forked from OSchip/llvm-project
Improve loop fusion algorithm by using a memref dependence graph.
Fixed TODO for reduction fusion unit test. PiperOrigin-RevId: 226277226
This commit is contained in:
parent
14d2618f63
commit
6892ffb896
|
@ -130,24 +130,270 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
// GreedyFusionPolicy greedily fuses loop nests which have a producer/consumer
|
||||
// MemRefDependenceGraph is a graph data structure where graph nodes are
|
||||
// top-level statements in an MLFunction which contain load/store ops, and edges
|
||||
// are memref dependences between the nodes.
|
||||
// TODO(andydavis) Add a depth parameter to dependence graph construction.
|
||||
struct MemRefDependenceGraph {
|
||||
public:
|
||||
// Node represents a node in the graph. A Node is either an entire loop nest
|
||||
// rooted at the top level which contains loads/stores, or a top level
|
||||
// load/store.
|
||||
struct Node {
|
||||
// The unique identifier of this node in the graph.
|
||||
unsigned id;
|
||||
// The top-level statment which is (or contains) loads/stores.
|
||||
Statement *stmt;
|
||||
// List of load op stmts.
|
||||
SmallVector<OperationStmt *, 4> loads;
|
||||
// List of store op stmts.
|
||||
SmallVector<OperationStmt *, 4> stores;
|
||||
Node(unsigned id, Statement *stmt) : id(id), stmt(stmt) {}
|
||||
|
||||
// Returns the load op count for 'memref'.
|
||||
unsigned getLoadOpCount(MLValue *memref) {
|
||||
unsigned loadOpCount = 0;
|
||||
for (auto *loadOpStmt : loads) {
|
||||
if (memref == cast<MLValue>(loadOpStmt->cast<LoadOp>()->getMemRef()))
|
||||
++loadOpCount;
|
||||
}
|
||||
return loadOpCount;
|
||||
}
|
||||
|
||||
// Returns the store op count for 'memref'.
|
||||
unsigned getStoreOpCount(MLValue *memref) {
|
||||
unsigned storeOpCount = 0;
|
||||
for (auto *storeOpStmt : stores) {
|
||||
if (memref == cast<MLValue>(storeOpStmt->cast<StoreOp>()->getMemRef()))
|
||||
++storeOpCount;
|
||||
}
|
||||
return storeOpCount;
|
||||
}
|
||||
};
|
||||
|
||||
// Edge represents a memref data dependece between nodes in the graph.
|
||||
struct Edge {
|
||||
// The id of the node at the other end of the edge.
|
||||
unsigned id;
|
||||
// The memref on which this edge represents a dependence.
|
||||
MLValue *memref;
|
||||
};
|
||||
|
||||
// Map from node id to Node.
|
||||
DenseMap<unsigned, Node> nodes;
|
||||
// Map from node id to list of input edges.
|
||||
DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
|
||||
// Map from node id to list of output edges.
|
||||
DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
|
||||
|
||||
MemRefDependenceGraph() {}
|
||||
|
||||
// Initializes the dependence graph based on operations in 'f'.
|
||||
// Returns true on success, false otherwise.
|
||||
bool init(MLFunction *f);
|
||||
|
||||
// Returns the graph node for 'id'.
|
||||
Node *getNode(unsigned id) {
|
||||
auto it = nodes.find(id);
|
||||
assert(it != nodes.end());
|
||||
return &it->second;
|
||||
}
|
||||
|
||||
// Adds an edge from node 'srcId' to node 'dstId' for 'memref'.
|
||||
void addEdge(unsigned srcId, unsigned dstId, MLValue *memref) {
|
||||
outEdges[srcId].push_back({dstId, memref});
|
||||
inEdges[dstId].push_back({srcId, memref});
|
||||
}
|
||||
|
||||
// Removes an edge from node 'srcId' to node 'dstId' for 'memref'.
|
||||
void removeEdge(unsigned srcId, unsigned dstId, MLValue *memref) {
|
||||
assert(inEdges.count(dstId) > 0);
|
||||
assert(outEdges.count(srcId) > 0);
|
||||
// Remove 'srcId' from 'inEdges[dstId]'.
|
||||
for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
|
||||
if ((*it).id == srcId && (*it).memref == memref) {
|
||||
inEdges[dstId].erase(it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Remove 'dstId' from 'outEdges[srcId]'.
|
||||
for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
|
||||
if ((*it).id == dstId && (*it).memref == memref) {
|
||||
outEdges[srcId].erase(it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the input edge count for node 'id' and 'memref'.
