ValueMapper: Separate mapping of distinct and uniqued nodes (again)

Since the result of a mapped distinct node is known up front, it's more
efficient to map them separately from uniqued nodes.  This commit pulls
them out of the post-order traversal and stores them in a worklist to be
remapped at the top-level.

This is essentially reapplying r244181 ("ValueMapper: Rotate distinct
node remapping algorithm") to the new iterative algorithm from r265456
("ValueMapper: Rewrite Mapper::mapMetadata without recursion").

Now that the traversal logic only handles uniqued MDNodes, it's much
simpler to inline it all into MDNodeMapper::createPOT (I've killed the
MDNodeMapper::push and MDNodeMapper::tryToPop helpers and localized the
traversal worklist).

The resulting high-level algorithm for MDNodeMapper::map now looks like
this:

  - Distinct nodes are immediately mapped and added to
    MDNodeMapper::DistinctWorklist using MDNodeMapper::mapDistinctNode.

  - Uniqued nodes are mapped via MDNodeMapper::mapTopLevelUniquedNode,
    which traverses the transitive uniqued subgraph of a node to
    calculate uniqued node mappings in bulk.

      - This is a simplified version of MDNodeMapper::map from before
        this commit (originally r265456) that doesn't traverse through
        any distinct nodes.

      - Distinct nodes are added to MDNodeMapper::DistinctWorklist via
        MDNodeMapper::mapDistinctNode.

      - This uses MDNodeMapper::createPOT to fill a
        MDNodeMapper::UniquedGraph (a post-order traversal and side
        table), UniquedGraph::propagateChanges to track which uniqued
        nodes need to change, and MDNodeMapper::mapNodesInPOT to create
        the uniqued nodes.

      - Placeholders for forward references are now only needed when
        there's a uniquing cycle (a cycle of uniqued nodes unbroken by
        distinct nodes).  This is the key functionality change that
        we're reintroducing (from r244181).  As of r265456, a temporary
        forward reference might be needed for any cycle that involved
        uniqued nodes.

  - After mapping the first node appropriately, MDNodeMapper::map works
    through MDNodeMapper::DistinctWorklist.  For each distinct node, its
    operands are remapped with MDNodeMapper::mapDistinctNode and
    MDNodeMapper::mapTopLevelUniquedNode until all nodes have been
    mapped.

Sadly there's nothing observable I can test here; no real functionality
change, just a compile-time speedup from reduced malloc traffic.

llvm-svn: 266537
This commit is contained in:
Duncan P. N. Exon Smith 2016-04-16 21:44:08 +00:00
parent 0cb5c344b4
commit 694ab4e966
1 changed files with 206 additions and 222 deletions

