forked from OSchip/llvm-project
[analyzer] Move RangeSet related declarations into the RangedConstraintManager header.
Summary: I could also move `RangedConstraintManager.h` under `include/` if you agree as it seems slightly out of place under `lib/`. Patch by Réka Kovács Reviewers: NoQ, george.karpenkov, dcoughlin, rnkovacs Reviewed By: NoQ Subscribers: mikhail.ramalho, whisperity, xazax.hun, baloghadamsoftware, szepet, a.sidorin, dkrupp, cfe-commits Differential Revision: https://reviews.llvm.org/D45920 llvm-svn: 333179
This commit is contained in:
parent
b7b2424f2e
commit
6c4c55ce9e
|
@ -23,263 +23,171 @@
|
|||
using namespace clang;
|
||||
using namespace ento;
|
||||
|
||||
/// A Range represents the closed range [from, to]. The caller must
|
||||
/// guarantee that from <= to. Note that Range is immutable, so as not
|
||||
/// to subvert RangeSet's immutability.
|
||||
namespace {
|
||||
class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> {
|
||||
public:
|
||||
Range(const llvm::APSInt &from, const llvm::APSInt &to)
|
||||
: std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) {
|
||||
assert(from <= to);
|
||||
}
|
||||
bool Includes(const llvm::APSInt &v) const {
|
||||
return *first <= v && v <= *second;
|
||||
}
|
||||
const llvm::APSInt &From() const { return *first; }
|
||||
const llvm::APSInt &To() const { return *second; }
|
||||
const llvm::APSInt *getConcreteValue() const {
|
||||
return &From() == &To() ? &From() : nullptr;
|
||||
}
|
||||
void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
|
||||
const llvm::APSInt &Lower, const llvm::APSInt &Upper,
|
||||
PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
|
||||
PrimRangeSet::iterator &e) const {
|
||||
// There are six cases for each range R in the set:
|
||||
// 1. R is entirely before the intersection range.
|
||||
// 2. R is entirely after the intersection range.
|
||||
// 3. R contains the entire intersection range.
|
||||
// 4. R starts before the intersection range and ends in the middle.
|
||||
// 5. R starts in the middle of the intersection range and ends after it.
|
||||
// 6. R is entirely contained in the intersection range.
|
||||
// These correspond to each of the conditions below.
|
||||
for (/* i = begin(), e = end() */; i != e; ++i) {
|
||||
if (i->To() < Lower) {
|
||||
continue;
|
||||
}
|
||||
if (i->From() > Upper) {
|
||||
break;
|
||||
}
|
||||
|
||||
void Profile(llvm::FoldingSetNodeID &ID) const {
|
||||
ID.AddPointer(&From());
|
||||
ID.AddPointer(&To());
|
||||
}
|
||||
};
|
||||
|
||||
class RangeTrait : public llvm::ImutContainerInfo<Range> {
|
||||
public:
|
||||
// When comparing if one Range is less than another, we should compare
|
||||
// the actual APSInt values instead of their pointers. This keeps the order
|
||||
// consistent (instead of comparing by pointer values) and can potentially
|
||||
// be used to speed up some of the operations in RangeSet.
|
||||
static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
|
||||
return *lhs.first < *rhs.first ||
|
||||
(!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second);
|
||||
}
|
||||
};
|
||||
|
||||
/// RangeSet contains a set of ranges. If the set is empty, then
|
||||
/// there the value of a symbol is overly constrained and there are no
|
||||
/// possible values for that symbol.
|
||||
class RangeSet {
|
||||
typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
|
||||
PrimRangeSet ranges; // no need to make const, since it is an
|
||||
// ImmutableSet - this allows default operator=
|
||||
// to work.
|
||||
public:
|
||||
typedef PrimRangeSet::Factory Factory;
|
||||
typedef PrimRangeSet::iterator iterator;
|
||||
|
||||
RangeSet(PrimRangeSet RS) : ranges(RS) {}
|
||||
|
||||
/// Create a new set with all ranges of this set and RS.
