Revert "PR47805: Use a single object for a function parameter in the caller and"

Breaks a clangd unit test.

This reverts commit 8f8b9f2cca.
This commit is contained in:
Richard Smith 2020-10-13 19:31:41 -07:00
parent d4b0404732
commit 69f7c006ff
30 changed files with 215 additions and 395 deletions

View File

@ -490,39 +490,6 @@ namespace {
}
};
/// A scope at the end of which an object can need to be destroyed.
enum class ScopeKind {
Block,
FullExpression,
Call
};
/// A reference to a particular call and its arguments.
struct CallRef {
CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
: OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
explicit operator bool() const { return OrigCallee; }
/// Get the parameter that the caller initialized, corresponding to the
/// given parameter in the callee.
const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
: PVD;
}
/// The callee at the point where the arguments were evaluated. This might
/// be different from the actual callee (a different redeclaration, or a
/// virtual override), but this function's parameters are the ones that
/// appear in the parameter map.
const FunctionDecl *OrigCallee;
/// The call index of the frame that holds the argument values.
unsigned CallIndex;
/// The version of the parameters corresponding to this call.
unsigned Version;
};
/// A stack frame in the constexpr call stack.
class CallStackFrame : public interp::Frame {
public:
@ -537,10 +504,9 @@ namespace {
/// This - The binding for the this pointer in this call, if any.
const LValue *This;
/// Information on how to find the arguments to this call. Our arguments
/// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
/// key and this value as the version.
CallRef Arguments;
/// Arguments - Parameter bindings for this function call, indexed by
/// parameters' function scope indices.
APValue *Arguments;
/// Source location information about the default argument or default
/// initializer expression we're evaluating, if any.
@ -573,10 +539,6 @@ namespace {
TempVersionStack.pop_back();
}
CallRef createCall(const FunctionDecl *Callee) {
return {Callee, Index, ++CurTempVersion};
}
// FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
// on the overall stack usage of deeply-recursing constexpr evaluations.
// (We should cache this map rather than recomputing it repeatedly.)
@ -590,7 +552,7 @@ namespace {
CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
const FunctionDecl *Callee, const LValue *This,
CallRef Arguments);
APValue *Arguments);
~CallStackFrame();
// Return the temporary for Key whose version number is Version.
@ -629,10 +591,7 @@ namespace {
/// bumping the temporary version number.
template<typename KeyT>
APValue &createTemporary(const KeyT *Key, QualType T,
ScopeKind Scope, LValue &LV);
/// Allocate storage for a parameter of a function call made in this frame.
APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
bool IsLifetimeExtended, LValue &LV);
void describe(llvm::raw_ostream &OS) override;
@ -646,10 +605,6 @@ namespace {
return true;
return false;
}
private:
APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
ScopeKind Scope);
};
/// Temporarily override 'this'.
@ -678,20 +633,16 @@ static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
namespace {
/// A cleanup, and a flag indicating whether it is lifetime-extended.
class Cleanup {
llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
llvm::PointerIntPair<APValue*, 1, bool> Value;
APValue::LValueBase Base;
QualType T;
public:
Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
ScopeKind Scope)
: Value(Val, Scope), Base(Base), T(T) {}
bool IsLifetimeExtended)
: Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
/// Determine whether this cleanup should be performed at the end of the
/// given kind of scope.
bool isDestroyedAtEndOf(ScopeKind K) const {
return (int)Value.getInt() >= (int)K;
}
bool isLifetimeExtended() const { return Value.getInt(); }
bool endLifetime(EvalInfo &Info, bool RunDestructors) {
if (RunDestructors) {
SourceLocation Loc;
@ -977,7 +928,7 @@ namespace {
CallStackDepth(0), NextCallIndex(1),
StepsLeft(C.getLangOpts().ConstexprStepLimit),
EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
EvaluatingDecl((const ValueDecl *)nullptr),
EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
HasFoldFailureDiagnostic(false), InConstantContext(false),
@ -1046,13 +997,6 @@ namespace {
return Result;
}
/// Get the allocated storage for the given parameter of the given call.
APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
: nullptr;
}
/// Information about a stack frame for std::allocator<T>::[de]allocate.
struct StdAllocatorCaller {
unsigned FrameIndex;
@ -1088,13 +1032,10 @@ namespace {
void performLifetimeExtension() {
// Disable the cleanups for lifetime-extended temporaries.
CleanupStack.erase(std::remove_if(CleanupStack.begin(),
CleanupStack.end(),
[](Cleanup &C) {
return !C.isDestroyedAtEndOf(
ScopeKind::FullExpression);
}),
CleanupStack.end());
CleanupStack.erase(
std::remove_if(CleanupStack.begin(), CleanupStack.end(),
[](Cleanup &C) { return C.isLifetimeExtended(); }),
CleanupStack.end());
}
/// Throw away any remaining cleanups at the end of evaluation. If any
@ -1343,7 +1284,7 @@ namespace {
/// RAII object wrapping a full-expression or block scope, and handling
/// the ending of the lifetime of temporaries created within it.
template<ScopeKind Kind>
template<bool IsFullExpression>
class ScopeRAII {
EvalInfo &Info;
unsigned OldStackSize;
@ -1376,7 +1317,8 @@ namespace {
// for a full-expression scope.
bool Success = true;
for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
if (!(IsFullExpression &&
Info.CleanupStack[I - 1].isLifetimeExtended())) {
if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
Success = false;
break;
@ -1384,20 +1326,18 @@ namespace {
}
}
// Compact any retained cleanups.
// Compact lifetime-extended cleanups.
auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
if (Kind != ScopeKind::Block)
if (IsFullExpression)
NewEnd =
std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
return C.isDestroyedAtEndOf(Kind);
});
std::remove_if(NewEnd, Info.CleanupStack.end(),
[](Cleanup &C) { return !C.isLifetimeExtended(); });
Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
return Success;
}
};
typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
typedef ScopeRAII<false> BlockScopeRAII;
typedef ScopeRAII<true> FullExpressionRAII;
}
bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
@ -1440,9 +1380,9 @@ void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
const FunctionDecl *Callee, const LValue *This,
CallRef Call)
APValue *Arguments)
: Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
Info.CurrentCall = this;
++Info.CallStackDepth;
}
@ -1855,33 +1795,14 @@ static void negateAsSigned(APSInt &Int) {
template<typename KeyT>
APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
ScopeKind Scope, LValue &LV) {
bool IsLifetimeExtended, LValue &LV) {
unsigned Version = getTempVersion();
APValue::LValueBase Base(Key, Index, Version);
LV.set(Base);
return createLocal(Base, Key, T, Scope);
}
/// Allocate storage for a parameter of a function call made in this frame.
APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
LValue &LV) {
assert(Args.CallIndex == Index && "creating parameter in wrong frame");
APValue::LValueBase Base(PVD, Index, Args.Version);
LV.set(Base);
// We always destroy parameters at the end of the call, even if we'd allow
// them to live to the end of the full-expression at runtime, in order to
// give portable results and match other compilers.
return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
}
APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
QualType T, ScopeKind Scope) {
assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
unsigned Version = Base.getVersion();
APValue &Result = Temporaries[MapKeyTy(Key, Version)];
assert(Result.isAbsent() && "local created multiple times");
assert(Result.isAbsent() && "temporary created multiple times");
// If we're creating a local immediately in the operand of a speculative