View File

@ -189,149 +189,149 @@ private:
class MDNodeMapper {
Mapper &M;
/// Data about a node in \a UniquedGraph.
struct Data {
bool HasChangedOps = false;
bool HasChangedAddress = false;
bool HasChanged = false;
unsigned ID = ~0u;
TempMDNode Placeholder;
Data() {}
Data(Data &&X)
: HasChangedOps(std::move(X.HasChangedOps)),
HasChangedAddress(std::move(X.HasChangedAddress)),
ID(std::move(X.ID)), Placeholder(std::move(X.Placeholder)) {}
: HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
Placeholder(std::move(X.Placeholder)) {}
Data &operator=(Data &&X) {
HasChangedOps = std::move(X.HasChangedOps);
HasChangedAddress = std::move(X.HasChangedAddress);
HasChanged = std::move(X.HasChanged);
ID = std::move(X.ID);
Placeholder = std::move(X.Placeholder);
return *this;
}
};
SmallDenseMap<const Metadata *, Data, 32> Info;
SmallVector<std::pair<MDNode *, bool>, 16> Worklist;
SmallVector<MDNode *, 16> POT;
/// A graph of uniqued nodes.
struct UniquedGraph {
SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
SmallVector<MDNode *, 16> POT; // Post-order traversal.
/// Propagate changed operands through the post-order traversal.
///
/// Iteratively update \a Data::HasChanged for each node based on \a
/// Data::HasChanged of its operands, until fixed point.
void propagateChanges();
/// Get a forward reference to a node to use as an operand.
Metadata &getFwdReference(MDNode &Op);
};
/// Worklist of distinct nodes whose operands need to be remapped.
SmallVector<MDNode *, 16> DistinctWorklist;
// Storage for a UniquedGraph.
SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
SmallVector<MDNode *, 16> POTStorage;
public:
MDNodeMapper(Mapper &M) : M(M) {}
/// Map a metadata node (and its transitive operands).
///
/// This is the only entry point into MDNodeMapper. It works as follows:
/// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
/// algorithm handles distinct nodes and uniqued node subgraphs using
/// different strategies.
///
/// 1. \a createPOT(): use a worklist to perform a post-order traversal of
/// the transitively referenced unmapped nodes.
/// Distinct nodes are immediately mapped and added to \a DistinctWorklist
/// using \a mapDistinctNode(). Their mapping can always be computed
/// immediately without visiting operands, even if their operands change.
///
/// 2. \a propagateChangedOperands(): track which nodes will change
/// operands, and which will have new addresses in the mapped scheme.
/// Propagate the changes through the POT until fixed point, to pick up
/// uniquing cycles that need to change.
/// The mapping for uniqued nodes depends on whether their operands change.
/// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
/// a node to calculate uniqued node mappings in bulk. Distinct leafs are
/// added to \a DistinctWorklist with \a mapDistinctNode().
///
/// 3. \a mapDistinctNodes(): map all the distinct nodes without touching
/// their operands. If RF_MoveDistinctMetadata, they get mapped to
/// themselves; otherwise, they get mapped to clones.
///
/// 4. \a mapUniquedNodes(): map the uniqued nodes (bottom-up), lazily
/// creating temporaries for forward references as needed.
///
/// 5. \a remapDistinctOperands(): remap the operands of the distinct nodes.
Metadata *map(const MDNode &FirstN);
/// After mapping \c N itself, this function remaps the operands of the
/// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
/// N has been mapped.
Metadata *map(const MDNode &N);
private:
/// Return \c true as long as there's work to do.
bool hasWork() const { return !Worklist.empty(); }
/// Map a top-level uniqued node and the uniqued subgraph underneath it.
///
/// This builds up a post-order traversal of the (unmapped) uniqued subgraph
/// underneath \c FirstN and calculates the nodes' mapping. Each node uses
/// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
/// operands uses the identity mapping.
///
/// The algorithm works as follows:
///
/// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
/// save the post-order traversal in the given \a UniquedGraph, tracking
/// nodes' operands change.
///
/// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
/// through the \a UniquedGraph until fixed point, following the rule
/// that if a node changes, any node that references must also change.
///
/// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
/// (referencing new operands) where necessary.
Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
/// Get the current node in the worklist.
MDNode &getCurrentNode() const { return *Worklist.back().first; }
/// Try to map the operand of an \a MDNode.
///
/// If \c Op is already mapped, return the mapping. If it's not an \a
/// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