|
||||
/// Possible intersections are not checked here.
|
||||
RangeSet addRange(Factory &F, const RangeSet &RS) {
|
||||
PrimRangeSet Ranges(RS.ranges);
|
||||
for (const auto &range : ranges)
|
||||
Ranges = F.add(Ranges, range);
|
||||
return RangeSet(Ranges);
|
||||
}
|
||||
|
||||
iterator begin() const { return ranges.begin(); }
|
||||
iterator end() const { return ranges.end(); }
|
||||
|
||||
bool isEmpty() const { return ranges.isEmpty(); }
|
||||
|
||||
/// Construct a new RangeSet representing '{ [from, to] }'.
|
||||
RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
|
||||
: ranges(F.add(F.getEmptySet(), Range(from, to))) {}
|
||||
|
||||
/// Profile - Generates a hash profile of this RangeSet for use
|
||||
/// by FoldingSet.
|
||||
void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
|
||||
|
||||
/// getConcreteValue - If a symbol is contrained to equal a specific integer
|
||||
/// constant then this method returns that value. Otherwise, it returns
|
||||
/// NULL.
|
||||
const llvm::APSInt *getConcreteValue() const {
|
||||
return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
void IntersectInRange(BasicValueFactory &BV, Factory &F,
|
||||
const llvm::APSInt &Lower, const llvm::APSInt &Upper,
|
||||
PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
|
||||
PrimRangeSet::iterator &e) const {
|
||||
// There are six cases for each range R in the set:
|
||||
// 1. R is entirely before the intersection range.
|
||||
// 2. R is entirely after the intersection range.
|
||||
// 3. R contains the entire intersection range.
|
||||
// 4. R starts before the intersection range and ends in the middle.
|
||||
// 5. R starts in the middle of the intersection range and ends after it.
|
||||
// 6. R is entirely contained in the intersection range.
|
||||
// These correspond to each of the conditions below.
|
||||
for (/* i = begin(), e = end() */; i != e; ++i) {
|
||||
if (i->To() < Lower) {
|
||||
continue;
|
||||
}
|
||||
if (i->From() > Upper) {
|
||||
if (i->Includes(Lower)) {
|
||||
if (i->Includes(Upper)) {
|
||||
newRanges =
|
||||
F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
|
||||
break;
|
||||
}
|
||||
|
||||
if (i->Includes(Lower)) {
|
||||
if (i->Includes(Upper)) {
|
||||
newRanges =
|
||||
F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
|
||||
break;
|
||||
} else
|
||||
newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
|
||||
} else {
|
||||
if (i->Includes(Upper)) {
|
||||
newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
|
||||
break;
|
||||
} else
|
||||
newRanges = F.add(newRanges, *i);
|
||||
}
|
||||
} else
|
||||
newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
|
||||
} else {
|
||||
if (i->Includes(Upper)) {
|
||||
newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
|
||||
break;
|
||||
} else
|
||||
newRanges = F.add(newRanges, *i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const llvm::APSInt &getMinValue() const {
|
||||
assert(!isEmpty());
|
||||
return ranges.begin()->From();
|
||||
}
|
||||
const llvm::APSInt &RangeSet::getMinValue() const {
|
||||
assert(!isEmpty());
|
||||
return ranges.begin()->From();
|
||||
}
|
||||
|
||||
bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
||||
// This function has nine cases, the cartesian product of range-testing
|
||||
// both the upper and lower bounds against the symbol's type.
|
||||
// Each case requires a different pinning operation.
|
||||
// The function returns false if the described range is entirely outside
|
||||
// the range of values for the associated symbol.
|
||||
APSIntType Type(getMinValue());
|
||||
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
||||
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
||||
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
||||
// This function has nine cases, the cartesian product of range-testing
|
||||
// both the upper and lower bounds against the symbol's type.
|
||||
// Each case requires a different pinning operation.
|
||||
// The function returns false if the described range is entirely outside
|
||||
// the range of values for the associated symbol.
