forked from OSchip/llvm-project
Break scheduling infrastructure out of TargetMachine.cpp into SchedInfo.cpp
llvm-svn: 569
This commit is contained in:
parent
374e3563c1
commit
6875e9cc97
|
@ -0,0 +1,175 @@
|
|||
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
|
||||
//
|
||||
// This file implements the generic part of a Scheduler description for a
|
||||
// target. This functionality is defined in the llvm/Target/SchedInfo.h file.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Target/SchedInfo.h"
|
||||
|
||||
// External object describing the machine instructions
|
||||
// Initialized only when the TargetMachine class is created
|
||||
// and reset when that class is destroyed.
|
||||
//
|
||||
const MachineInstrDescriptor* TargetInstrDescriptors = 0;
|
||||
|
||||
resourceId_t MachineResource::nextId = 0;
|
||||
|
||||
// Check if fromRVec and toRVec have *any* common entries.
|
||||
// Assume the vectors are sorted in increasing order.
|
||||
// Algorithm copied from function set_intersection() for sorted ranges
|
||||
// (stl_algo.h).
|
||||
//
|
||||
inline static bool RUConflict(const vector<resourceId_t>& fromRVec,
|
||||
const vector<resourceId_t>& toRVec) {
|
||||
|
||||
unsigned fN = fromRVec.size(), tN = toRVec.size();
|
||||
unsigned fi = 0, ti = 0;
|
||||
|
||||
while (fi < fN && ti < tN) {
|
||||
if (fromRVec[fi] < toRVec[ti])
|
||||
++fi;
|
||||
else if (toRVec[ti] < fromRVec[fi])
|
||||
++ti;
|
||||
else
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
static cycles_t ComputeMinGap(const InstrRUsage &fromRU,
|
||||
const InstrRUsage &toRU) {
|
||||
cycles_t minGap = 0;
|
||||
|
||||
if (fromRU.numBubbles > 0)
|
||||
minGap = fromRU.numBubbles;
|
||||
|
||||
if (minGap < fromRU.numCycles) {
|
||||
// only need to check from cycle `minGap' onwards
|
||||
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) {
|
||||
// check if instr. #2 can start executing `gap' cycles after #1
|
||||
// by checking for resource conflicts in each overlapping cycle
|
||||
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
|
||||
for (cycles_t c = 0; c <= numOverlap-1; c++)
|
||||
if (RUConflict(fromRU.resourcesByCycle[gap + c],
|
||||
toRU.resourcesByCycle[c])) {
|
||||
// conflict found so minGap must be more than `gap'
|
||||
minGap = gap+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return minGap;
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// class MachineSchedInfo
|
||||
// Interface to machine description for instruction scheduling
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
MachineSchedInfo::MachineSchedInfo(int NumSchedClasses,
|
||||
const MachineInstrInfo* Mii,
|
||||
const InstrClassRUsage* ClassRUsages,
|
||||
const InstrRUsageDelta* UsageDeltas,
|
||||
const InstrIssueDelta* IssueDeltas,
|
||||
unsigned int NumUsageDeltas,
|
||||
unsigned int NumIssueDeltas)
|
||||
: numSchedClasses(NumSchedClasses), mii(Mii),
|
||||
classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
|
||||
issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
|
||||
numIssueDeltas(NumIssueDeltas) {
|
||||
}
|
||||
|
||||
void MachineSchedInfo::initializeResources() {
|
||||
assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
|
||||
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
|
||||
|
||||
// First, compute common resource usage info for each class because
|
||||
// most instructions will probably behave the same as their class.
|
||||
// Cannot allocate a vector of InstrRUsage so new each one.
|
||||
//
|
||||
vector<InstrRUsage> instrRUForClasses;
|
||||
instrRUForClasses.resize(numSchedClasses);
|
||||
for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
|
||||
// instrRUForClasses.push_back(new InstrRUsage);
|
||||
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
|
||||
instrRUForClasses[sc] = classRUsages[sc];
|
||||
}
|
||||
|
||||
computeInstrResources(instrRUForClasses);
|
||||
computeIssueGaps(instrRUForClasses);
|
||||
}
|
||||
|
||||
|
||||
void MachineSchedInfo::computeInstrResources(
|
||||
const vector<InstrRUsage> &instrRUForClasses) {
|
||||
int numOpCodes = mii->getNumRealOpCodes();
|
||||
instrRUsages.resize(numOpCodes);
|
||||
|
||||
// First get the resource usage information from the class resource usages.