/// return the result of \a mapDistinctNode().
///
/// \return None if \c Op is an unmapped uniqued \a MDNode.
/// \post getMappedOp(Op) only returns None if this returns None.
Optional<Metadata *> tryToMapOperand(const Metadata *Op);
/// Push a node onto the worklist.
/// Map a distinct node.
///
/// Adds \c N to \a Worklist and \a Info, unless it's already inserted. If
/// \c N.isDistinct(), \a Data::HasChangedAddress will be set based on \a
/// RF_MoveDistinctMDs.
/// Return the mapping for the distinct node \c N, saving the result in \a
/// DistinctWorklist for later remapping.
///
/// Returns the data for the node.
///
/// \post Data::HasChangedAddress iff !RF_MoveDistinctMDs && N.isDistinct().
/// \post Worklist.back().first == &N.
/// \post Worklist.back().second == false.
Data &push(const MDNode &N);
/// Map a node operand, and return true if it changes.
///
/// \post getMappedOp(Op) does not return None.
bool mapOperand(const Metadata *Op);
/// \pre \c N is not yet mapped.
/// \pre \c N.isDistinct().
MDNode *mapDistinctNode(const MDNode &N);
/// Get a previously mapped node.
Optional<Metadata *> getMappedOp(const Metadata *Op) const;
/// Try to pop a node off the worklist and store it in POT.
///
/// Returns \c true if it popped; \c false if its operands need to be
/// visited.
///
/// \post If Worklist.back().second == false: Worklist.back().second == true.
/// \post Else: Worklist.back() has been popped off and added to \a POT.
bool tryToPop();
/// Get a forward reference to a node to use as an operand.
///
/// Returns \c Op if it's not changing; otherwise, lazily creates a temporary
/// node and returns it.
Metadata &getFwdReference(const Data &D, MDNode &Op);
/// Create a post-order traversal from the given node.
/// Create a post-order traversal of an unmapped uniqued node subgraph.
///
/// This traverses the metadata graph deeply enough to map \c FirstN. It
/// uses \a mapOperand() (indirectly, \a Mapper::mapSimplifiedNode()), so any
/// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
/// metadata that has already been mapped will not be part of the POT.
///
/// \post \a POT is a post-order traversal ending with \c FirstN.
bool createPOT(const MDNode &FirstN);
/// Each node that has a changed operand from outside the graph (e.g., a
/// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
/// is marked with \a Data::HasChanged.
///
/// \return \c true if any nodes in \c G have \a Data::HasChanged.
/// \post \c G.POT is a post-order traversal ending with \c FirstN.
/// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
/// to change because of operands outside the graph.
bool createPOT(UniquedGraph &G, const MDNode &FirstN);
/// Propagate changed operands through post-order traversal.
/// Map all the nodes in the given uniqued graph.
///
/// Until fixed point, iteratively update:
/// This visits all the nodes in \c G in post-order, using the identity
/// mapping or creating a new node depending on \a Data::HasChanged.
///
/// - \a Data::HasChangedOps based on \a Data::HasChangedAddress of operands;
/// - \a Data::HasChangedAddress based on Data::HasChangedOps.
///
/// This algorithm never changes \a Data::HasChangedAddress for distinct
/// nodes.
///
/// \post \a POT is a post-order traversal ending with \c FirstN.
void propagateChangedOperands();
/// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
/// their operands outside of \c G.
/// \pre \a Data::HasChanged is true for a node in \c G iff any of its
/// operands have changed.
/// \post \a getMappedOp() returns the mapped node for every node in \c G.
void mapNodesInPOT(UniquedGraph &G);
/// Map all distinct nodes in POT.
/// Remap a node's operands using the given functor.
///
/// \post \a getMappedOp() returns the correct node for every distinct node.
void mapDistinctNodes();
/// Map all uniqued nodes in POT with the correct operands.
///
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
/// \post \a getMappedOp() returns the correct node for every node.
/// \post \a MDNode::operands() is correct for every uniqued node.
/// \post \a MDNode::isResolved() returns true for every node.
void mapUniquedNodes();
/// Re-map the operands for distinct nodes in POT.
///
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
/// \pre Uniqued nodes are mapped (\a mapUniquedNodes() has been called).
/// \post \a MDNode::operands() is correct for every distinct node.
void remapDistinctOperands();
/// Remap a node's operands.
///
/// Iterate through operands and update them in place using \a getMappedOp()
/// and \a getFwdReference().
/// Iterate through the operands of \c N and update them in place using \c
/// mapOperand.
///
/// \pre N.isDistinct() or N.isTemporary().