|
||||
unsigned getInEdgeCount(unsigned id, MLValue *memref) {
|
||||
unsigned inEdgeCount = 0;
|
||||
if (inEdges.count(id) > 0)
|
||||
for (auto &inEdge : inEdges[id])
|
||||
if (inEdge.memref == memref)
|
||||
++inEdgeCount;
|
||||
return inEdgeCount;
|
||||
}
|
||||
|
||||
// Returns the output edge count for node 'id' and 'memref'.
|
||||
unsigned getOutEdgeCount(unsigned id, MLValue *memref) {
|
||||
unsigned outEdgeCount = 0;
|
||||
if (outEdges.count(id) > 0)
|
||||
for (auto &outEdge : outEdges[id])
|
||||
if (outEdge.memref == memref)
|
||||
++outEdgeCount;
|
||||
return outEdgeCount;
|
||||
}
|
||||
|
||||
// Returns the min node id of all output edges from node 'id'.
|
||||
unsigned getMinOutEdgeNodeId(unsigned id) {
|
||||
unsigned minId = std::numeric_limits<unsigned>::max();
|
||||
if (outEdges.count(id) > 0)
|
||||
for (auto &outEdge : outEdges[id])
|
||||
minId = std::min(minId, outEdge.id);
|
||||
return minId;
|
||||
}
|
||||
|
||||
// Updates edge mappings from node 'srcId' to node 'dstId' and removes
|
||||
// state associated with node 'srcId'.
|
||||
void updateEdgesAndRemoveSrcNode(unsigned srcId, unsigned dstId) {
|
||||
// For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'.
|
||||
if (inEdges.count(srcId) > 0) {
|
||||
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
|
||||
for (auto &inEdge : oldInEdges) {
|
||||
// Remove edge from 'inEdge.id' to 'srcId'.
|
||||
removeEdge(inEdge.id, srcId, inEdge.memref);
|
||||
// Add edge from 'inEdge.id' to 'dstId'.
|
||||
addEdge(inEdge.id, dstId, inEdge.memref);
|
||||
}
|
||||
}
|
||||
// For each edge in 'outEdges[srcId]': add new edge remaping to 'dstId'.
|
||||
if (outEdges.count(srcId) > 0) {
|
||||
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
|
||||
for (auto &outEdge : oldOutEdges) {
|
||||
// Remove edge from 'srcId' to 'outEdge.id'.
|
||||
removeEdge(srcId, outEdge.id, outEdge.memref);
|
||||
// Add edge from 'dstId' to 'outEdge.id' (if 'outEdge.id' != 'dstId').
|
||||
if (outEdge.id != dstId)
|
||||
addEdge(dstId, outEdge.id, outEdge.memref);
|
||||
}
|
||||
}
|
||||
// Remove 'srcId' from graph state.
|
||||
inEdges.erase(srcId);
|
||||
outEdges.erase(srcId);
|
||||
nodes.erase(srcId);
|
||||
}
|
||||
|
||||
// Adds ops in 'loads' and 'stores' to node at 'id'.
|
||||
void addToNode(unsigned id, const SmallVectorImpl<OperationStmt *> &loads,
|
||||
const SmallVectorImpl<OperationStmt *> &stores) {
|
||||
Node *node = getNode(id);
|
||||
for (auto *loadOpStmt : loads)
|
||||
node->loads.push_back(loadOpStmt);
|
||||
for (auto *storeOpStmt : stores)
|
||||
node->stores.push_back(storeOpStmt);
|
||||
}
|
||||
|
||||
void print(raw_ostream &os) const {
|
||||
os << "\nMemRefDependenceGraph\n";
|
||||
os << "\nNodes:\n";
|
||||
for (auto &idAndNode : nodes) {
|
||||
os << "Node: " << idAndNode.first << "\n";
|
||||
auto it = inEdges.find(idAndNode.first);
|
||||
if (it != inEdges.end()) {
|
||||
for (const auto &e : it->second)
|
||||
os << " InEdge: " << e.id << " " << e.memref << "\n";
|
||||
}
|
||||
it = outEdges.find(idAndNode.first);
|
||||
if (it != outEdges.end()) {
|
||||
for (const auto &e : it->second)
|
||||
os << " OutEdge: " << e.id << " " << e.memref << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
void dump() const { print(llvm::errs()); }
|
||||
};
|
||||
|
||||
// Intializes the data dependence graph by walking statements in 'f'.
|
||||
// Assigns each node in the graph a node id based on program order in 'f'.
|
||||
// TODO(andydavis) Add support for taking a StmtBlock arg to construct the
|
||||
// dependence graph at a different depth.
