Enhance the type system to support arbitrary precision integers, which are

important for low-bitwidth inference cases and hardware synthesis targets.

Rename 'int' to 'affineint' to avoid confusion between "the integers" and "the int
type".

PiperOrigin-RevId: 202751508
This commit is contained in:
Chris Lattner 2018-06-29 22:08:05 -07:00 committed by jpienaar
parent fdf7bc4e25
commit 6af866c58d
10 changed files with 146 additions and 110 deletions

View File

@ -24,18 +24,12 @@
namespace mlir {
class MLIRContext;
class PrimitiveType;
class IntegerType;
/// Integer identifier for all the concrete type kinds.
enum class TypeKind {
// Integer.
I1,
I8,
I16,
I32,
I64,
// Target pointer sized integer.
Int,
AffineInt,
// Floating point.
BF16,
@ -48,6 +42,7 @@ enum class TypeKind {
LAST_PRIMITIVE_TYPE = F64,
// Derived types.
Integer,
Function,
Vector,
RankedTensor,
@ -80,12 +75,8 @@ public:
void dump() const;
// Convenience factories.
static PrimitiveType *getI1(MLIRContext *ctx);
static PrimitiveType *getI8(MLIRContext *ctx);
static PrimitiveType *getI16(MLIRContext *ctx);
static PrimitiveType *getI32(MLIRContext *ctx);
static PrimitiveType *getI64(MLIRContext *ctx);
static PrimitiveType *getInt(MLIRContext *ctx);
static IntegerType *getInt(unsigned width, MLIRContext *ctx);
static PrimitiveType *getAffineInt(MLIRContext *ctx);
static PrimitiveType *getBF16(MLIRContext *ctx);
static PrimitiveType *getF16(MLIRContext *ctx);
static PrimitiveType *getF32(MLIRContext *ctx);
@ -140,23 +131,9 @@ private:
PrimitiveType(TypeKind kind, MLIRContext *context);
};
inline PrimitiveType *Type::getI1(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::I1, ctx);
}
inline PrimitiveType *Type::getI8(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::I8, ctx);
}
inline PrimitiveType *Type::getI16(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::I16, ctx);
}
inline PrimitiveType *Type::getI32(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::I32, ctx);
}
inline PrimitiveType *Type::getI64(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::I64, ctx);
}
inline PrimitiveType *Type::getInt(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::Int, ctx);
inline PrimitiveType *Type::getAffineInt(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::AffineInt, ctx);
}
inline PrimitiveType *Type::getBF16(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::BF16, ctx);
@ -171,6 +148,30 @@ inline PrimitiveType *Type::getF64(MLIRContext *ctx) {
return PrimitiveType::get(TypeKind::F64, ctx);
}
/// Integer types can have arbitrary bitwidth up to a large fixed limit of 4096.
class IntegerType : public Type {
public:
static IntegerType *get(unsigned width, MLIRContext *context);
/// Return the bitwidth of this integer type.
unsigned getWidth() const {
return width;
}
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *type) {
return type->getKind() == TypeKind::Integer;
}
private:
unsigned width;
IntegerType(unsigned width, MLIRContext *context);
};
inline IntegerType *Type::getInt(unsigned width, MLIRContext *ctx) {
return IntegerType::get(width, ctx);
}
/// Function types map from a list of inputs to a list of results.
class FunctionType : public Type {