// If we're creating a temporary immediately in the operand of a speculative
// evaluation, don't register a cleanup to be run outside the speculative
// evaluation context, since we won't actually be able to initialize this
// object.
@ -1889,7 +1810,7 @@ APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
if (T.isDestructedType())
Info.noteSideEffect();
} else {
Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
}
return Result;
}
@ -1935,11 +1856,12 @@ void CallStackFrame::describe(raw_ostream &Out) {
Out << ", ";
const ParmVarDecl *Param = *I;
APValue *V = Info.getParamSlot(Arguments, Param);
if (V)
V->printPretty(Out, Info.Ctx, Param->getType());
else
if (Arguments) {
const APValue &Arg = Arguments[ArgIndex];
Arg.printPretty(Out, Info.Ctx, Param->getType());
} else {
Out << "<...>";
}
if (ArgIndex == 0 && IsMemberCall)
Out << "->" << *Callee << '(';
@ -2070,22 +1992,6 @@ static bool HasSameBase(const LValue &A, const LValue &B) {
static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
assert(Base && "no location for a null lvalue");
const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
// For a parameter, find the corresponding call stack frame (if it still
// exists), and point at the parameter of the function definition we actually
// invoked.
if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
unsigned Idx = PVD->getFunctionScopeIndex();
for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
if (F->Arguments.CallIndex == Base.getCallIndex() &&
F->Arguments.Version == Base.getVersion() && F->Callee &&
Idx < F->Callee->getNumParams()) {
VD = F->Callee->getParamDecl(Idx);
break;
}
}
}
if (VD)
Info.Note(VD->getLocation(), diag::note_declared_at);
else if (const Expr *E = Base.dyn_cast<const Expr*>())
@ -3171,22 +3077,33 @@ static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
/// \param Info Information about the ongoing evaluation.
/// \param E An expression to be used when printing diagnostics.
/// \param VD The variable whose initializer should be obtained.
/// \param Version The version of the variable within the frame.
/// \param Frame The frame in which the variable was created. Must be null
/// if this variable is not local to the evaluation.
/// \param Result Filled in with a pointer to the value of the variable.
static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
const VarDecl *VD, CallStackFrame *Frame,
unsigned Version, APValue *&Result) {
APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
APValue *&Result, const LValue *LVal) {
// If this is a parameter to an active constexpr function call, perform
// argument substitution.
if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
// Assume arguments of a potential constant expression are unknown
// constant expressions.
if (Info.checkingPotentialConstantExpression())
return false;
if (!Frame || !Frame->Arguments) {
Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << VD;
return false;
}
Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
return true;
}
// If this is a local variable, dig out its value.
if (Frame) {
Result = Frame->getTemporary(VD, Version);
if (Result)
return true;
if (!isa<ParmVarDecl>(VD)) {
Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
: Frame->getCurrentTemporary(VD);
if (!Result) {
// Assume variables referenced within a lambda's call operator that were
// not declared within the call operator are captures and during checking
// of a potential constant expression, assume they are unknown constant
@ -3196,30 +3113,13 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
"missing value for local variable");
if (Info.checkingPotentialConstantExpression())
return false;
// FIXME: This diagnostic is bogus; we do support captures. Is this code
// still reachable at all?
// FIXME: implement capture evaluation during constant expr evaluation.
Info.FFDiag(E->getBeginLoc(),
diag::note_unimplemented_constexpr_lambda_feature_ast)
<< "captures not currently allowed";
return false;
}
}
if (isa<ParmVarDecl>(VD)) {
// Assume parameters of a potential constant expression are usable in
// constant expressions.
if (!Info.checkingPotentialConstantExpression() ||
!Info.CurrentCall->Callee ||
!Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
if (Info.getLangOpts().CPlusPlus11) {
Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
<< VD;
NoteLValueLocation(Info, Base);
} else {
Info.FFDiag(E);
}
}
return false;
return true;
}
// Dig out the initializer, and use the declaration which it's attached to.
@ -3232,7 +3132,7 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
if (!Info.checkingPotentialConstantExpression()) {
Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
<< VD;
NoteLValueLocation(Info, Base);
Info.Note(VD->getLocation(), diag::note_declared_at);
}
return false;
}
@ -3249,7 +3149,7 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
? diag::note_constexpr_ltor_non_constexpr
: diag::note_constexpr_ltor_non_integral, 1)
<< VD << VD->getType();
NoteLValueLocation(Info, Base);
Info.Note(VD->getLocation(), diag::note_declared_at);
}
return false;
}
@ -3268,7 +3168,7 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
if (!VD->evaluateValue(Notes)) {
Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
Notes.size() + 1) << VD;
NoteLValueLocation(Info, Base);
Info.Note(VD->getLocation(), diag::note_declared_at);
Info.addNotes(Notes);
return false;
}
@ -3277,7 +3177,7 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
if (!VD->checkInitIsICE()) {
Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
Notes.size() + 1) << VD;
NoteLValueLocation(Info, Base);
Info.Note(VD->getLocation(), diag::note_declared_at);
Info.addNotes(Notes);
}
@ -3285,7 +3185,7 @@ static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
// folding. We can't be sure that this is the definition that will be used.
if (VD->isWeak()) {
Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
NoteLValueLocation(Info, Base);
Info.Note(VD->getLocation(), diag::note_declared_at);
return false;
}
@ -3999,11 +3899,8 @@ static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
// Unless we're looking at a local variable or argument in a constexpr call,
// the variable we're reading must be const.
if (!Frame) {
if (isa<ParmVarDecl>(VD)) {
// Allow evaluateVarDeclInit to diagnose this (or permit it during
// potential constant expression checking).
} else if (Info.getLangOpts().CPlusPlus14 &&
lifetimeStartedInEvaluation(Info, LVal.Base)) {
if (Info.getLangOpts().CPlusPlus14 &&
lifetimeStartedInEvaluation(Info, LVal.Base)) {
// OK, we can read and modify an object if we're in the process of
// evaluating its initializer, because its lifetime began in this
// evaluation.
@ -4060,7 +3957,7 @@ static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
}
}
if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
return CompleteObject();
} else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
@ -4129,19 +4026,13 @@ static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
}
// In C++14, we can't safely access any mutable state when we might be
// evaluating after an unmodeled side effect. Parameters are modeled as state
// in the caller, but aren't visible once the call returns, so they can be
// modified in a speculatively-evaluated call.
// evaluating after an unmodeled side effect.
//
// FIXME: Not all local state is mutable. Allow local constant subobjects
// to be read here (but take care with 'mutable' fields).
unsigned VisibleDepth = Depth;
if (llvm::isa_and_nonnull<ParmVarDecl>(
LVal.Base.dyn_cast<const ValueDecl *>()))
++VisibleDepth;
if ((Frame && Info.getLangOpts().CPlusPlus14 &&
Info.EvalStatus.HasSideEffects) ||
(isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
(isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
return CompleteObject();
return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
@ -4752,8 +4643,8 @@ static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
return true;
LValue Result;
APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
ScopeKind::Block, Result);
APValue &Val =
Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
const Expr *InitE = VD->getInit();
if (!InitE)
@ -5898,35 +5789,15 @@ static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
return true;
}
static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
CallRef Call, EvalInfo &Info,
bool NonNull = false) {
LValue LV;
// Create the parameter slot and register its destruction. For a vararg
// argument, create a temporary.
// FIXME: For calling conventions that destroy parameters in the callee,
// should we consider performing destruction when the function returns
// instead?
APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
: Info.CurrentCall->createTemporary(Arg, Arg->getType(),
ScopeKind::Call, LV);
if (!EvaluateInPlace(V, Info, LV, Arg))
return false;
// Passing a null pointer to an __attribute__((nonnull)) parameter results in
// undefined behavior, so is non-constant.
if (NonNull && V.isLValue() && V.isNullPointer()) {
Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
return false;
}
return true;
namespace {
typedef SmallVector<APValue, 8> ArgVector;
}
/// Evaluate the arguments to a function call.
static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
EvalInfo &Info, const FunctionDecl *Callee,
bool RightToLeft = false) {
/// EvaluateArgs - Evaluate the arguments to a function call.
static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
EvalInfo &Info, const FunctionDecl *Callee) {
ArgValues.resize(Args.size());
bool Success = true;
llvm::SmallBitVector ForbiddenNullArgs;
if (Callee->hasAttr<NonNullAttr>()) {
@ -5944,53 +5815,36 @@ static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
}
}
}
for (unsigned I = 0; I < Args.size(); I++) {
unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
const ParmVarDecl *PVD =
Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
// If we're checking for a potential constant expression, evaluate all
// initializers even if some of them fail.
if (!Info.noteFailure())
return false;
Success = false;
} else if (!ForbiddenNullArgs.empty() &&
ForbiddenNullArgs[Idx] &&
ArgValues[Idx].isLValue() &&
ArgValues[Idx].isNullPointer()) {
Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
if (!Info.noteFailure())
return false;
Success = false;
}
}
return Success;
}
/// Perform a trivial copy from Param, which is the parameter of a copy or move
/// constructor or assignment operator.
static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
const Expr *E, APValue &Result,
bool CopyObjectRepresentation) {
// Find the reference argument.
CallStackFrame *Frame = Info.CurrentCall;
APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
if (!RefValue) {
Info.FFDiag(E);
return false;
}
// Copy out the contents of the RHS object.
LValue RefLValue;
RefLValue.setFrom(Info.Ctx, *RefValue);
return handleLValueToRValueConversion(
Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
CopyObjectRepresentation);
}
/// Evaluate a function call.
static bool HandleFunctionCall(SourceLocation CallLoc,
const FunctionDecl *Callee, const LValue *This,
ArrayRef<const Expr *> Args, CallRef Call,
ArrayRef<const Expr *> Args, APValue *ArgValues,
const Stmt *Body, EvalInfo &Info,
APValue &Result, const LValue *ResultSlot) {
if (!Info.CheckCallLimit(CallLoc))
return false;
CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues);
// For a trivial copy or move assignment, perform an APValue copy. This is
// essential for unions, where the operations performed by the assignment
@ -6005,9 +5859,11 @@ static bool HandleFunctionCall(SourceLocation CallLoc,
isReadByLvalueToRvalueConversion(MD->getParent())))) {
assert(This &&
(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
LValue RHS;
RHS.setFrom(Info.Ctx, ArgValues[0]);
APValue RHSValue;
if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
MD->getParent()->isUnion()))
if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
RHSValue, MD->getParent()->isUnion()))
return false;
if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
!HandleUnionActiveMemberChange(Info, Args[0], *This))
@ -6041,7 +5897,7 @@ static bool HandleFunctionCall(SourceLocation CallLoc,
/// Evaluate a constructor call.
static bool HandleConstructorCall(const Expr *E, const LValue &This,
CallRef Call,
APValue *ArgValues,
const CXXConstructorDecl *Definition,
EvalInfo &Info, APValue &Result) {
SourceLocation CallLoc = E->getExprLoc();
@ -6058,7 +5914,7 @@ static bool HandleConstructorCall(const Expr *E, const LValue &This,
Info,
ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
RD->getNumBases());
CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
// FIXME: Creating an APValue just to hold a nonexistent return value is
// wasteful.
@ -6089,8 +5945,11 @@ static bool HandleConstructorCall(const Expr *E, const LValue &This,
(Definition->getParent()->isUnion() ||
(Definition->isTrivial() &&
isReadByLvalueToRvalueConversion(Definition->getParent())))) {
return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
Definition->getParent()->isUnion());
LValue RHS;
RHS.setFrom(Info.Ctx, ArgValues[0]);
return handleLValueToRValueConversion(
Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
RHS, Result, Definition->getParent()->isUnion());
}
// Reserve space for the struct members.
@ -6249,13 +6108,12 @@ static bool HandleConstructorCall(const Expr *E, const LValue &This,
ArrayRef<const Expr*> Args,
const CXXConstructorDecl *Definition,
EvalInfo &Info, APValue &Result) {
CallScopeRAII CallScope(Info);
CallRef Call = Info.CurrentCall->createCall(Definition);
if (!EvaluateArgs(Args, Call, Info, Definition))
ArgVector ArgValues(Args.size());
if (!EvaluateArgs(Args, ArgValues, Info, Definition))
return false;
return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
CallScope.destroy();
return HandleConstructorCall(E, This, ArgValues.data(), Definition,
Info, Result);
}
static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
@ -6351,7 +6209,7 @@ static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
return false;
CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
// We're now in the period of destruction of this object.
unsigned BasesLeft = RD->getNumBases();
@ -7339,8 +7197,8 @@ public:
LValue CommonLV;
if (!Evaluate(Info.CurrentCall->createTemporary(
E->getOpaqueValue(),
getStorageType(Info.Ctx, E->getOpaqueValue()),
ScopeKind::FullExpression, CommonLV),
getStorageType(Info.Ctx, E->getOpaqueValue()), false,
CommonLV),
Info, E->getCommon()))
return false;
@ -7404,8 +7262,7 @@ public:
LValue LV;
if (!Evaluate(Info.CurrentCall->createTemporary(
OVE, getStorageType(Info.Ctx, OVE),
ScopeKind::FullExpression, LV),
OVE, getStorageType(Info.Ctx, OVE), false, LV),
Info, OVE->getSourceExpr()))
return false;
} else if (SemE == E->getResultExpr()) {
@ -7428,8 +7285,6 @@ public:
bool handleCallExpr(const CallExpr *E, APValue &Result,
const LValue *ResultSlot) {
CallScopeRAII CallScope(Info);
const Expr *Callee = E->getCallee()->IgnoreParens();
QualType CalleeType = Callee->getType();
@ -7438,8 +7293,7 @@ public:
auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
bool HasQualifier = false;
CallRef Call;
bool EvaluatedArgs = false;
ArgVector ArgValues;
// Extract function decl and 'this' pointer from the callee.
if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
@ -7472,14 +7326,14 @@ public:
return Error(Callee);
FD = Member;
} else if (CalleeType->isFunctionPointerType()) {
LValue CalleeLV;
if (!EvaluatePointer(Callee, CalleeLV, Info))
LValue Call;
if (!EvaluatePointer(Callee, Call, Info))
return false;
if (!CalleeLV.getLValueOffset().isZero())
if (!Call.getLValueOffset().isZero())
return Error(Callee);
FD = dyn_cast_or_null<FunctionDecl>(
CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
Call.getLValueBase().dyn_cast<const ValueDecl*>());
if (!FD)
return Error(Callee);
// Don't call function pointers which have been cast to some other type.
@ -7494,11 +7348,15 @@ public:
auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
if (OCE && OCE->isAssignmentOp()) {
assert(Args.size() == 2 && "wrong number of arguments in assignment");
Call = Info.CurrentCall->createCall(FD);
if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
