr_nzcvq, r0
; MCORE: msr iapsr_g, r0
; MCORE: msr iapsr_nzcvqg, r0
; MCORE: msr eapsr_nzcvqg, r0
; MCORE: msr eapsr_nzcvq, r0
; MCORE: msr eapsr_g, r0
; MCORE: msr eapsr_nzcvqg, r0
; MCORE: msr xpsr_nzcvqg, r0
; MCORE: msr xpsr_nzcvq, r0
; MCORE: msr xpsr_g, r0
; MCORE: msr xpsr_nzcvqg, r0
; MCORE: msr ipsr, r0
; MCORE: msr epsr, r0
; MCORE: msr iepsr, r0
; MCORE: msr msp, r0
; MCORE: msr psp, r0
; MCORE: msr primask, r0
; MCORE: msr basepri, r0
; MCORE: msr basepri_max, r0
; MCORE: msr faultmask, r0
; MCORE: msr control, r0
call void @llvm.write_register.i32(metadata !0, i32 %x)
call void @llvm.write_register.i32(metadata !1, i32 %x)
call void @llvm.write_register.i32(metadata !2, i32 %x)
call void @llvm.write_register.i32(metadata !3, i32 %x)
call void @llvm.write_register.i32(metadata !4, i32 %x)
call void @llvm.write_register.i32(metadata !5, i32 %x)
call void @llvm.write_register.i32(metadata !6, i32 %x)
call void @llvm.write_register.i32(metadata !7, i32 %x)
call void @llvm.write_register.i32(metadata !8, i32 %x)
call void @llvm.write_register.i32(metadata !9, i32 %x)
call void @llvm.write_register.i32(metadata !10, i32 %x)
call void @llvm.write_register.i32(metadata !11, i32 %x)
call void @llvm.write_register.i32(metadata !12, i32 %x)
call void @llvm.write_register.i32(metadata !13, i32 %x)
call void @llvm.write_register.i32(metadata !14, i32 %x)
call void @llvm.write_register.i32(metadata !15, i32 %x)
call void @llvm.write_register.i32(metadata !16, i32 %x)
call void @llvm.write_register.i32(metadata !17, i32 %x)
call void @llvm.write_register.i32(metadata !18, i32 %x)
call void @llvm.write_register.i32(metadata !19, i32 %x)
call void @llvm.write_register.i32(metadata !20, i32 %x)
call void @llvm.write_register.i32(metadata !21, i32 %x)
call void @llvm.write_register.i32(metadata !22, i32 %x)
call void @llvm.write_register.i32(metadata !23, i32 %x)
call void @llvm.write_register.i32(metadata !24, i32 %x)
call void @llvm.write_register.i32(metadata !25, i32 %x)
ret void
}
declare i32 @llvm.read_register.i32(metadata) nounwind
declare void @llvm.write_register.i32(metadata, i32) nounwind
!0 = !{!"apsr"}
!1 = !{!"apsr_nzcvq"}
!2 = !{!"apsr_g"}
!3 = !{!"apsr_nzcvqg"}
!4 = !{!"iapsr"}
!5 = !{!"iapsr_nzcvq"}
!6 = !{!"iapsr_g"}
!7 = !{!"iapsr_nzcvqg"}
!8 = !{!"eapsr"}
!9 = !{!"eapsr_nzcvq"}
!10 = !{!"eapsr_g"}
!11 = !{!"eapsr_nzcvqg"}
!12 = !{!"xpsr"}
!13 = !{!"xpsr_nzcvq"}
!14 = !{!"xpsr_g"}
!15 = !{!"xpsr_nzcvqg"}
!16 = !{!"ipsr"}
!17 = !{!"epsr"}
!18 = !{!"iepsr"}
!19 = !{!"msp"}
!20 = !{!"psp"}
!21 = !{!"primask"}
!22 = !{!"basepri"}
!23 = !{!"basepri_max"}
!24 = !{!"faultmask"}
!25 = !{!"control"}

View File

@ -1,78 +0,0 @@
; RUN: llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ARM --check-prefix=ACORE
; RUN: llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=ARM --check-prefix=MCORE
define i32 @read_i32_encoded_register() nounwind {
entry:
; ARM-LABEL: read_i32_encoded_register:
; ARM: mrc p1, #2, r0, c3, c4, #5
%reg = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %reg
}
define i64 @read_i64_encoded_register() nounwind {
entry:
; ARM-LABEL: read_i64_encoded_register:
; ARM: mrrc p1, #2, r0, r1, c3
%reg = call i64 @llvm.read_register.i64(metadata !1)
ret i64 %reg
}
define i32 @read_apsr() nounwind {
entry:
; ARM-LABEL: read_apsr:
; ARM: mrs r0, apsr
%reg = call i32 @llvm.read_register.i32(metadata !2)
ret i32 %reg
}
define i32 @read_fpscr() nounwind {
entry:
; ARM-LABEL: read_fpscr:
; ARM: vmrs r0, fpscr
%reg = call i32 @llvm.read_register.i32(metadata !3)
ret i32 %reg
}
define void @write_i32_encoded_register(i32 %x) nounwind {
entry:
; ARM-LABEL: write_i32_encoded_register:
; ARM: mcr p1, #2, r0, c3, c4, #5
call void @llvm.write_register.i32(metadata !0, i32 %x)
ret void
}
define void @write_i64_encoded_register(i64 %x) nounwind {
entry:
; ARM-LABEL: write_i64_encoded_register:
; ARM: mcrr p1, #2, r0, r1, c3
call void @llvm.write_register.i64(metadata !1, i64 %x)
ret void
}
define void @write_apsr(i32 %x) nounwind {
entry:
; ARM-LABEL: write_apsr:
; ACORE: msr APSR_nzcvq, r0
; MCORE: msr apsr_nzcvq, r0
call void @llvm.write_register.i32(metadata !4, i32 %x)
ret void
}
define void @write_fpscr(i32 %x) nounwind {
entry:
; ARM-LABEL: write_fpscr:
; ARM: vmsr fpscr, r0
call void @llvm.write_register.i32(metadata !3, i32 %x)
ret void
}
declare i32 @llvm.read_register.i32(metadata) nounwind
declare i64 @llvm.read_register.i64(metadata) nounwind
declare void @llvm.write_register.i32(metadata, i32) nounwind
declare void @llvm.write_register.i64(metadata, i64) nounwind
!0 = !{!"cp1:2:c3:c4:5"}
!1 = !{!"cp1:2:c3"}
!2 = !{!"apsr"}
!3 = !{!"fpscr"}
!4 = !{!"apsr_nzcvq"}