View File

@ -120,6 +120,9 @@ public:
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
AffineMapSet affineMaps;
/// Integer type uniquing.
DenseMap<unsigned, IntegerType*> integers;
/// Function type uniquing.
using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>;
FunctionTypeSet functions;
@ -173,15 +176,10 @@ Identifier Identifier::get(StringRef str, const MLIRContext *context) {
return Identifier(it->getKeyData());
}
//===----------------------------------------------------------------------===//
// Types
//===----------------------------------------------------------------------===//
PrimitiveType::PrimitiveType(TypeKind kind, MLIRContext *context)
: Type(kind, context) {
}
PrimitiveType *PrimitiveType::get(TypeKind kind, MLIRContext *context) {
assert(kind <= TypeKind::LAST_PRIMITIVE_TYPE && "Not a primitive type kind");
auto &impl = context->getImpl();
@ -200,10 +198,16 @@ PrimitiveType *PrimitiveType::get(TypeKind kind, MLIRContext *context) {
return impl.primitives[(int)kind] = ptr;
}
FunctionType::FunctionType(Type *const *inputsAndResults, unsigned numInputs,
unsigned numResults, MLIRContext *context)
: Type(TypeKind::Function, context, numInputs),
numResults(numResults), inputsAndResults(inputsAndResults) {
IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
auto &impl = context->getImpl();
auto *&result = impl.integers[width];
if (!result) {
result = impl.allocator.Allocate<IntegerType>();
new (result) IntegerType(width, context);
}
return result;
}
FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results,
@ -236,18 +240,9 @@ FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results,
return *existing.first = result;
}
VectorType::VectorType(ArrayRef<unsigned> shape, PrimitiveType *elementType,
MLIRContext *context)
: Type(TypeKind::Vector, context, shape.size()),
shapeElements(shape.data()), elementType(elementType) {
}
VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
assert(!shape.empty() && "vector types must have at least one dimension");
assert(isa<PrimitiveType>(elementType) &&
assert((isa<PrimitiveType>(elementType) || isa<IntegerType>(elementType)) &&
"vectors elements must be primitives");
auto *context = elementType->getContext();
@ -277,22 +272,12 @@ VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
TensorType::TensorType(TypeKind kind, Type *elementType, MLIRContext *context)
: Type(kind, context), elementType(elementType) {
assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType)) &&
assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType) ||
isa<IntegerType>(elementType)) &&
"tensor elements must be primitives or vectors");
assert(isa<TensorType>(this));
}
RankedTensorType::RankedTensorType(ArrayRef<int> shape, Type *elementType,
MLIRContext *context)
: TensorType(TypeKind::RankedTensor, elementType, context),
shapeElements(shape.data()) {
setSubclassData(shape.size());
}
UnrankedTensorType::UnrankedTensorType(Type *elementType, MLIRContext *context)
: TensorType(TypeKind::UnrankedTensor, elementType, context) {
}
RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
Type *elementType) {
auto *context = elementType->getContext();

View File

@ -21,18 +21,50 @@
#include "mlir/Support/STLExtras.h"
using namespace mlir;
PrimitiveType::PrimitiveType(TypeKind kind, MLIRContext *context)
: Type(kind, context) {
}
IntegerType::IntegerType(unsigned width, MLIRContext *context)
: Type(TypeKind::Integer, context), width(width) {
}
FunctionType::FunctionType(Type *const *inputsAndResults, unsigned numInputs,
unsigned numResults, MLIRContext *context)
: Type(TypeKind::Function, context, numInputs),
numResults(numResults), inputsAndResults(inputsAndResults) {
}
VectorType::VectorType(ArrayRef<unsigned> shape, PrimitiveType *elementType,
MLIRContext *context)
: Type(TypeKind::Vector, context, shape.size()),
shapeElements(shape.data()), elementType(elementType) {
}
RankedTensorType::RankedTensorType(ArrayRef<int> shape, Type *elementType,
MLIRContext *context)
: TensorType(TypeKind::RankedTensor, elementType, context),
shapeElements(shape.data()) {
setSubclassData(shape.size());
}
UnrankedTensorType::UnrankedTensorType(Type *elementType, MLIRContext *context)
: TensorType(TypeKind::UnrankedTensor, elementType, context) {
}
void Type::print(raw_ostream &os) const {
switch (getKind()) {
case TypeKind::I1: os << "i1"; return;
case TypeKind::I8: os << "i8"; return;
case TypeKind::I16: os << "i16"; return;
case TypeKind::I32: os << "i32"; return;
case TypeKind::I64: os << "i64"; return;
case TypeKind::Int: os << "int"; return;
case TypeKind::AffineInt: os << "affineint"; return;
case TypeKind::BF16: os << "bf16"; return;
case TypeKind::F16: os << "f16"; return;
case TypeKind::F32: os << "f32"; return;
case TypeKind::F64: os << "f64"; return;
case TypeKind::Integer: {
auto *integer = cast<IntegerType>(this);
os << 'i' << integer->getWidth();
return;
}
case TypeKind::Function: {
auto *func = cast<FunctionType>(this);
os << '(';