Info, FD, /*RightToLeft=*/true))
return false;
EvaluatedArgs = true;
if (isa<CXXMethodDecl>(FD)) {
// Args[0] is the object argument.
if (!EvaluateArgs({Args[1]}, ArgValues, Info, FD))
return false;
} else {
if (!EvaluateArgs({Args[1], Args[0]}, ArgValues, Info, FD))
return false;
std::swap(ArgValues[0], ArgValues[1]);
}
}
// Overloaded operator calls to member functions are represented as normal
@ -7555,20 +7413,18 @@ public:
if (!HandleOperatorNewCall(Info, E, Ptr))
return false;
Ptr.moveInto(Result);
return CallScope.destroy();
return true;
} else {
return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
return HandleOperatorDeleteCall(Info, E);
}
}
} else
return Error(E);
// Evaluate the arguments now if we've not already done so.
if (!Call) {
Call = Info.CurrentCall->createCall(FD);
if (!EvaluateArgs(Args, Call, Info, FD))
return false;
}
if (ArgValues.empty() && !Args.empty() &&
!EvaluateArgs(Args, ArgValues, Info, FD))
return false;
SmallVector<QualType, 4> CovariantAdjustmentPath;
if (This) {
@ -7591,17 +7447,17 @@ public:
// Destructor calls are different enough that they have their own codepath.
if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
assert(This && "no 'this' pointer for destructor call");
assert(ArgValues.empty() && "unexpected destructor arguments");
return HandleDestruction(Info, E, *This,
Info.Ctx.getRecordType(DD->getParent())) &&
CallScope.destroy();
Info.Ctx.getRecordType(DD->getParent()));
}
const FunctionDecl *Definition = nullptr;
Stmt *Body = FD->getBody(Definition);
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
!HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
Body, Info, Result, ResultSlot))
!HandleFunctionCall(E->getExprLoc(), Definition, This, Args,
ArgValues.data(), Body, Info, Result, ResultSlot))
return false;
if (!CovariantAdjustmentPath.empty() &&
@ -7609,7 +7465,7 @@ public:
CovariantAdjustmentPath))
return false;
return CallScope.destroy();
return true;
}
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
@ -8073,45 +7929,31 @@ bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
return true;
}
}
CallStackFrame *Frame = nullptr;
unsigned Version = 0;
if (VD->hasLocalStorage()) {
if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
// Only if a local variable was declared in the function currently being
// evaluated, do we expect to be able to find its value in the current
// frame. (Otherwise it was likely declared in an enclosing context and
// could either have a valid evaluatable value (for e.g. a constexpr
// variable) or be ill-formed (and trigger an appropriate evaluation
// diagnostic)).
CallStackFrame *CurrFrame = Info.CurrentCall;
if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
// Function parameters are stored in some caller's frame. (Usually the
// immediate caller, but for an inherited constructor they may be more
// distant.)
if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
if (CurrFrame->Arguments) {
VD = CurrFrame->Arguments.getOrigParam(PVD);
Frame =
Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
Version = CurrFrame->Arguments.Version;
}
} else {
Frame = CurrFrame;
Version = CurrFrame->getCurrentTemporaryVersion(VD);
}
if (Info.CurrentCall->Callee &&
Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
Frame = Info.CurrentCall;
}
}
if (!VD->getType()->isReferenceType()) {
if (Frame) {
Result.set({VD, Frame->Index, Version});
Result.set({VD, Frame->Index,
Info.CurrentCall->getCurrentTemporaryVersion(VD)});
return true;
}
return Success(VD);
}
APValue *V;
if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
return false;
if (!V->hasValue()) {
// FIXME: Is it possible for V to be indeterminate here? If so, we should
@ -8141,16 +7983,12 @@ bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
// value for use outside this evaluation.
APValue *Value;
if (E->getStorageDuration() == SD_Static) {
// FIXME: What about SD_Thread?
Value = E->getOrCreateValue(true);
*Value = APValue();
Result.set(E);
} else {
Value = &Info.CurrentCall->createTemporary(
E, E->getType(),
E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
: ScopeKind::Block,
Result);
E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
}
QualType Type = Inner->getType();
@ -8704,7 +8542,7 @@ bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
return false;
} else {
APValue &Value = Info.CurrentCall->createTemporary(
SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
SubExpr, SubExpr->getType(), false, Result);
if (!EvaluateInPlace(Value, Info, Result, SubExpr))
return false;
}
@ -9957,8 +9795,8 @@ public:
/// Visit an expression which constructs the value of this temporary.
bool VisitConstructExpr(const Expr *E) {
APValue &Value = Info.CurrentCall->createTemporary(
E, E->getType(), ScopeKind::FullExpression, Result);
APValue &Value =
Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
return EvaluateInPlace(Value, Info, Result, E);
}
@ -10395,8 +10233,8 @@ bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
if (E->getCommonExpr() &&
!Evaluate(Info.CurrentCall->createTemporary(
E->getCommonExpr(),
getStorageType(Info.Ctx, E->getCommonExpr()),
ScopeKind::FullExpression, CommonLV),
getStorageType(Info.Ctx, E->getCommonExpr()), false,
CommonLV),
Info, E->getCommonExpr()->getSourceExpr()))
return false;
@ -14388,14 +14226,13 @@ static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
} else if (T->isArrayType()) {
LValue LV;
APValue &Value =
Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
Info.CurrentCall->createTemporary(E, T, false, LV);
if (!EvaluateArray(E, LV, Value, Info))
return false;
Result = Value;
} else if (T->isRecordType()) {
LValue LV;
APValue &Value =
Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
if (!EvaluateRecord(E, LV, Value, Info))
return false;
Result = Value;
@ -14409,8 +14246,7 @@ static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
QualType Unqual = T.getAtomicUnqualifiedType();
if (Unqual->isArrayType() || Unqual->isRecordType()) {
LValue LV;
APValue &Value = Info.CurrentCall->createTemporary(
E, Unqual, ScopeKind::FullExpression, LV);
APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
if (!EvaluateAtomic(E, &LV, Value, Info))
return false;
} else {
@ -15419,20 +15255,14 @@ bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
Info.EvalStatus.HasSideEffects = false;
}
CallRef Call = Info.CurrentCall->createCall(Callee);
ArgVector ArgValues(Args.size());
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
unsigned Idx = I - Args.begin();
if (Idx >= Callee->getNumParams())
break;
const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
if ((*I)->isValueDependent() ||
!EvaluateCallArg(PVD, *I, Call, Info) ||
Info.EvalStatus.HasSideEffects) {
!Evaluate(ArgValues[I - Args.begin()], Info, *I) ||
Info.EvalStatus.HasSideEffects)
// If evaluation fails, throw away the argument entirely.
if (APValue *Slot = Info.getParamSlot(Call, PVD))
*Slot = APValue();
}
ArgValues[I - Args.begin()] = APValue();
// Ignore any side-effects from a failed evaluation. This is safe because
// they can't interfere with any other argument evaluation.
@ -15445,7 +15275,8 @@ bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
Info.EvalStatus.HasSideEffects = false;
// Build fake call to Callee.
CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
ArgValues.data());
// FIXME: Missing ExprWithCleanups in enable_if conditions?
FullExpressionRAII Scope(Info);
return Evaluate(Value, Info, this) && Scope.destroy() &&
@ -15503,7 +15334,8 @@ bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
} else {
SourceLocation Loc = FD->getLocation();
HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
Args, /*ArgValues*/ nullptr, FD->getBody(), Info,
Scratch, nullptr);
}
return Diags.empty();
@ -15525,7 +15357,8 @@ bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
Info.CheckingPotentialConstantExpression = true;
// Fabricate a call stack frame to give the arguments a plausible cover story.
CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr,
/*ArgValues*/ nullptr);
APValue ResultScratch;
Evaluate(ResultScratch, Info, E);