|
||||
for (MachineOpCode op = 0; op < numOpCodes; ++op) {
|
||||
InstrSchedClass sc = getSchedClass(op);
|
||||
assert(sc >= 0 && sc < numSchedClasses);
|
||||
instrRUsages[op] = instrRUForClasses[sc];
|
||||
}
|
||||
|
||||
// Now, modify the resource usages as specified in the deltas.
|
||||
for (unsigned i = 0; i < numUsageDeltas; ++i) {
|
||||
MachineOpCode op = usageDeltas[i].opCode;
|
||||
assert(op < numOpCodes);
|
||||
instrRUsages[op].addUsageDelta(usageDeltas[i]);
|
||||
}
|
||||
|
||||
// Then modify the issue restrictions as specified in the deltas.
|
||||
for (unsigned i = 0; i < numIssueDeltas; ++i) {
|
||||
MachineOpCode op = issueDeltas[i].opCode;
|
||||
assert(op < numOpCodes);
|
||||
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MachineSchedInfo::computeIssueGaps(
|
||||
const vector<InstrRUsage> &instrRUForClasses) {
|
||||
int numOpCodes = mii->getNumRealOpCodes();
|
||||
instrRUsages.resize(numOpCodes);
|
||||
|
||||
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
|
||||
&& "numOpCodes invalid for implementation of class OpCodePair!");
|
||||
|
||||
// First, compute issue gaps between pairs of classes based on common
|
||||
// resources usages for each class, because most instruction pairs will
|
||||
// usually behave the same as their class.
|
||||
//
|
||||
int classPairGaps[numSchedClasses][numSchedClasses];
|
||||
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
|
||||
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) {
|
||||
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
|
||||
instrRUForClasses[toSC]);
|
||||
classPairGaps[fromSC][toSC] = classPairGap;
|
||||
}
|
||||
|
||||
// Now, for each pair of instructions, use the class pair gap if both
|
||||
// instructions have identical resource usage as their respective classes.
|
||||
// If not, recompute the gap for the pair from scratch.
|
||||
|
||||
longestIssueConflict = 0;
|
||||
|
||||
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
|
||||
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) {
|
||||
int instrPairGap =
|
||||
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
|
||||
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
|
||||
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
|
||||
|
||||
if (instrPairGap > 0) {
|
||||
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
|
||||
conflictLists[fromOp].push_back(toOp);
|
||||
longestIssueConflict = max(longestIssueConflict, instrPairGap);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1,27 +1,13 @@
|
|||
//===-- TargetMachine.cpp - General Target Information ---------------------==//
|
||||
//
|
||||
// This file describes the general parts of a Target machine.
|
||||
// This file also implements the InstInfo interface as well...
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Target/SchedInfo.h"
|
||||
#include "llvm/Target/Machine.h"
|
||||
#include "llvm/Target/InstInfo.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
|
||||
// External object describing the machine instructions
|
||||
// Initialized only when the TargetMachine class is created
|
||||
// and reset when that class is destroyed.
|
||||
//
|
||||
const MachineInstrDescriptor* TargetInstrDescriptors = NULL;
|
||||
|
||||
resourceId_t MachineResource::nextId = 0;
|
||||
|
||||
static cycles_t ComputeMinGap (const InstrRUsage& fromRU,
|
||||
const InstrRUsage& toRU);
|
||||
|
||||
static bool RUConflict (const vector<resourceId_t>& fromRVec,
|
||||
const vector<resourceId_t>& fromRVec);
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// class TargetMachine
|
||||
//
|
||||
|
@ -30,7 +16,6 @@ static bool RUConflict (const vector<resourceId_t>& fromRVec,
|
|||
//
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
|
||||
// function TargetMachine::findOptimalStorageSize
|
||||
//
|
||||
// Purpose:
|
||||
|
@ -70,9 +55,7 @@ MachineInstrInfo::MachineInstrInfo(const MachineInstrDescriptor* _desc,
|
|||
}
|
||||
|
||||
|
||||
/*dtor*/
|
||||
MachineInstrInfo::~MachineInstrInfo()
|
||||
{
|
||||
MachineInstrInfo::~MachineInstrInfo() {
|
||||
TargetInstrDescriptors = NULL; // reset global variable
|
||||
}
|
||||
|
||||
|
@ -83,198 +66,13 @@ MachineInstrInfo::constantFitsInImmedField(MachineOpCode opCode,
|
|||
{
|
||||
// First, check if opCode has an immed field.