View File

@ -140,6 +140,7 @@ Token Lexer::lexComment() {
/// Lex a bare identifier or keyword that starts with a letter.
///
/// bare-id ::= letter (letter|digit|[_])*
/// integer-type ::= `i[1-9][0-9]*`
///
Token Lexer::lexBareIdentifierOrKeyword(const char *tokStart) {
// Match the rest of the identifier regex: [0-9a-zA-Z_]*
@ -149,6 +150,15 @@ Token Lexer::lexBareIdentifierOrKeyword(const char *tokStart) {
// Check to see if this identifier is a keyword.
StringRef spelling(tokStart, curPtr-tokStart);
// Check for i123.
if (tokStart[0] == 'i') {
bool allDigits = true;
for (auto c : spelling.drop_front())
allDigits &= isdigit(c) != 0;
if (allDigits && spelling.size() != 1)
return Token(Token::inttype, spelling);
}
Token::Kind kind = llvm::StringSwitch<Token::Kind>(spelling)
#define TOK_KEYWORD(SPELLING) \
.Case(#SPELLING, Token::kw_##SPELLING)

View File

@ -121,7 +121,7 @@ private:
// as the results of their action.
// Type parsing.
PrimitiveType *parsePrimitiveType();
Type *parsePrimitiveType();
Type *parseElementType();
VectorType *parseVectorType();
ParseResult parseDimensionListRanked(SmallVectorImpl<int> &dimensions);
@ -218,12 +218,11 @@ parseCommaSeparatedList(Token::Kind rightToken,
/// Parse the low-level fixed dtypes in the system.
///
/// primitive-type
/// ::= `f16` | `bf16` | `f32` | `f64` // Floating point
/// | `i1` | `i8` | `i16` | `i32` | `i64` // Sized integers
/// | `int`
/// primitive-type ::= `f16` | `bf16` | `f32` | `f64`
/// primitive-type ::= integer-type
/// primitive-type ::= `affineint`
///
PrimitiveType *Parser::parsePrimitiveType() {
Type *Parser::parsePrimitiveType() {
switch (curToken.getKind()) {
default:
return (emitError("expected type"), nullptr);
@ -239,24 +238,16 @@ PrimitiveType *Parser::parsePrimitiveType() {
case Token::kw_f64:
consumeToken(Token::kw_f64);
return Type::getF64(context);
case Token::kw_i1:
consumeToken(Token::kw_i1);
return Type::getI1(context);
case Token::kw_i8:
consumeToken(Token::kw_i8);
return Type::getI8(context);
case Token::kw_i16:
consumeToken(Token::kw_i16);
return Type::getI16(context);
case Token::kw_i32:
consumeToken(Token::kw_i32);
return Type::getI32(context);
case Token::kw_i64:
consumeToken(Token::kw_i64);
return Type::getI64(context);
case Token::kw_int:
consumeToken(Token::kw_int);
return Type::getInt(context);
case Token::kw_affineint:
consumeToken(Token::kw_affineint);
return Type::getAffineInt(context);
case Token::inttype: {
auto width = curToken.getIntTypeBitwidth();
if (!width.hasValue())
return (emitError("invalid integer width"), nullptr);
consumeToken(Token::inttype);
return Type::getInt(width.getValue(), context);
}
}
}
@ -419,11 +410,9 @@ Type *Parser::parseMemRefType() {
return (emitError("expected '>' in memref type"), nullptr);
// FIXME: Add an IR representation for memref types.
return Type::getI1(context);
return Type::getInt(1, context);
}
/// Parse a function type.
///
/// function-type ::= type-list-parens `->` type-list
@ -445,7 +434,6 @@ Type *Parser::parseFunctionType() {
return FunctionType::get(arguments, results, context);
}
/// Parse an arbitrary type.
///
/// type ::= primitive-type

View File

@ -48,6 +48,18 @@ Optional<unsigned> Token::getUnsignedIntegerValue() const {
return result;
}
/// For an inttype token, return its bitwidth.
Optional<unsigned> Token::getIntTypeBitwidth() const {
unsigned result = 0;
if (spelling[1] == '0' ||
spelling.drop_front().getAsInteger(10, result) ||
// Arbitrary but large limit on bitwidth.
result > 4096 || result == 0)
return None;
return result;
}
/// Given a 'string' token, return its value, including removing the quote
/// characters and unescaping the contents of the string.
std::string Token::getStringValue() const {