View File

@ -10,7 +10,7 @@ namespace M {
struct NonLiteral {
NonLiteral() {}
NonLiteral(int) {}
NonLiteral(int) {} // expected-note 2{{here}}
operator int() const { return 0; }
};
struct Literal {
@ -42,8 +42,8 @@ template<typename ...P> struct ConstexprCtor {
};
constexpr ConstexprCtor<> f1() { return {}; } // ok
constexpr ConstexprCtor<int> f2() { return 0; } // ok
constexpr ConstexprCtor<NonLiteral> f3() { return { 0 }; } // expected-error {{never produces a constant expression}} expected-note {{non-literal type 'NonLiteral}}
constexpr ConstexprCtor<int, NonLiteral> f4() { return { 0, 0 }; } // expected-error {{never produces a constant expression}} expected-note {{non-literal type 'NonLiteral}}
constexpr ConstexprCtor<NonLiteral> f3() { return { 0 }; } // expected-error {{never produces a constant expression}} expected-note {{non-constexpr constructor 'NonLiteral}}
constexpr ConstexprCtor<int, NonLiteral> f4() { return { 0, 0 }; } // expected-error {{never produces a constant expression}} expected-note {{non-constexpr constructor 'NonLiteral}}
struct VirtBase : virtual S {}; // expected-note {{here}}

View File

@ -55,7 +55,7 @@ namespace noex {
struct A {};
void g1() noexcept(A()); // expected-error {{not contextually convertible}}
void g2(bool b) noexcept(b); // expected-error {{argument to noexcept specifier must be a constant expression}} expected-note {{function parameter 'b' with unknown value}} expected-note {{here}}
void g2(bool b) noexcept(b); // expected-error {{argument to noexcept specifier must be a constant expression}} expected-note {{read of non-const variable 'b'}} expected-note {{here}}
}

View File

@ -62,11 +62,11 @@ namespace NonConstExprReturn {
constexpr const int *address_of(const int &a) {
return &a;
}
constexpr const int *return_param(int n) {
constexpr const int *return_param(int n) { // expected-note {{declared here}}
return address_of(n);
}
struct S {
int n : *return_param(0); // expected-error {{constant expression}} expected-note {{read of object outside its lifetime}}
int n : *return_param(0); // expected-error {{constant expression}} expected-note {{read of variable whose lifetime has ended}}
};
}
@ -427,12 +427,13 @@ namespace PseudoDtor {
int n : (k.~I(), 1); // expected-error {{constant expression}} expected-note {{visible outside that expression}}
};
constexpr int f(int a = 1) { // cxx11-error {{constant expression}} expected-note {{destroying object 'a' whose lifetime has already ended}}
// FIXME: It's unclear whether this should be accepted in C++20 mode. The parameter is destroyed twice here.
constexpr int f(int a = 1) { // cxx11-error {{constant expression}}
return (
a.~I(), // cxx11-note {{pseudo-destructor}}
a.~I(), // cxx11-note 2{{pseudo-destructor}}
0);
}
static_assert(f() == 0, ""); // expected-error {{constant expression}}
static_assert(f() == 0, ""); // cxx11-error {{constant expression}} cxx11-note {{in call}}
// This is OK in C++20: the union has no active member after the
// pseudo-destructor call, so the union destructor has no effect.