|
||||
bool MemRefDependenceGraph::init(MLFunction *f) {
|
||||
unsigned id = 0;
|
||||
DenseMap<MLValue *, SetVector<unsigned>> memrefAccesses;
|
||||
for (auto &stmt : *f) {
|
||||
if (auto *forStmt = dyn_cast<ForStmt>(&stmt)) {
|
||||
// Create graph node 'id' to represent top-level 'forStmt' and record
|
||||
// all loads and store accesses it contains.
|
||||
LoopNestStateCollector collector;
|
||||
collector.walkForStmt(forStmt);
|
||||
// Return false if IfStmts are found (not currently supported).
|
||||
if (collector.hasIfStmt)
|
||||
return false;
|
||||
Node node(id++, &stmt);
|
||||
for (auto *opStmt : collector.loadOpStmts) {
|
||||
node.loads.push_back(opStmt);
|
||||
auto *memref = cast<MLValue>(opStmt->cast<LoadOp>()->getMemRef());
|
||||
memrefAccesses[memref].insert(node.id);
|
||||
}
|
||||
for (auto *opStmt : collector.storeOpStmts) {
|
||||
node.stores.push_back(opStmt);
|
||||
auto *memref = cast<MLValue>(opStmt->cast<StoreOp>()->getMemRef());
|
||||
memrefAccesses[memref].insert(node.id);
|
||||
}
|
||||
nodes.insert({node.id, node});
|
||||
}
|
||||
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
|
||||
if (auto loadOp = opStmt->dyn_cast<LoadOp>()) {
|
||||
// Create graph node for top-level load op.
|
||||
Node node(id++, &stmt);
|
||||
node.loads.push_back(opStmt);
|
||||
auto *memref = cast<MLValue>(opStmt->cast<LoadOp>()->getMemRef());
|
||||
memrefAccesses[memref].insert(node.id);
|
||||
nodes.insert({node.id, node});
|
||||
}
|
||||
if (auto storeOp = opStmt->dyn_cast<StoreOp>()) {
|
||||
// Create graph node for top-level store op.
|
||||
Node node(id++, &stmt);
|
||||
node.stores.push_back(opStmt);
|
||||
auto *memref = cast<MLValue>(opStmt->cast<StoreOp>()->getMemRef());
|
||||
memrefAccesses[memref].insert(node.id);
|
||||
nodes.insert({node.id, node});
|
||||
}
|
||||
}
|
||||
// Return false if IfStmts are found (not currently supported).
|
||||
if (isa<IfStmt>(&stmt))
|
||||
return false;
|
||||
}
|
||||
|
||||
// Walk memref access lists and add graph edges between dependent nodes.
|
||||
for (auto &memrefAndList : memrefAccesses) {
|
||||
unsigned n = memrefAndList.second.size();
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
unsigned srcId = memrefAndList.second[i];
|
||||
bool srcHasStore =
|
||||
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
|
||||
for (unsigned j = i + 1; j < n; ++j) {
|
||||
unsigned dstId = memrefAndList.second[j];
|
||||
bool dstHasStore =
|
||||
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
|
||||
if (srcHasStore || dstHasStore)
|
||||
addEdge(srcId, dstId, memrefAndList.first);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// GreedyFusion greedily fuses loop nests which have a producer/consumer
|
||||
// relationship on a memref, with the goal of improving locality. Currently,
|
||||
// this the producer/consumer relationship is required to be unique in the
|
||||
// MLFunction (there are TODOs to relax this constraint in the future).
|
||||
//
|
||||
// The steps of the algorithm are as follows:
|
||||
//
|
||||
// *) Initialize. While visiting each statement in the MLFunction do:
|
||||
// *) Assign each top-level ForStmt a 'position' which is its initial
|
||||
// position in the MLFunction's StmtBlock at the start of the pass.
|
||||
// *) Gather memref load/store state aggregated by top-level statement. For
|
||||
// example, all loads and stores contained in a loop nest are aggregated
|
||||
// under the loop nest's top-level ForStmt.
|
||||
// *) Add each top-level ForStmt to a worklist.
|
||||
//
|
||||
// *) Run. The algorithm processes the worklist with the following steps:
|
||||
// *) The worklist is processed in reverse order (starting from the last
|
||||
// top-level ForStmt in the MLFunction).
|
||||
// *) A worklist is initialized with node ids from the dependence graph.
|
||||
// *) For each node id in the worklist:
|
||||
// *) Pop a ForStmt of the worklist. This 'dstForStmt' will be a candidate
|
||||
// destination ForStmt into which fusion will be attempted.
|
||||
// *) Add each LoadOp currently in 'dstForStmt' into list 'dstLoadOps'.
|
||||
|
@ -157,7 +403,7 @@ public:
|
|||
// *) Check if dependences would be violated by the fusion. For example,
|
||||
// the src loop nest may load from memrefs which are different than
|
||||
// the producer-consumer memref between src and dest loop nests.
