Check in the experimental GEP splitter pass. This pass splits complex

GEPs (more than one non-zero index) into simple GEPs (at most one
non-zero index).  In some simple experiments using this it's not
uncommon to see 3% overall code size wins, because it exposes
redundancies that can be eliminated, however it's tricky to use
because instcombine aggressively undoes the work that this pass does.

llvm-svn: 85144
This commit is contained in:
Dan Gohman 2009-10-26 19:12:14 +00:00
parent 6b16b5e741
commit 6a1d9eace9
3 changed files with 88 additions and 0 deletions

View File

@ -141,6 +141,7 @@ namespace {
(void) llvm::createPartialInliningPass();
(void) llvm::createSSIPass();
(void) llvm::createSSIEverythingPass();
(void) llvm::createGEPSplitterPass();
(void)new llvm::IntervalPartition();
(void)new llvm::FindUsedTypes();

View File

@ -341,6 +341,12 @@ FunctionPass *createSSIPass();
//
FunctionPass *createSSIEverythingPass();
//===----------------------------------------------------------------------===//
//
// GEPSplitter - Split complex GEPs into simple ones
//
FunctionPass *createGEPSplitterPass();
} // End llvm namespace
#endif

View File

@ -0,0 +1,81 @@
//===- GEPSplitter.cpp - Split complex GEPs into simple ones --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This function breaks GEPs with more than 2 non-zero operands into smaller
// GEPs each with no more than 2 non-zero operands. This exposes redundancy
// between GEPs with common initial operand sequences.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "split-geps"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
using namespace llvm;
namespace {
class GEPSplitter : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
static char ID; // Pass identification, replacement for typeid
explicit GEPSplitter() : FunctionPass(&ID) {}
};
}
char GEPSplitter::ID = 0;
static RegisterPass<GEPSplitter> X("split-geps",
"split complex GEPs into simple GEPs");
FunctionPass *llvm::createGEPSplitterPass() {
return new GEPSplitter();
}
bool GEPSplitter::runOnFunction(Function &F) {
bool Changed = false;
// Visit each GEP instruction.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (BasicBlock::iterator II = I->begin(), IE = I->end(); II != IE; )
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(II++)) {
unsigned NumOps = GEP->getNumOperands();
// Ignore GEPs which are already simple.
if (NumOps <= 2)
continue;
bool FirstIndexIsZero = isa<ConstantInt>(GEP->getOperand(1)) &&
cast<ConstantInt>(GEP->getOperand(1))->isZero();
if (NumOps == 3 && FirstIndexIsZero)
continue;
// The first index is special and gets expanded with a 2-operand GEP
// (unless it's zero, in which case we can skip this).
Value *NewGEP = FirstIndexIsZero ?
GEP->getOperand(0) :
GetElementPtrInst::Create(GEP->getOperand(0), GEP->getOperand(1),
"tmp", GEP);
// All remaining indices get expanded with a 3-operand GEP with zero
// as the second operand.
Value *Idxs[2];
Idxs[0] = ConstantInt::get(Type::getInt64Ty(F.getContext()), 0);
for (unsigned i = 2; i != NumOps; ++i) {
Idxs[1] = GEP->getOperand(i);
NewGEP = GetElementPtrInst::Create(NewGEP, Idxs, Idxs+2, "tmp", GEP);
}
GEP->replaceAllUsesWith(NewGEP);
GEP->eraseFromParent();
Changed = true;
}
return Changed;
}
void GEPSplitter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}