View File

@ -73,6 +73,9 @@ public:
/// return None.
Optional<unsigned> getUnsignedIntegerValue() const;
/// For an inttype token, return its bitwidth.
Optional<unsigned> getIntTypeBitwidth() const;
/// Given a 'string' token, return its value, including removing the quote
/// characters and unescaping the contents of the string.
std::string getStringValue() const;

View File

@ -58,6 +58,7 @@ TOK_IDENTIFIER(affine_map_identifier) // #foo
// Literals
TOK_LITERAL(integer) // 42
TOK_LITERAL(string) // "foo"
TOK_LITERAL(inttype) // i421
// Punctuation.
TOK_PUNCTUATION(arrow, "->")
@ -84,6 +85,7 @@ TOK_OPERATOR(floordiv, "floordiv")
// TODO: More operator tokens
// Keywords. These turn "foo" into Token::kw_foo enums.
TOK_KEYWORD(affineint)
TOK_KEYWORD(bf16)
TOK_KEYWORD(br)
TOK_KEYWORD(cfgfunc)
@ -91,12 +93,6 @@ TOK_KEYWORD(extfunc)
TOK_KEYWORD(f16)
TOK_KEYWORD(f32)
TOK_KEYWORD(f64)
TOK_KEYWORD(i1)
TOK_KEYWORD(i16)
TOK_KEYWORD(i32)
TOK_KEYWORD(i64)
TOK_KEYWORD(i8)
TOK_KEYWORD(int)
TOK_KEYWORD(memref)
TOK_KEYWORD(mlfunc)
TOK_KEYWORD(return)

View File

@ -6,7 +6,7 @@
; Check different error cases.
; -----
extfunc @illegaltype(i42) ; expected-error {{expected type}}
extfunc @illegaltype(i) ; expected-error {{expected type}}
; -----
@ -19,7 +19,7 @@ cfgfunc @bar() ; expected-error {{expected '{' in CFG function}}
; -----
extfunc missingsigil() -> (i1, int, f32) ; expected-error {{expected a function identifier like}}
extfunc missingsigil() -> (i1, affineint, f32) ; expected-error {{expected a function identifier like}}
; -----
@ -75,3 +75,9 @@ bb40:
""() ; expected-error {{empty operation name is invalid}}
return
}
; -----
extfunc @illegaltype(i0) ; expected-error {{invalid integer width}}

View File

@ -10,25 +10,28 @@ extfunc @foo(i32, i64) -> f32
; CHECK: extfunc @bar()
extfunc @bar() -> ()
; CHECK: extfunc @baz() -> (i1, int, f32)
extfunc @baz() -> (i1, int, f32)
; CHECK: extfunc @baz() -> (i1, affineint, f32)
extfunc @baz() -> (i1, affineint, f32)
; CHECK: extfunc @missingReturn()
extfunc @missingReturn()
; CHECK: extfunc @int_types(i1, i2, i4, i7, i87) -> (i1, affineint, i19)
extfunc @int_types(i1, i2, i4, i7, i87) -> (i1, affineint, i19)
; CHECK: extfunc @vectors(vector<1xf32>, vector<2x4xf32>)
extfunc @vectors(vector<1 x f32>, vector<2x4xf32>)
; CHECK: extfunc @tensors(tensor<??f32>, tensor<??vector<2x4xf32>>, tensor<1x?x4x?x?xint>, tensor<i8>)
; CHECK: extfunc @tensors(tensor<??f32>, tensor<??vector<2x4xf32>>, tensor<1x?x4x?x?xaffineint>, tensor<i8>)
extfunc @tensors(tensor<?? f32>, tensor<?? vector<2x4xf32>>,
tensor<1x?x4x?x?xint>, tensor<i8>)
tensor<1x?x4x?x?xaffineint>, tensor<i8>)
; CHECK: extfunc @memrefs(i1, i1)
extfunc @memrefs(memref<1x?x4x?x?xint>, memref<i8>)
extfunc @memrefs(memref<1x?x4x?x?xaffineint>, memref<i8>)
; CHECK: extfunc @functions((i1, i1) -> (), () -> ())
extfunc @functions((memref<1x?x4x?x?xint>, memref<i8>) -> (), ()->())
extfunc @functions((memref<1x?x4x?x?xaffineint>, memref<i8>) -> (), ()->())
; CHECK-LABEL: cfgfunc @simpleCFG() {