|
||||
// *) Get a computation slice of 'srcLoopNest', which adjust its loop
|
||||
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
|
||||
// bounds to be functions of 'dstLoopNest' IVs and symbols.
|
||||
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
|
||||
// just before the dst load op user.
|
||||
|
@ -168,268 +414,112 @@ public:
|
|||
//
|
||||
// Given a graph where top-level statements are vertices in the set 'V' and
|
||||
// edges in the set 'E' are dependences between vertices, this algorithm
|
||||
// takes O(V) time for initialization, and has runtime O(V * E).
|
||||
// TODO(andydavis) Reduce this time complexity to O(V + E).
|
||||
// takes O(V) time for initialization, and has runtime O(V + E).
|
||||
//
|
||||
// This greedy algorithm is not 'maximally' but there is a TODO to fix this.
|
||||
// This greedy algorithm is not 'maximal' due to the current restriction of
|
||||
// fusing along single producer consumer edges, but there is a TODO to fix this.
|
||||
//
|
||||
// TODO(andydavis) Experiment with other fusion policies.
|
||||
struct GreedyFusionPolicy {
|
||||
// Convenience wrapper with information about 'stmt' ready to access.
|
||||
struct StmtInfo {
|
||||
Statement *stmt;
|
||||
bool isOrContainsIfStmt = false;
|
||||
};
|
||||
// The worklist of top-level loop nest positions.
|
||||
// TODO(andydavis) Add support for fusing for input reuse (perhaps by
|
||||
// constructing a graph with edges which represent loads from the same memref
|
||||
// in two different loop nestst.
|
||||
struct GreedyFusion {
|
||||
public:
|
||||
MemRefDependenceGraph *mdg;
|
||||
SmallVector<unsigned, 4> worklist;
|
||||
// Mapping from top-level position to StmtInfo.
|
||||
DenseMap<unsigned, StmtInfo> posToStmtInfo;
|
||||
// Mapping from memref MLValue to set of top-level positions of loop nests
|
||||
// which contain load ops on that memref.
|
||||
DenseMap<MLValue *, DenseSet<unsigned>> memrefToLoadPosSet;
|
||||
// Mapping from memref MLValue to set of top-level positions of loop nests
|
||||
// which contain store ops on that memref.
|
||||
DenseMap<MLValue *, DenseSet<unsigned>> memrefToStorePosSet;
|
||||
// Mapping from top-level loop nest to the set of load ops it contains.
|
||||
DenseMap<ForStmt *, SetVector<OperationStmt *>> forStmtToLoadOps;
|
||||
// Mapping from top-level loop nest to the set of store ops it contains.
|
||||
DenseMap<ForStmt *, SetVector<OperationStmt *>> forStmtToStoreOps;
|
||||
|
||||
GreedyFusionPolicy(MLFunction *f) { init(f); }
|
||||
GreedyFusion(MemRefDependenceGraph *mdg) : mdg(mdg) {
|
||||
// Initialize worklist with nodes from 'mdg'.
|
||||
worklist.resize(mdg->nodes.size());
|
||||
std::iota(worklist.begin(), worklist.end(), 0);
|
||||
}
|
||||
|
||||
void run() {
|
||||
if (hasIfStmts())
|
||||
return;
|
||||
|
||||
while (!worklist.empty()) {
|
||||
// Pop the position of a loop nest into which fusion will be attempted.
|
||||
unsigned dstPos = worklist.back();
|
||||
unsigned dstId = worklist.back();
|
||||
worklist.pop_back();
|
||||
// Skip if 'dstPos' is not tracked (was fused into another loop nest).
|
||||
if (posToStmtInfo.count(dstPos) == 0)
|
||||
// Skip if this node was removed (fused into another node).
|
||||
if (mdg->nodes.count(dstId) == 0)
|
||||
continue;
|
||||
// Get the top-level ForStmt at 'dstPos'.
|
||||
auto *dstForStmt = getForStmtAtPos(dstPos);
|
||||
// Skip if this ForStmt contains no load ops.
|
||||
if (forStmtToLoadOps.count(dstForStmt) == 0)
|
||||
// Get 'dstNode' into which to attempt fusion.
|
||||
auto *dstNode = mdg->getNode(dstId);
|
||||
// Skip if 'dstNode' is not a loop nest.
|
||||
if (!isa<ForStmt>(dstNode->stmt))
|
||||
continue;
|
||||
|
||||
// Greedy Policy: iterate through load ops in 'dstForStmt', greedily
|
||||
// fusing in src loop nests which have a single store op on the same
|
||||
// memref, until a fixed point is reached where there is nothing left to
|
||||
// fuse.