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
/// \pre If \c N is distinct, all uniqued nodes are already mapped.
void remapOperands(const Data &D, MDNode &N);
template <class OperandMapper>
void remapOperands(MDNode &N, OperandMapper mapOperand);
};
} // end namespace
@ -500,9 +500,9 @@ Metadata *Mapper::mapToSelf(const Metadata *MD) {
return mapToMetadata(MD, const_cast<Metadata *>(MD));
}
bool MDNodeMapper::mapOperand(const Metadata *Op) {
Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
if (!Op)
return false;
return nullptr;
if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
#ifndef NDEBUG
@ -514,10 +514,23 @@ bool MDNodeMapper::mapOperand(const Metadata *Op) {
assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
"Expected result to be memoized");
#endif
return *MappedOp != Op;
return *MappedOp;
}
return push(*cast<MDNode>(Op)).HasChangedAddress;
const MDNode &N = *cast<MDNode>(Op);
if (N.isDistinct())
return mapDistinctNode(N);
return None;
}
MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
assert(N.isDistinct() && "Expected a distinct node");
assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
DistinctWorklist.push_back(cast<MDNode>(
(M.Flags & RF_MoveDistinctMDs)
? M.mapToSelf(&N)
: M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
return DistinctWorklist.back();
}
static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
@ -543,14 +556,12 @@ Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
return None;
}
Metadata &MDNodeMapper::getFwdReference(const Data &D, MDNode &Op) {
Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
auto Where = Info.find(&Op);
assert(Where != Info.end() && "Expected a valid reference");
auto &OpD = Where->second;
assert(OpD.ID > D.ID && "Expected a forward reference");
if (!OpD.HasChangedAddress)
if (!OpD.HasChanged)
return Op;
// Lazily construct a temporary node.
@ -560,128 +571,93 @@ Metadata &MDNodeMapper::getFwdReference(const Data &D, MDNode &Op) {
return *OpD.Placeholder;
}
void MDNodeMapper::remapOperands(const Data &D, MDNode &N) {
template <class OperandMapper>
void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
assert(!N.isUniqued() && "Expected distinct or temporary nodes");
for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
Metadata *Old = N.getOperand(I);
Metadata *New;
if (Optional<Metadata *> MappedOp = getMappedOp(Old)){
New = *MappedOp;
} else {
assert(!N.isDistinct() &&
"Expected all nodes to be pre-mapped for distinct operands");
MDNode &OldN = *cast<MDNode>(Old);
assert(!OldN.isDistinct() && "Expected distinct nodes to be pre-mapped");
New = &getFwdReference(D, OldN);
}
Metadata *New = mapOperand(Old);
if (Old != New)
N.replaceOperandWith(I, New);
}
}
MDNodeMapper::Data &MDNodeMapper::push(const MDNode &N) {
auto Insertion = Info.insert(std::make_pair(&N, Data()));
auto &D = Insertion.first->second;
if (!Insertion.second)
return D;
bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
assert(G.Info.empty() && "Expected a fresh traversal");
assert(FirstN.isUniqued() && "Expected uniqued node in POT");
// Add to the worklist; check for distinct nodes that are required to be
// copied.
Worklist.push_back(std::make_pair(&const_cast<MDNode &>(N), false));
D.HasChangedAddress = !(M.Flags & RF_MoveDistinctMDs) && N.isDistinct();
return D;
}
bool MDNodeMapper::tryToPop() {
if (!Worklist.back().second) {
Worklist.back().second = true;
return false;
}
MDNode *N = Worklist.pop_back_val().first;
Info[N].ID = POT.size();
POT.push_back(N);
return true;
}
bool MDNodeMapper::createPOT(const MDNode &FirstN) {
// Construct a post-order traversal of the uniqued subgraph under FirstN.
bool AnyChanges = false;
// Do a traversal of the unmapped subgraph, tracking whether operands change.
// In some cases, these changes will propagate naturally, but
// propagateChangedOperands() catches the general case.
AnyChanges |= push(FirstN).HasChangedAddress;
while (hasWork()) {
if (tryToPop())
// The flag on the worklist indicates whether this is the first or second
// visit of a node. The first visit looks through the operands; the second
// visit adds the node to POT.
SmallVector<std::pair<MDNode *, bool>, 16> Worklist;
Worklist.push_back(std::make_pair(&const_cast<MDNode &>(FirstN), false));
(void)G.Info[&FirstN];
while (!Worklist.empty()) {
MDNode &N = *Worklist.back().first;
if (Worklist.back().second) {
// We've already visited operands. Add this to POT.
Worklist.pop_back();
G.Info[&N].ID = G.POT.size();
G.POT.push_back(&N);
continue;
}
Worklist.back().second = true;
MDNode &N = getCurrentNode();
// Look through the operands for changes, pushing unmapped uniqued nodes
// onto to the worklist.
assert(N.isUniqued() && "Expected only uniqued nodes in POT");
bool LocalChanges = false;