|
||||
APSIntType Type(getMinValue());
|
||||
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
||||
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
||||
|
||||
switch (LowerTest) {
|
||||
switch (LowerTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
// The entire range is outside the symbol's set of possible values.
|
||||
// If this is a conventionally-ordered range, the state is infeasible.
|
||||
if (Lower <= Upper)
|
||||
return false;
|
||||
// The entire range is outside the symbol's set of possible values.
|
||||
// If this is a conventionally-ordered range, the state is infeasible.
|
||||
if (Lower <= Upper)
|
||||
return false;
|
||||
|
||||
// However, if the range wraps around, it spans all possible values.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
case APSIntType::RTR_Within:
|
||||
// The range starts below what's possible but ends within it. Pin.
|
||||
Lower = Type.getMinValue();
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
// The range spans all possible values for the symbol. Pin.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
// However, if the range wraps around, it spans all possible values.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
case APSIntType::RTR_Within:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
// The range wraps around, but all lower values are not possible.
|
||||
Type.apply(Lower);
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
case APSIntType::RTR_Within:
|
||||
// The range may or may not wrap around, but both limits are valid.
|
||||
Type.apply(Lower);
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
// The range starts within what's possible but ends above it. Pin.
|
||||
Type.apply(Lower);
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
// The range starts below what's possible but ends within it. Pin.
|
||||
Lower = Type.getMinValue();
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
// The range wraps but is outside the symbol's set of possible values.
|
||||
return false;
|
||||
case APSIntType::RTR_Within:
|
||||
// The range starts above what's possible but ends within it (wrap).
|
||||
Lower = Type.getMinValue();
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
// The entire range is outside the symbol's set of possible values.
|
||||
// If this is a conventionally-ordered range, the state is infeasible.
|
||||
if (Lower <= Upper)
|
||||
return false;
|
||||
|
||||
// However, if the range wraps around, it spans all possible values.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
// The range spans all possible values for the symbol. Pin.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public:
|
||||
// Returns a set containing the values in the receiving set, intersected with
|
||||
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
|
||||
// modular arithmetic, corresponding to the common treatment of C integer
|
||||
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
|
||||
// range is taken to wrap around. This is equivalent to taking the
|
||||
// intersection with the two ranges [Min, Upper] and [Lower, Max],
|
||||
// or, alternatively, /removing/ all integers between Upper and Lower.
|
||||
RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower,
|
||||
llvm::APSInt Upper) const {
|
||||
if (!pin(Lower, Upper))
|
||||
return F.getEmptySet();
|
||||
|
||||
PrimRangeSet newRanges = F.getEmptySet();
|
||||
|
||||
PrimRangeSet::iterator i = begin(), e = end();
|
||||
if (Lower <= Upper)
|
||||
IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
|
||||
else {
|
||||
// The order of the next two statements is important!
|
||||
// IntersectInRange() does not reset the iteration state for i and e.
|
||||
// Therefore, the lower range most be handled first.
|
||||
IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
|
||||
IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
|
||||
break;
|
||||
case APSIntType::RTR_Within:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
// The range wraps around, but all lower values are not possible.
|
||||
Type.apply(Lower);
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
case APSIntType::RTR_Within:
|
||||
// The range may or may not wrap around, but both limits are valid.
|
||||
Type.apply(Lower);
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
// The range starts within what's possible but ends above it. Pin.
|
||||
Type.apply(Lower);
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
switch (UpperTest) {
|
||||
case APSIntType::RTR_Below:
|
||||
// The range wraps but is outside the symbol's set of possible values.
|
||||
return false;
|
||||
case APSIntType::RTR_Within:
|
||||
// The range starts above what's possible but ends within it (wrap).
|
||||
Lower = Type.getMinValue();
|
||||
Type.apply(Upper);
|
||||
break;
|
||||
case APSIntType::RTR_Above:
|
||||
// The entire range is outside the symbol's set of possible values.
|
||||
// If this is a conventionally-ordered range, the state is infeasible.