|
||||
SetVector<OperationStmt *> dstLoadOps = forStmtToLoadOps[dstForStmt];
|
||||
while (!dstLoadOps.empty()) {
|
||||
auto *dstLoadOpStmt = dstLoadOps.pop_back_val();
|
||||
|
||||
auto dstLoadOp = dstLoadOpStmt->cast<LoadOp>();
|
||||
auto *memref = cast<MLValue>(dstLoadOp->getMemRef());
|
||||
// Skip if not single src store / dst load pair on 'memref'.
|
||||
if (memrefToLoadPosSet[memref].size() != 1 ||
|
||||
memrefToStorePosSet[memref].size() != 1)
|
||||
SmallVector<OperationStmt *, 4> loads = dstNode->loads;
|
||||
while (!loads.empty()) {
|
||||
auto *dstLoadOpStmt = loads.pop_back_val();
|
||||
auto *memref =
|
||||
cast<MLValue>(dstLoadOpStmt->cast<LoadOp>()->getMemRef());
|
||||
// Skip 'dstLoadOpStmt' if multiple loads to 'memref' in 'dstNode'.
|
||||
if (dstNode->getLoadOpCount(memref) != 1)
|
||||
continue;
|
||||
unsigned srcPos = *memrefToStorePosSet[memref].begin();
|
||||
if (srcPos >= dstPos)
|
||||
// Skip if no input edges along which to fuse.
|
||||
if (mdg->inEdges.count(dstId) == 0)
|
||||
continue;
|
||||
auto *srcForStmt = getForStmtAtPos(srcPos);
|
||||
// Skip if 'srcForStmt' has more than one store op.
|
||||
if (forStmtToStoreOps[srcForStmt].size() > 1)
|
||||
continue;
|
||||
// Skip if fusion would violated dependences between 'memref' access
|
||||
// for loop nests between 'srcPos' and 'dstPos':
|
||||
// For each src load op: check for store ops in range (srcPos, dstPos).
|
||||
// For each src store op: check for load ops in range (srcPos, dstPos).
|
||||
if (moveWouldViolateDependences(srcPos, dstPos))
|
||||
continue;
|
||||
auto *srcStoreOpStmt = forStmtToStoreOps[srcForStmt].front();
|
||||
// Build fusion candidate out of 'srcStoreOpStmt' and 'dstLoadOpStmt'.
|
||||
FusionCandidate candidate =
|
||||
buildFusionCandidate(srcStoreOpStmt, dstLoadOpStmt);
|
||||
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
|
||||
auto *sliceLoopNest = mlir::insertBackwardComputationSlice(
|
||||
&candidate.srcAccess, &candidate.dstAccess);
|
||||
if (sliceLoopNest != nullptr) {
|
||||
// Remove 'srcPos' mappings from 'state'.
|
||||
moveAccessesAndRemovePos(srcPos, dstPos);
|
||||
// Record all load/store accesses in 'sliceLoopNest' at 'dstPos'.
|
||||
LoopNestStateCollector collector;
|
||||
collector.walkForStmt(sliceLoopNest);
|
||||
// Record mappings for loads and stores from 'collector'.
|
||||
for (auto *opStmt : collector.loadOpStmts) {
|
||||
addLoadOpStmtAt(dstPos, opStmt, dstForStmt);
|
||||
// Add newly fused load ops to 'dstLoadOps' to be considered for
|
||||
// fusion on subsequent iterations.
|
||||
dstLoadOps.insert(opStmt);
|
||||
// Iterate through in edges for 'dstId'.
|
||||
for (auto &srcEdge : mdg->inEdges[dstId]) {
|
||||
// Skip 'srcEdge' if not for 'memref'.
|
||||
if (srcEdge.memref != memref)
|
||||
continue;
|
||||
auto *srcNode = mdg->getNode(srcEdge.id);
|
||||
// Skip if 'srcNode' is not a loop nest.
|
||||
if (!isa<ForStmt>(srcNode->stmt))
|
||||
continue;
|
||||
// Skip if 'srcNode' has more than one store to 'memref'.
|
||||
if (srcNode->getStoreOpCount(memref) != 1)
|
||||
continue;
|
||||
// Skip 'srcNode' if it has out edges on 'memref' other than 'dstId'.
|
||||
if (mdg->getOutEdgeCount(srcNode->id, memref) != 1)
|
||||
continue;
|
||||
// Skip 'srcNode' if it has in dependence edges. NOTE: This is overly
|
||||
// TODO(andydavis) Track dependence type with edges, and just check
|
||||
// for WAW dependence edge here.