for (const Metadata *Op : N.operands())
LocalChanges |= mapOperand(Op);
for (Metadata *Op : N.operands()) {
assert(Op != &N && "Uniqued nodes cannot have self-references");
if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
AnyChanges |= LocalChanges |= Op != *MappedOp;
continue;
}
if (!LocalChanges)
continue;
MDNode &OpN = *cast<MDNode>(Op);
assert(OpN.isUniqued() &&
"Only uniqued operands cannot be mapped immediately");
if (G.Info.insert(std::make_pair(&OpN, Data())).second)
Worklist.push_back(std::make_pair(&OpN, false));
}
AnyChanges = true;
auto &D = Info[&N];
D.HasChangedOps = true;
// Uniqued nodes change address when operands change.
if (!N.isDistinct())
D.HasChangedAddress = true;
if (LocalChanges)
G.Info[&N].HasChanged = true;
}
return AnyChanges;
}
void MDNodeMapper::propagateChangedOperands() {
bool AnyChangedAddresses;
void MDNodeMapper::UniquedGraph::propagateChanges() {
bool AnyChanges;
do {
AnyChangedAddresses = false;
AnyChanges = false;
for (MDNode *N : POT) {
auto &NI = Info[N];
if (NI.HasChangedOps)
auto &D = Info[N];
if (D.HasChanged)
continue;
if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
auto Where = Info.find(Op);
return Where != Info.end() && Where->second.HasChangedAddress;
return Where != Info.end() && Where->second.HasChanged;
}))
continue;
NI.HasChangedOps = true;
if (!N->isDistinct()) {
NI.HasChangedAddress = true;
AnyChangedAddresses = true;
}
AnyChanges = D.HasChanged = true;
}
} while (AnyChangedAddresses);
} while (AnyChanges);
}
void MDNodeMapper::mapDistinctNodes() {
// Map all the distinct nodes in POT.
for (MDNode *N : POT) {
if (!N->isDistinct())
continue;
if (M.Flags & RF_MoveDistinctMDs)
M.mapToSelf(N);
else
M.mapToMetadata(N, MDNode::replaceWithDistinct(N->clone()));
}
}
void MDNodeMapper::mapUniquedNodes() {
void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
// Construct uniqued nodes, building forward references as necessary.
SmallVector<MDNode *, 16> CyclicNodes;
for (auto *N : POT) {
if (N->isDistinct())
continue;
auto &D = Info[N];
assert(D.HasChangedAddress == D.HasChangedOps &&
"Uniqued nodes should change address iff ops change");
if (!D.HasChangedAddress) {
for (auto *N : G.POT) {
auto &D = G.Info[N];
if (!D.HasChanged) {
// The node hasn't changed.
M.mapToSelf(N);
continue;
}
@ -691,7 +667,13 @@ void MDNodeMapper::mapUniquedNodes() {
// Clone the uniqued node and remap the operands.
TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
remapOperands(D, *ClonedN);
remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
if (Optional<Metadata *> MappedOp = getMappedOp(Old))
return *MappedOp;
assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
return &G.getFwdReference(*cast<MDNode>(Old));
});
auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
M.mapToMetadata(N, NewN);
@ -707,40 +689,42 @@ void MDNodeMapper::mapUniquedNodes() {
N->resolveCycles();
}
void MDNodeMapper::remapDistinctOperands() {
for (auto *N : POT) {
if (!N->isDistinct())
continue;
auto &D = Info[N];
if (!D.HasChangedOps)
continue;
assert(D.HasChangedAddress == !bool(M.Flags & RF_MoveDistinctMDs) &&
"Distinct nodes should change address iff they cannot be moved");
remapOperands(D, D.HasChangedAddress ? *cast<MDNode>(*getMappedOp(N)) : *N);
}
}
Metadata *MDNodeMapper::map(const MDNode &FirstN) {
Metadata *MDNodeMapper::map(const MDNode &N) {
assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
assert(!(M.Flags & RF_NoModuleLevelChanges) &&
"MDNodeMapper::map assumes module-level changes");
assert(POT.empty() && "MDNodeMapper::map is not re-entrant");
// Require resolved nodes whenever metadata might be remapped.
assert(FirstN.isResolved() && "Unexpected unresolved node");
assert(N.isResolved() && "Unexpected unresolved node");
// Return early if nothing at all changed.
if (!createPOT(FirstN)) {
for (const MDNode *N : POT)
Metadata *MappedN =
N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
while (!DistinctWorklist.empty())
remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
return *MappedOp;
return mapTopLevelUniquedNode(*cast<MDNode>(Old));
});
return MappedN;
}
Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
assert(FirstN.isUniqued() && "Expected uniqued node");
// Create a post-order traversal of uniqued nodes under FirstN.
UniquedGraph G;
if (!createPOT(G, FirstN)) {
// Return early if no nodes have changed.
for (const MDNode *N : G.POT)
M.mapToSelf(N);
return &const_cast<MDNode &>(FirstN);
}
propagateChangedOperands();
mapDistinctNodes();
mapUniquedNodes();
remapDistinctOperands();
// Update graph with all nodes that have changed.
G.propagateChanges();
// Map all the nodes in the graph.
mapNodesInPOT(G);
// Return the original node, remapped.
return *getMappedOp(&FirstN);