[NFC][mlgo] Add feature declarations for the ML regalloc advisor

This just adds feature declarations and some boilerplate.

Differential Revision: https://reviews.llvm.org/D116076
This commit is contained in:
Mircea Trofin 2021-12-20 20:50:55 -08:00
parent 96e36048fd
commit 68ac7b1701
3 changed files with 179 additions and 4 deletions

View File

@ -41,6 +41,11 @@ public:
getTensorUntyped(static_cast<size_t>(FeatureID)));
}
virtual void *getTensorUntyped(size_t Index) = 0;
const void *getTensorUntyped(size_t Index) const {
return (const_cast<MLModelRunner *>(this))->getTensorUntyped(Index);
}
enum class Kind : int { Unknown, Release, Development, NoOp };
Kind getKind() const { return Type; }
@ -49,10 +54,6 @@ protected:
assert(Type != Kind::Unknown);
}
virtual void *evaluateUntyped() = 0;
virtual void *getTensorUntyped(size_t Index) = 0;
const void *getTensorUntyped(size_t Index) const {
return (const_cast<MLModelRunner *>(this))->getTensorUntyped(Index);
}
LLVMContext &Ctx;
const Kind Type;

View File

@ -113,6 +113,7 @@ add_llvm_component_library(LLVMCodeGen
MIRFSDiscriminator.cpp
MIRSampleProfile.cpp
MIRYamlMapping.cpp
MLRegallocEvictAdvisor.cpp
ModuloSchedule.cpp
MultiHazardRecognizer.cpp
PatchableFunction.cpp

View File

@ -0,0 +1,173 @@
//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the ML eviction advisor and reward injection pass
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
#include "RegAllocEvictionAdvisor.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "ml-regalloc"
namespace {
// This is the maximum number of interfererring ranges. That's the number of
// distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
// For X86, that's 32.
// TODO: find a way to get this, statically, in a programmatic way.
static const int64_t MaxInterferences = 32;
// Logically, we can think of the feature set given to the evaluator as a 2D
// matrix. The rows are the features (see next). The columns correspond to the
// interferences. We treat the candidate virt reg as an 'interference', too, as
// its feature set is the same as that of the interferring ranges. So we'll have
// MaxInterferences + 1 columns and by convention, we will use the last column
// for the virt reg seeking allocation.
static const int64_t CandidateVirtRegPos = MaxInterferences;
static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
// Most features are as described above, so we'll reuse this vector in defining
// them.
static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
// --------------
// Features table
// --------------
// For each interfering live range (incl. the candidate) we collect a number of
// features. However, because the features are of different types (and because
// of ML best practices), we organize the tensors per feature, not per
// candidate. Each such tensor has a scalar value corresponding to the
// interferring live range at that position, in the order in AllocationOrder.
// The last position corresponds to the virt reg seeking allocation.
// Exception to all that is the progression feature, which is just a scalar (see
// its documentation for details).
// Note on naming: the "_by_max" are normalized using the largest value of that
// tensor, as observed in the current decision making stage (i.e. for the
// current call to the advisor's tryFindEvictionCandidate)
//
// The feature list format: type, name, shape, documentation.
// Note: we can really just use int64 and float, hence the modeling of some
// bools as int64 values.
#define RA_EVICT_FEATURES_LIST(M) \
M(int64_t, mask, PerLiveRangeShape, \
"boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
"it " \
"can't be evicted)") \
M(int64_t, is_free, PerLiveRangeShape, \
"boolean values, 1 if this phys reg is actually free (no interferences)") \
M(float, nr_urgent, PerLiveRangeShape, \
"number of 'urgent' intervals, normalized. Urgent are those that are OK " \
"to break cascades") \
M(float, nr_broken_hints, PerLiveRangeShape, \
"if this position were evicted, how many broken hints would there be") \
M(int64_t, is_hint, PerLiveRangeShape, \
"is this a preferred phys reg for the candidate") \
M(int64_t, is_local, PerLiveRangeShape, \
"is this live range local to a basic block") \
M(float, nr_rematerializable, PerLiveRangeShape, \
"nr rematerializable ranges") \
M(float, nr_defs_and_uses, PerLiveRangeShape, \
"bb freq - weighed nr defs and uses") \
M(float, weighed_reads_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of reads, normalized") \
M(float, weighed_writes_by_max, PerLiveRangeShape, \
"bb feq - weighed nr of writes, normalized") \
M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are both read and writes, normalized") \
M(float, weighed_indvars_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are indvars, normalized") \
M(float, hint_weights_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are hints, normalized") \
M(float, start_bb_freq_by_max, PerLiveRangeShape, \
"the freq in the start block, normalized") \
M(float, end_bb_freq_by_max, PerLiveRangeShape, \
"freq of end block, normalized") \
M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
"hottest BB freq, normalized") \
M(float, liverange_size, PerLiveRangeShape, \
"size (instr index diff) of the LR") \
M(float, use_def_density, PerLiveRangeShape, \
"the max weight, as computed by the manual heuristic") \
M(int64_t, max_stage, PerLiveRangeShape, \
"largest stage of an interval in this LR") \
M(int64_t, min_stage, PerLiveRangeShape, \
"lowest stage of an interval in this LR") \
M(float, progress, {1}, "ratio of current queue size to initial size")
// The model learns to pick one of the mask == 1 interferences. This is the name
// of the output tensor.
// The contract with the model is that the output will be guaranteed to be to a
// mask == 1 position.
const char *const DecisionName = "index_to_evict";
// Named features index.
enum FeatureIDs {
#define _FEATURE_IDX(_, name, __, ___) name,
RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
#undef _FEATURE_IDX
FeatureCount
};
// The ML advisor will typically have a sparse input to the evaluator, because
// various phys regs won't be available. It's easier (maintenance-wise) to
// bulk-reset the state of the evaluator each time we are about to use it again.
template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
size_t Ret = sizeof(T);
for (const auto V : Shape)
Ret *= V;
return Ret;
}
void resetInputs(MLModelRunner &Runner) {
#define _RESET(TYPE, NAME, SHAPE, __) \
std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
getTotalSize<TYPE>(SHAPE));
RA_EVICT_FEATURES_LIST(_RESET)
#undef _RESET
}
// Development mode-specifics
#ifdef LLVM_HAVE_TF_API
#define _DECL_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(#name, shape),
static const std::vector<TensorSpec> InputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}};
#undef _DECL_FEATURES
static const TensorSpec Output =
TensorSpec::createSpec<int64_t>(DecisionName, {1});
const char *const RewardName = "reward";
static const TensorSpec Reward =
TensorSpec::createSpec<int64_t>(RewardName, {1});
#endif //#ifdef LLVM_HAVE_TF_API
} // namespace
#endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)