|
||||
if (mdg->getInEdgeCount(srcNode->id, memref) != 0)
|
||||
continue;
|
||||
// Skip if 'srcNode' has out edges to other memrefs after 'dstId'.
|
||||
if (mdg->getMinOutEdgeNodeId(srcNode->id) != dstId)
|
||||
continue;
|
||||
// Get unique 'srcNode' store op.
|
||||
auto *srcStoreOpStmt = srcNode->stores.front();
|
||||
// Build fusion candidate out of 'srcStoreOpStmt' and 'dstLoadOpStmt'.
|
||||
FusionCandidate candidate =
|
||||
buildFusionCandidate(srcStoreOpStmt, dstLoadOpStmt);
|
||||
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
|
||||
auto *sliceLoopNest = mlir::insertBackwardComputationSlice(
|
||||
&candidate.srcAccess, &candidate.dstAccess);
|
||||
if (sliceLoopNest != nullptr) {
|
||||
// Remove edges between 'srcNode' and 'dstNode' and remove 'srcNode'
|
||||
mdg->updateEdgesAndRemoveSrcNode(srcNode->id, dstNode->id);
|
||||
// Record all load/store accesses in 'sliceLoopNest' at 'dstPos'.
|
||||
LoopNestStateCollector collector;
|
||||
collector.walkForStmt(sliceLoopNest);
|
||||
mdg->addToNode(dstId, collector.loadOpStmts,
|
||||
collector.storeOpStmts);
|
||||
// Add new load ops to current Node load op list 'loads' to
|
||||
// continue fusing based on new operands.
|
||||
for (auto *loadOpStmt : collector.loadOpStmts)
|
||||
loads.push_back(loadOpStmt);
|
||||
// Promote single iteration loops to single IV value.
|
||||
for (auto *forStmt : collector.forStmts) {
|
||||
promoteIfSingleIteration(forStmt);
|
||||
}
|
||||
// Remove old src loop nest.
|
||||
cast<ForStmt>(srcNode->stmt)->erase();
|
||||
}
|
||||
for (auto *opStmt : collector.storeOpStmts) {
|
||||
addStoreOpStmtAt(dstPos, opStmt, dstForStmt);
|
||||
}
|
||||
for (auto *forStmt : collector.forStmts) {
|
||||
promoteIfSingleIteration(forStmt);
|
||||
}
|
||||
// Remove old src loop nest.
|
||||
srcForStmt->erase();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Walk MLFunction 'f' assigning each top-level statement a position, and
|
||||
// gathering state on load and store ops.
|
||||
void init(MLFunction *f) {
|
||||
unsigned pos = 0;
|
||||
for (auto &stmt : *f) {
|
||||
if (auto *forStmt = dyn_cast<ForStmt>(&stmt)) {
|
||||
// Record all loads and store accesses in 'forStmt' at 'pos'.
|
||||
LoopNestStateCollector collector;
|
||||
collector.walkForStmt(forStmt);
|
||||
// Create StmtInfo for 'forStmt' for top-level loop nests.
|
||||
addStmtInfoAt(pos, forStmt, collector.hasIfStmt);
|
||||
// Record mappings for loads and stores from 'collector'.
|
||||
for (auto *opStmt : collector.loadOpStmts) {
|
||||
addLoadOpStmtAt(pos, opStmt, forStmt);
|
||||
}
|
||||
for (auto *opStmt : collector.storeOpStmts) {
|
||||
addStoreOpStmtAt(pos, opStmt, forStmt);
|
||||
}
|
||||
// Add 'pos' associated with 'forStmt' to worklist.
|
||||
worklist.push_back(pos);
|
||||
}
|
||||
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
|
||||
if (auto loadOp = opStmt->dyn_cast<LoadOp>()) {
|
||||
// Create StmtInfo for top-level load op.
|
||||
addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/false);
|
||||
addLoadOpStmtAt(pos, opStmt, /*containingForStmt=*/nullptr);
|
||||
}
|
||||
if (auto storeOp = opStmt->dyn_cast<StoreOp>()) {
|
||||
// Create StmtInfo for top-level store op.
|
||||
addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/false);
|
||||
addStoreOpStmtAt(pos, opStmt, /*containingForStmt=*/nullptr);
|
||||
}
|
||||
}
|
||||
if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
|
||||
addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/true);
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if fusing loop nest at 'srcPos' into the loop nest at 'dstPos'
|
||||
// would violated any dependences w.r.t other loop nests in that range.
|
||||
bool moveWouldViolateDependences(unsigned srcPos, unsigned dstPos) {
|
||||
// Lookup src ForStmt at 'srcPos'.
|
||||
auto *srcForStmt = getForStmtAtPos(srcPos);
|
||||
// For each src load op: check for store ops in range (srcPos, dstPos).