View File

@ -65,7 +65,7 @@ int tmain(int argc, char **argv) { // expected-note {{declared here}}
foo();
#pragma omp critical (name2) hint(+ // expected-error {{expected expression}} expected-error {{expected ')'}} expected-note {{to match this '('}}
foo();
#pragma omp critical (name2) hint(argc) // expected-error {{integral constant expression}} expected-note 0+{{constant expression}}
#pragma omp critical (name2) hint(argc) // expected-error {{integral constant expression}} expected-note {{read of non-const variable 'argc' is not allowed in a constant expression}}
foo();
#pragma omp critical (name) hint(N) // expected-error {{argument to 'hint' clause must be a strictly positive integer value}} expected-error {{constructs with the same name must have a 'hint' clause with the same value}} expected-note {{'hint' clause with value '4'}}
foo();
@ -128,7 +128,7 @@ int main(int argc, char **argv) { // expected-note {{declared here}}
foo();
#pragma omp critical (name2) hint(+ // expected-error {{expected expression}} expected-error {{expected ')'}} expected-note {{to match this '('}}
foo();
#pragma omp critical (name2) hint(argc) // expected-error {{integral constant expression}} expected-note 0+{{constant expression}}
#pragma omp critical (name2) hint(argc) // expected-error {{integral constant expression}} expected-note {{read of non-const variable 'argc' is not allowed in a constant expression}}
foo();
#pragma omp critical (name) hint(23) // expected-note {{previous 'hint' clause with value '23'}}
foo();

View File

@ -39,7 +39,7 @@ T tmain(T argc, S **argv) {
#pragma omp target
#pragma omp teams
#pragma omp distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -39,7 +39,7 @@ T tmain(T argc, S **argv) {
#pragma omp target
#pragma omp teams
#pragma omp distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -39,7 +39,7 @@ T tmain(T argc, S **argv) {
#pragma omp target
#pragma omp teams
#pragma omp distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -31,7 +31,7 @@ T tmain(T argc, S **argv) {
#pragma omp target teams distribute parallel for simd safelen () // expected-error {{expected expression}}
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp target teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -31,7 +31,7 @@ T tmain(T argc, S **argv) {
#pragma omp target teams distribute parallel for simd safelen () // expected-error {{expected expression}}
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp target teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -31,7 +31,7 @@ T tmain(T argc, S **argv) {
#pragma omp target teams distribute simd safelen () // expected-error {{expected expression}}
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp target teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -31,7 +31,7 @@ T tmain(T argc, S **argv) {
#pragma omp target teams distribute simd safelen () // expected-error {{expected expression}}
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp target teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -35,7 +35,7 @@ T tmain(T argc, S **argv) {
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target
#pragma omp teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -35,7 +35,7 @@ T tmain(T argc, S **argv) {
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target
#pragma omp teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp teams distribute parallel for simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -35,7 +35,7 @@ T tmain(T argc, S **argv) {
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target
#pragma omp teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -35,7 +35,7 @@ T tmain(T argc, S **argv) {
for (int i = ST; i < N; i++) argv[0][i] = argv[0][i] - argv[0][i-ST];
#pragma omp target
#pragma omp teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
#pragma omp teams distribute simd safelen (argc // expected-note {{to match this '('}} expected-error 2 {{integral constant expression}} expected-note 2 {{read of non-const variable 'argc' is not allowed in a constant expression}} expected-note 0+{{constant expression}} expected-error {{expected ')'}}
for (int i = ST; i < N; i++)
argv[0][i] = argv[0][i] - argv[0][i-ST];

View File

@ -5,7 +5,7 @@ void test(int x, double p) { // expected-note {{declared here}}
dummy = __builtin_expect_with_probability(x > 0, 1, 0.9);
dummy = __builtin_expect_with_probability(x > 0, 1, 1.1); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, -1); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, p); // expected-error {{probability argument to __builtin_expect_with_probability must be constant floating-point expression}} expected-note {{function parameter 'p' with unknown value}}
dummy = __builtin_expect_with_probability(x > 0, 1, p); // expected-error {{probability argument to __builtin_expect_with_probability must be constant floating-point expression}} expected-note {{read of non-constexpr variable 'p' is not allowed in a constant expression}}
dummy = __builtin_expect_with_probability(x > 0, 1, "aa"); // expected-error {{cannot initialize a parameter of type 'double' with an lvalue of type 'const char [3]'}}
dummy = __builtin_expect_with_probability(x > 0, 1, __builtin_nan("")); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, __builtin_inf()); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}

View File

@ -43,7 +43,7 @@ void test(int x, double p) { // expected-note {{declared here}}
dummy = __builtin_expect_with_probability(x > 0, 1, 0.9);
dummy = __builtin_expect_with_probability(x > 0, 1, 1.1); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, -1); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, p); // expected-error {{probability argument to __builtin_expect_with_probability must be constant floating-point expression}} expected-note {{function parameter 'p'}}
dummy = __builtin_expect_with_probability(x > 0, 1, p); // expected-error {{probability argument to __builtin_expect_with_probability must be constant floating-point expression}} expected-note {{read of non-constexpr variable 'p' is not allowed in a constant expression}}
dummy = __builtin_expect_with_probability(x > 0, 1, "aa"); // expected-error {{cannot initialize a parameter of type 'double' with an lvalue of type 'const char [3]'}}
dummy = __builtin_expect_with_probability(x > 0, 1, __builtin_nan("")); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}
dummy = __builtin_expect_with_probability(x > 0, 1, __builtin_inf()); // expected-error {{probability argument to __builtin_expect_with_probability is outside the range [0.0, 1.0]}}