|
||||
if (Lower <= Upper)
|
||||
return false;
|
||||
|
||||
return newRanges;
|
||||
}
|
||||
|
||||
void print(raw_ostream &os) const {
|
||||
bool isFirst = true;
|
||||
os << "{ ";
|
||||
for (iterator i = begin(), e = end(); i != e; ++i) {
|
||||
if (isFirst)
|
||||
isFirst = false;
|
||||
else
|
||||
os << ", ";
|
||||
|
||||
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
|
||||
<< ']';
|
||||
// However, if the range wraps around, it spans all possible values.
|
||||
Lower = Type.getMinValue();
|
||||
Upper = Type.getMaxValue();
|
||||
break;
|
||||
}
|
||||
os << " }";
|
||||
break;
|
||||
}
|
||||
|
||||
bool operator==(const RangeSet &other) const {
|
||||
return ranges == other.ranges;
|
||||
}
|
||||
};
|
||||
} // end anonymous namespace
|
||||
return true;
|
||||
}
|
||||
|
||||
REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
|
||||
CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
|
||||
RangeSet))
|
||||
// Returns a set containing the values in the receiving set, intersected with
|
||||
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
|
||||
// modular arithmetic, corresponding to the common treatment of C integer
|
||||
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
|
||||
// range is taken to wrap around. This is equivalent to taking the
|
||||
// intersection with the two ranges [Min, Upper] and [Lower, Max],
|
||||
// or, alternatively, /removing/ all integers between Upper and Lower.
|
||||
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
|
||||
llvm::APSInt Lower, llvm::APSInt Upper) const {
|
||||
if (!pin(Lower, Upper))
|
||||
return F.getEmptySet();
|
||||
|
||||
PrimRangeSet newRanges = F.getEmptySet();
|
||||
|
||||
PrimRangeSet::iterator i = begin(), e = end();
|
||||
if (Lower <= Upper)
|
||||
IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
|
||||
else {
|
||||
// The order of the next two statements is important!
|
||||
// IntersectInRange() does not reset the iteration state for i and e.
|
||||
// Therefore, the lower range most be handled first.
|
||||
IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
|
||||
IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
|
||||
}
|
||||
|
||||
return newRanges;
|
||||
}
|
||||
|
||||
void RangeSet::print(raw_ostream &os) const {
|
||||
bool isFirst = true;
|
||||
os << "{ ";
|
||||
for (iterator i = begin(), e = end(); i != e; ++i) {
|
||||
if (isFirst)
|
||||
isFirst = false;
|
||||
else
|
||||
os << ", ";
|
||||
|
||||
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
|
||||
<< ']';
|
||||
}
|
||||
os << " }";
|
||||
}
|
||||
|
||||
namespace {
|
||||
class RangeConstraintManager : public RangedConstraintManager {
|
||||
|
|
|
@ -15,12 +15,124 @@
|
|||
#define LLVM_CLANG_LIB_STATICANALYZER_CORE_RANGEDCONSTRAINTMANAGER_H
|
||||
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
||||
#include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h"
|
||||
|
||||
namespace clang {
|
||||
|
||||
namespace ento {
|
||||
|
||||
/// A Range represents the closed range [from, to]. The caller must
|
||||
/// guarantee that from <= to. Note that Range is immutable, so as not
|
||||
/// to subvert RangeSet's immutability.