|
||||
if (forStmtToLoadOps.count(srcForStmt) > 0) {
|
||||
for (auto *opStmt : forStmtToLoadOps[srcForStmt]) {
|
||||
auto loadOp = opStmt->cast<LoadOp>();
|
||||
auto *memref = cast<MLValue>(loadOp->getMemRef());
|
||||
for (unsigned pos = srcPos + 1; pos < dstPos; ++pos) {
|
||||
if (memrefToStorePosSet.count(memref) > 0 &&
|
||||
memrefToStorePosSet[memref].count(pos) > 0)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// For each src store op: check for load ops in range (srcPos, dstPos).
|
||||
if (forStmtToStoreOps.count(srcForStmt) > 0) {
|
||||
for (auto *opStmt : forStmtToStoreOps[srcForStmt]) {
|
||||
auto storeOp = opStmt->cast<StoreOp>();
|
||||
auto *memref = cast<MLValue>(storeOp->getMemRef());
|
||||
for (unsigned pos = srcPos + 1; pos < dstPos; ++pos) {
|
||||
if (memrefToLoadPosSet.count(memref) > 0 &&
|
||||
memrefToLoadPosSet[memref].count(pos) > 0)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Update mappings of memref loads and stores at 'srcPos' to 'dstPos'.
|
||||
void moveAccessesAndRemovePos(unsigned srcPos, unsigned dstPos) {
|
||||
// Lookup ForStmt at 'srcPos'.
|
||||
auto *srcForStmt = getForStmtAtPos(srcPos);
|
||||
// Move load op accesses from src to dst.
|
||||
if (forStmtToLoadOps.count(srcForStmt) > 0) {
|
||||
for (auto *opStmt : forStmtToLoadOps[srcForStmt]) {
|
||||
auto loadOp = opStmt->cast<LoadOp>();
|
||||
auto *memref = cast<MLValue>(loadOp->getMemRef());
|
||||
// Remove 'memref' to 'srcPos' mapping.
|
||||
memrefToLoadPosSet[memref].erase(srcPos);
|
||||
}
|
||||
}
|
||||
// Move store op accesses from src to dst.
|
||||
if (forStmtToStoreOps.count(srcForStmt) > 0) {
|
||||
for (auto *opStmt : forStmtToStoreOps[srcForStmt]) {
|
||||
auto storeOp = opStmt->cast<StoreOp>();
|
||||
auto *memref = cast<MLValue>(storeOp->getMemRef());
|
||||
// Remove 'memref' to 'srcPos' mapping.
|
||||
memrefToStorePosSet[memref].erase(srcPos);
|
||||
}
|
||||
}
|
||||
// Remove old state.
|
||||
forStmtToLoadOps.erase(srcForStmt);
|
||||
forStmtToStoreOps.erase(srcForStmt);
|
||||
posToStmtInfo.erase(srcPos);
|
||||
}
|
||||
|
||||
ForStmt *getForStmtAtPos(unsigned pos) {
|
||||
assert(posToStmtInfo.count(pos) > 0);
|
||||
assert(isa<ForStmt>(posToStmtInfo[pos].stmt));
|
||||
return cast<ForStmt>(posToStmtInfo[pos].stmt);
|
||||
}
|
||||
|
||||
void addStmtInfoAt(unsigned pos, Statement *stmt, bool hasIfStmt) {
|
||||
StmtInfo stmtInfo;
|
||||
stmtInfo.stmt = stmt;
|
||||
stmtInfo.isOrContainsIfStmt = hasIfStmt;
|
||||
// Add mapping from 'pos' to StmtInfo for 'forStmt'.
|
||||
posToStmtInfo[pos] = stmtInfo;
|
||||
}
|
||||
|
||||
// Adds the following mappings:
|
||||
// *) 'containingForStmt' to load 'opStmt'
|
||||
// *) 'memref' of load 'opStmt' to 'topLevelPos'.
|
||||
void addLoadOpStmtAt(unsigned topLevelPos, OperationStmt *opStmt,
|
||||
ForStmt *containingForStmt) {
|
||||
if (containingForStmt != nullptr) {
|
||||
// Add mapping from 'containingForStmt' to 'opStmt' for load op.
|
||||
forStmtToLoadOps[containingForStmt].insert(opStmt);
|
||||
}
|
||||
auto loadOp = opStmt->cast<LoadOp>();
|
||||
auto *memref = cast<MLValue>(loadOp->getMemRef());
|
||||
// Add mapping from 'memref' to 'topLevelPos' for load.