View File

@ -65,7 +65,7 @@ void test10 (int x[*]); /* expected-warning {{variable length arrays are a C99 f
void test11 (int x[static 4]); /* expected-warning {{static array size is a C99 feature}} */
void test12 (int x[const 4]) { /* expected-warning {{qualifier in array size is a C99 feature}} */
int Y[x[1]]; /* expected-warning {{variable length arrays are a C99 feature}} */
int Y[x[1]]; /* expected-warning {{variable length arrays are a C99 feature}} expected-note {{parameter 'x'}} */
}
/* PR4074 */

View File

@ -17,7 +17,7 @@ __host__ __device__ void foo(const T **a) {
constexpr T e = sizeof(a);
constexpr T f = **a;
// expected-error@-1 {{constexpr variable 'f' must be initialized by a constant expression}}
// expected-note@-2 {{}}
// expected-note@-2 {{read of non-constexpr variable 'a' is not allowed in a constant expression}}
a[0] = &b;
a[1] = &c;
a[2] = &d;
@ -30,7 +30,7 @@ __device__ void device_fun(const int **a) {
static constexpr int c = sizeof(a);
constexpr int d = **a;
// expected-error@-1 {{constexpr variable 'd' must be initialized by a constant expression}}
// expected-note@-2 {{}}
// expected-note@-2 {{read of non-constexpr variable 'a' is not allowed in a constant expression}}
a[0] = &b;
a[1] = &c;
foo(a);
@ -43,7 +43,7 @@ void host_fun(const int **a) {
static constexpr int c = sizeof(a);
constexpr int d = **a;
// expected-error@-1 {{constexpr variable 'd' must be initialized by a constant expression}}
// expected-note@-2 {{}}
// expected-note@-2 {{read of non-constexpr variable 'a' is not allowed in a constant expression}}
a[0] = &b;
a[1] = &c;
foo(a);
@ -55,7 +55,7 @@ __host__ __device__ void host_device_fun(const int **a) {
static constexpr int c = sizeof(a);
constexpr int d = **a;
// expected-error@-1 {{constexpr variable 'd' must be initialized by a constant expression}}
// expected-note@-2 {{}}
// expected-note@-2 {{read of non-constexpr variable 'a' is not allowed in a constant expression}}
a[0] = &b;
a[1] = &c;
foo(a);

View File

@ -18,12 +18,12 @@ struct POD {
// We allow VLAs of POD types, only.
void vla(int N) { // expected-note 5{{here}}
int array1[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{parameter 'N'}}
POD array2[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{parameter 'N'}}
StillPOD array3[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{parameter 'N'}}
StillPOD2 array4[N][3]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{parameter 'N'}}
int array1[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{variable 'N'}}
POD array2[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{variable 'N'}}
StillPOD array3[N]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{variable 'N'}}
StillPOD2 array4[N][3]; // expected-warning{{variable length arrays are a C99 feature}} expected-note {{variable 'N'}}
NonPOD array5[N]; // expected-error{{no matching constructor for initialization of 'NonPOD [N]'}}
// expected-warning@-1{{variable length arrays are a C99 feature}} expected-note@-1 {{parameter 'N'}}
// expected-warning@-1{{variable length arrays are a C99 feature}} expected-note@-1 {{variable 'N'}}
// expected-note@-16{{candidate constructor not viable}}
// expected-note@-18{{candidate constructor (the implicit copy constructor) not viable}}
// expected-note@-19{{candidate constructor (the implicit move constructor) not viable}}

View File

@ -13,7 +13,6 @@ struct POD {
};
// expected-note@* 1+{{read of non-const variable}}
// expected-note@* 1+{{function parameter}}
// expected-note@* 1+{{declared here}}
// We allow VLAs of POD types, only.

View File

@ -217,11 +217,11 @@ namespace ParameterScopes {
const int k = 42;
constexpr const int &ObscureTheTruth(const int &a) { return a; }
constexpr const int &MaybeReturnJunk(bool b, const int a) {
constexpr const int &MaybeReturnJunk(bool b, const int a) { // expected-note 2{{declared here}}
return ObscureTheTruth(b ? a : k);
}
static_assert(MaybeReturnJunk(false, 0) == 42, ""); // ok
constexpr int a = MaybeReturnJunk(true, 0); // expected-error {{constant expression}} expected-note {{read of object outside its lifetime}}
constexpr int a = MaybeReturnJunk(true, 0); // expected-error {{constant expression}} expected-note {{read of variable whose lifetime has ended}}
constexpr const int MaybeReturnNonstaticRef(bool b, const int a) {
return ObscureTheTruth(b ? a : k);
@ -230,7 +230,7 @@ namespace ParameterScopes {
constexpr int b = MaybeReturnNonstaticRef(true, 0); // ok
constexpr int InternalReturnJunk(int n) {
return MaybeReturnJunk(true, n); // expected-note {{read of object outside its lifetime}}
return MaybeReturnJunk(true, n); // expected-note {{read of variable whose lifetime has ended}}
}
constexpr int n3 = InternalReturnJunk(0); // expected-error {{must be initialized by a constant expression}} expected-note {{in call to 'InternalReturnJunk(0)'}}
@ -1568,7 +1568,7 @@ namespace RecursiveOpaqueExpr {
namespace VLASizeof {
void f(int k) { // expected-note {{here}}
int arr[k]; // expected-warning {{C99}} expected-note {{function parameter 'k'}}
int arr[k]; // expected-warning {{C99}} expected-note {{non-const variable 'k'}}
constexpr int n = 1 +
sizeof(arr) // expected-error {{constant expression}}
* 3;
@ -1928,9 +1928,9 @@ namespace Lifetime {
int n = 0;
constexpr int f() const { return 0; }
};
constexpr Q *out_of_lifetime(Q q) { return &q; } // expected-warning {{address of stack}}
constexpr int k3 = out_of_lifetime({})->n; // expected-error {{constant expression}} expected-note {{read of object outside its lifetime}}
constexpr int k4 = out_of_lifetime({})->f(); // expected-error {{constant expression}} expected-note {{member call on object outside its lifetime}}
constexpr Q *out_of_lifetime(Q q) { return &q; } // expected-warning {{address of stack}} expected-note 2{{declared here}}
constexpr int k3 = out_of_lifetime({})->n; // expected-error {{constant expression}} expected-note {{read of variable whose lifetime has ended}}
constexpr int k4 = out_of_lifetime({})->f(); // expected-error {{constant expression}} expected-note {{member call on variable whose lifetime has ended}}
constexpr int null = ((Q*)nullptr)->f(); // expected-error {{constant expression}} expected-note {{member call on dereferenced null pointer}}
@ -2252,7 +2252,7 @@ namespace ns1 {
void f(char c) { //expected-note2{{declared here}}
struct X {
static constexpr char f() { //expected-error{{never produces a constant expression}}
return c; //expected-error{{reference to local}} expected-note{{function parameter}}
return c; //expected-error{{reference to local}} expected-note{{non-const variable}}
}
};
int I = X::f();
@ -2312,7 +2312,7 @@ namespace array_size {
template<typename T> void f1(T t) {
constexpr int k = t.size();
}
template<typename T> void f2(const T &t) { // expected-note {{declared here}}
template<typename T> void f2(const T &t) {
constexpr int k = t.size(); // expected-error {{constant}} expected-note {{function parameter 't' with unknown value cannot be used in a constant expression}}
}
template<typename T> void f3(const T &t) {