|
||||
class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> {
|
||||
public:
|
||||
Range(const llvm::APSInt &from, const llvm::APSInt &to)
|
||||
: std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) {
|
||||
assert(from <= to);
|
||||
}
|
||||
bool Includes(const llvm::APSInt &v) const {
|
||||
return *first <= v && v <= *second;
|
||||
}
|
||||
const llvm::APSInt &From() const { return *first; }
|
||||
const llvm::APSInt &To() const { return *second; }
|
||||
const llvm::APSInt *getConcreteValue() const {
|
||||
return &From() == &To() ? &From() : nullptr;
|
||||
}
|
||||
|
||||
void Profile(llvm::FoldingSetNodeID &ID) const {
|
||||
ID.AddPointer(&From());
|
||||
ID.AddPointer(&To());
|
||||
}
|
||||
};
|
||||
|
||||
class RangeTrait : public llvm::ImutContainerInfo<Range> {
|
||||
public:
|
||||
// When comparing if one Range is less than another, we should compare
|
||||
// the actual APSInt values instead of their pointers. This keeps the order
|
||||
// consistent (instead of comparing by pointer values) and can potentially
|
||||
// be used to speed up some of the operations in RangeSet.
|
||||
static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
|
||||
return *lhs.first < *rhs.first ||
|
||||
(!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second);
|
||||
}
|
||||
};
|
||||
|
||||
/// RangeSet contains a set of ranges. If the set is empty, then
|
||||
/// there the value of a symbol is overly constrained and there are no
|
||||
/// possible values for that symbol.
|
||||
class RangeSet {
|
||||
typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
|
||||
PrimRangeSet ranges; // no need to make const, since it is an
|
||||
// ImmutableSet - this allows default operator=
|
||||
// to work.
|
||||
public:
|
||||
typedef PrimRangeSet::Factory Factory;
|
||||
typedef PrimRangeSet::iterator iterator;
|
||||
|
||||
RangeSet(PrimRangeSet RS) : ranges(RS) {}
|
||||
|
||||
/// Create a new set with all ranges of this set and RS.
|
||||
/// Possible intersections are not checked here.
|
||||
RangeSet addRange(Factory &F, const RangeSet &RS) {
|
||||
PrimRangeSet Ranges(RS.ranges);
|
||||
for (const auto &range : ranges)
|
||||
Ranges = F.add(Ranges, range);
|
||||
return RangeSet(Ranges);
|
||||
}
|
||||
|
||||
iterator begin() const { return ranges.begin(); }
|
||||
iterator end() const { return ranges.end(); }
|
||||
|
||||
bool isEmpty() const { return ranges.isEmpty(); }
|
||||
|
||||
/// Construct a new RangeSet representing '{ [from, to] }'.
|
||||
RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
|
||||
: ranges(F.add(F.getEmptySet(), Range(from, to))) {}
|
||||
|
||||
/// Profile - Generates a hash profile of this RangeSet for use
|
||||
/// by FoldingSet.
|
||||
void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
|
||||
|
||||
/// getConcreteValue - If a symbol is contrained to equal a specific integer
|
||||
/// constant then this method returns that value. Otherwise, it returns
|
||||
/// NULL.
|
||||
const llvm::APSInt *getConcreteValue() const {
|
||||
return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
void IntersectInRange(BasicValueFactory &BV, Factory &F,
|
||||
const llvm::APSInt &Lower, const llvm::APSInt &Upper,
|
||||
PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
|
||||
PrimRangeSet::iterator &e) const;
|
||||
|
||||
const llvm::APSInt &getMinValue() const;
|
||||
|
||||
bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const;
|
||||
|
||||
public:
|
||||
RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower,
|
||||
llvm::APSInt Upper) const;
|
||||
|
||||
void print(raw_ostream &os) const;
|
||||
|
||||
bool operator==(const RangeSet &other) const {
|
||||
return ranges == other.ranges;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class ConstraintRange {};
|
||||
using ConstraintRangeTy = llvm::ImmutableMap<SymbolRef, RangeSet>;
|
||||
|
||||
template <>
|
||||
struct ProgramStateTrait<ConstraintRange>
|
||||
: public ProgramStatePartialTrait<ConstraintRangeTy> {
|
||||
static void *GDMIndex() { static int Index; return &Index; }
|
||||
};
|
||||
|
||||
|
||||
class RangedConstraintManager : public SimpleConstraintManager {
|
||||
public:
|
||||
RangedConstraintManager(SubEngine *SE, SValBuilder &SB)
|
||||
|
|
Loading…
Reference in New Issue