|
||||
memrefToLoadPosSet[memref].insert(topLevelPos);
|
||||
}
|
||||
|
||||
// Adds the following mappings:
|
||||
// *) 'containingForStmt' to store 'opStmt'
|
||||
// *) 'memref' of store 'opStmt' to 'topLevelPos'.
|
||||
void addStoreOpStmtAt(unsigned topLevelPos, OperationStmt *opStmt,
|
||||
ForStmt *containingForStmt) {
|
||||
if (containingForStmt != nullptr) {
|
||||
// Add mapping from 'forStmt' to 'opStmt' for store op.
|
||||
forStmtToStoreOps[containingForStmt].insert(opStmt);
|
||||
}
|
||||
auto storeOp = opStmt->cast<StoreOp>();
|
||||
auto *memref = cast<MLValue>(storeOp->getMemRef());
|
||||
// Add mapping from 'memref' to 'topLevelPos' for store.
|
||||
memrefToStorePosSet[memref].insert(topLevelPos);
|
||||
}
|
||||
|
||||
bool hasIfStmts() {
|
||||
for (auto &pair : posToStmtInfo)
|
||||
if (pair.second.isOrContainsIfStmt)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
PassResult LoopFusion::runOnMLFunction(MLFunction *f) {
|
||||
GreedyFusionPolicy(f).run();
|
||||
MemRefDependenceGraph g;
|
||||
if (g.init(f))
|
||||
GreedyFusion(&g).run();
|
||||
return success();
|
||||
}
|
||||
|
||||
|
|
|
@ -35,20 +35,17 @@ mlfunc @should_fuse_raw_dep_for_locality() {
|
|||
|
||||
// CHECK: [[MAP0:#map[0-9]+]] = (d0) -> (d0)
|
||||
|
||||
// TODO(andydavis) Turn this into a proper reduction when constraints on
|
||||
// the current greedy fusion policy are relaxed.
|
||||
// CHECK-LABEL: mlfunc @should_fuse_reduction_to_pointwise() {
|
||||
mlfunc @should_fuse_reduction_to_pointwise() {
|
||||
%a = alloc() : memref<10x10xf32>
|
||||
%b = alloc() : memref<10xf32>
|
||||
%c = alloc() : memref<10xf32>
|
||||
%d = alloc() : memref<10xf32>
|
||||
|
||||
%cf7 = constant 7.0 : f32
|
||||
|
||||
for %i0 = 0 to 10 {
|
||||
for %i1 = 0 to 10 {
|
||||
%v0 = load %d[%i0] : memref<10xf32>
|
||||
%v0 = load %b[%i0] : memref<10xf32>
|
||||
%v1 = load %a[%i0, %i1] : memref<10x10xf32>
|
||||
%v3 = addf %v0, %v1 : f32
|
||||
store %v3, %b[%i0] : memref<10xf32>
|
||||
|
@ -62,15 +59,15 @@ mlfunc @should_fuse_reduction_to_pointwise() {
|
|||
// Should fuse in entire inner loop on %i1 from source loop nest, as %i1
|
||||
// is not used in the access function of the store/load on %b.
|
||||
// CHECK: for %i0 = 0 to 10 {
|
||||
// CHECK-NEXT: %4 = affine_apply [[MAP0]](%i0)
|
||||
// CHECK-NEXT: %3 = affine_apply [[MAP0]](%i0)
|
||||
// CHECK-NEXT: for %i1 = 0 to 10 {
|
||||
// CHECK-NEXT: %5 = load %3[%4] : memref<10xf32>
|
||||
// CHECK-NEXT: %6 = load %0[%4, %i1] : memref<10x10xf32>
|
||||
// CHECK-NEXT: %7 = addf %5, %6 : f32
|
||||
// CHECK-NEXT: store %7, %1[%4] : memref<10xf32>
|
||||
// CHECK-NEXT: }
|
||||
// CHECK-NEXT: %8 = load %1[%i0] : memref<10xf32>
|
||||
// CHECK-NEXT: store %8, %2[%i0] : memref<10xf32>
|
||||
// CHECK-NEXT: %4 = load %1[%3] : memref<10xf32>
|
||||
// CHECK-NEXT: %5 = load %0[%3, %i1] : memref<10x10xf32>
|
||||
// CHECK-NEXT: %6 = addf %4, %5 : f32
|
||||
// CHECK-NEXT: store %6, %1[%3] : memref<10xf32>
|
||||
// CHECK-NEXT: }
|
||||
// CHECK-NEXT: %7 = load %1[%i0] : memref<10xf32>
|
||||
// CHECK-NEXT: store %7, %2[%i0] : memref<10xf32>
|
||||
// CHECK-NEXT: }
|
||||
// CHECK-NEXT: return
|
||||
return
|
||||
|
|
Loading…
Reference in New Issue