View File

@ -1415,16 +1415,3 @@ namespace PR45350 {
// decreasing address
static_assert(f(6) == 543210);
}
namespace PR47805 {
struct A {
bool bad = true;
constexpr ~A() { if (bad) throw; }
};
constexpr bool f(A a) { a.bad = false; return true; }
constexpr bool b = f(A());
struct B { B *p = this; };
constexpr bool g(B b) { return &b == b.p; }
static_assert(g({}));
}

View File

@ -17,7 +17,7 @@ namespace std {
}
template<typename T> constexpr bool has_type(...) { return false; }
template<typename T> constexpr bool has_type(T&) { return true; }
template<typename T> constexpr bool has_type(T) { return true; }
std::initializer_list il = {1, 2, 3, 4, 5};

View File

@ -238,7 +238,7 @@ constexpr int f_c(int i) {
// expected-note@-1 {{declared here}}
int t = f(i);
// expected-error@-1 {{is not a constant expression}}
// expected-note@-2 {{function parameter}}
// expected-note@-2 {{read of non-const variable}}
return f(0);
}
@ -254,7 +254,7 @@ auto l1 = [](int i) constexpr {
// expected-note@-1 {{declared here}}
int t = f(i);
// expected-error@-1 {{is not a constant expression}}
// expected-note@-2 {{function parameter}}
// expected-note@-2 {{read of non-const variable}}
return f(0);
};

View File

@ -85,7 +85,8 @@ uint64_t check_integer_overflows(int i) { //expected-note 0+{{declared here}}
// expected-warning@+1 {{overflow in expression; result is 537919488 with type 'int'}}
case 1 + static_cast<uint64_t>(4609 * 1024 * 1024):
return 7;
// expected-error@+1 {{expression is not an integral constant expression}}
// expected-error@+2 {{expression is not an integral constant expression}}
// expected-note@+1 {{read of non-const variable 'i' is not allowed in a constant expression}}
case ((uint64_t)(4608 * 1024 * 1024 * i)):
return 8;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}

View File

@ -23,8 +23,8 @@ void print(int n, int a, int b, int c, int d) {
void test(int n) {
S array_t[n][n+1];
# ifdef PE
// expected-error@-2 {{variable length arrays are a C99 feature}} expected-note@-2 {{parameter}} expected-note@-3 {{here}}
// expected-error@-3 {{variable length arrays are a C99 feature}} expected-note@-3 {{parameter}} expected-note@-4 {{here}}
// expected-error@-2 {{variable length arrays are a C99 feature}} expected-note@-2 {{read of non-const}} expected-note@-3 {{here}}
// expected-error@-3 {{variable length arrays are a C99 feature}} expected-note@-3 {{read of non-const}} expected-note@-4 {{here}}
# endif
int sizeof_S = sizeof(S);
int sizeof_array_t_0_0 = sizeof(array_t[0][0]);

View File

@ -1,27 +1,27 @@
// RUN: %clang_cc1 -fsyntax-only -verify -Wvla %s
void test1(int n) { // expected-note {{here}}
int v[n]; // expected-warning {{variable length array}} expected-note {{parameter 'n'}}
int v[n]; // expected-warning {{variable length array}} expected-note {{variable 'n'}}
}
void test2(int n, int v[n]) { // expected-warning {{variable length array}} expected-note {{parameter 'n'}} expected-note {{here}}
void test2(int n, int v[n]) { // expected-warning {{variable length array}} expected-note {{variable 'n'}} expected-note {{here}}
}
void test3(int n, int v[n]); // expected-warning {{variable length array}} expected-note {{parameter 'n'}} expected-note {{here}}
void test3(int n, int v[n]); // expected-warning {{variable length array}} expected-note {{variable 'n'}} expected-note {{here}}
template<typename T>
void test4(int n) { // expected-note {{here}}
int v[n]; // expected-warning {{variable length array}} expected-note {{parameter 'n'}}
int v[n]; // expected-warning {{variable length array}} expected-note {{variable 'n'}}
}
template<typename T>
void test5(int n, int v[n]) { // expected-warning {{variable length array}} expected-note {{parameter 'n'}} expected-note {{here}}
void test5(int n, int v[n]) { // expected-warning {{variable length array}} expected-note {{variable 'n'}} expected-note {{here}}
}
template<typename T>
void test6(int n, int v[n]); // expected-warning {{variable length array}} expected-note {{parameter 'n'}} expected-note {{here}}
void test6(int n, int v[n]); // expected-warning {{variable length array}} expected-note {{variable 'n'}} expected-note {{here}}
template<typename T>
void test7(int n, T v[n]) { // expected-warning {{variable length array}} expected-note {{parameter 'n'}} expected-note {{here}}
void test7(int n, T v[n]) { // expected-warning {{variable length array}} expected-note {{variable 'n'}} expected-note {{here}}
}

View File

@ -34,13 +34,12 @@ struct Y {
struct Inner : Y { // expected-note {{declared here}}
};
bool f(T other) { // expected-note {{declared here}}
bool f(T other) {
// We can determine that 'inner' does not exist at parse time, so can
// perform typo correction in this case.
return this->inner<other>::z; // expected-error {{no template named 'inner' in 'Y<T>'; did you mean 'Inner'?}}
// expected-error@-1 {{constant expression}} expected-note@-1 {{function parameter 'other'}}
}
};
struct Q { constexpr operator int() { return 0; } };
void use_y(Y<Q> x) { x.f(Q()); } // expected-note {{instantiation of}}
void use_y(Y<Q> x) { x.f(Q()); }