|
||||
bool isSignExtended;
|
||||
uint64_t maxImmedValue = this->maxImmedConstant(opCode, isSignExtended);
|
||||
if (maxImmedValue != 0)
|
||||
{
|
||||
// Now check if the constant fits
|
||||
if (intValue <= (int64_t) maxImmedValue &&
|
||||
intValue >= -((int64_t) maxImmedValue+1))
|
||||
return true;
|
||||
}
|
||||
uint64_t maxImmedValue = maxImmedConstant(opCode, isSignExtended);
|
||||
if (maxImmedValue != 0) {
|
||||
// Now check if the constant fits
|
||||
if (intValue <= (int64_t) maxImmedValue &&
|
||||
intValue >= -((int64_t) maxImmedValue+1))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// class MachineSchedInfo
|
||||
// Interface to machine description for instruction scheduling
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
/*ctor*/
|
||||
MachineSchedInfo::MachineSchedInfo(int _numSchedClasses,
|
||||
const MachineInstrInfo* _mii,
|
||||
const InstrClassRUsage* _classRUsages,
|
||||
const InstrRUsageDelta* _usageDeltas,
|
||||
const InstrIssueDelta* _issueDeltas,
|
||||
unsigned int _numUsageDeltas,
|
||||
unsigned int _numIssueDeltas)
|
||||
: numSchedClasses(_numSchedClasses),
|
||||
mii(_mii),
|
||||
classRUsages(_classRUsages),
|
||||
usageDeltas(_usageDeltas),
|
||||
issueDeltas(_issueDeltas),
|
||||
numUsageDeltas(_numUsageDeltas),
|
||||
numIssueDeltas(_numIssueDeltas)
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
MachineSchedInfo::initializeResources()
|
||||
{
|
||||
assert(MAX_NUM_SLOTS >= (int) getMaxNumIssueTotal()
|
||||
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
|
||||
|
||||
// First, compute common resource usage info for each class because
|
||||
// most instructions will probably behave the same as their class.
|
||||
// Cannot allocate a vector of InstrRUsage so new each one.
|
||||
//
|
||||
vector<InstrRUsage> instrRUForClasses;
|
||||
instrRUForClasses.resize(numSchedClasses);
|
||||
for (InstrSchedClass sc=0; sc < numSchedClasses; sc++)
|
||||
{
|
||||
// instrRUForClasses.push_back(new InstrRUsage);
|
||||
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
|
||||
instrRUForClasses[sc] = classRUsages[sc];
|
||||
}
|
||||
|
||||
computeInstrResources(instrRUForClasses);
|
||||
|
||||
computeIssueGaps(instrRUForClasses);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
MachineSchedInfo::computeInstrResources(const vector<InstrRUsage>& instrRUForClasses)
|
||||
{
|
||||
int numOpCodes = mii->getNumRealOpCodes();
|
||||
instrRUsages.resize(numOpCodes);
|
||||
|
||||
// First get the resource usage information from the class resource usages.
|
||||
for (MachineOpCode op=0; op < numOpCodes; op++)
|
||||
{
|
||||
InstrSchedClass sc = getSchedClass(op);
|
||||
assert(sc >= 0 && sc < numSchedClasses);
|
||||
instrRUsages[op] = instrRUForClasses[sc];
|
||||
}
|
||||
|
||||
// Now, modify the resource usages as specified in the deltas.
|
||||
for (unsigned i=0; i < numUsageDeltas; i++)
|
||||
{
|
||||
MachineOpCode op = usageDeltas[i].opCode;
|
||||
assert(op < numOpCodes);
|
||||
instrRUsages[op].addUsageDelta(usageDeltas[i]);
|
||||
}
|
||||
|
||||
// Then modify the issue restrictions as specified in the deltas.
|
||||
for (unsigned i=0; i < numIssueDeltas; i++)
|
||||
{
|
||||
MachineOpCode op = issueDeltas[i].opCode;
|
||||
assert(op < numOpCodes);
|
||||
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
MachineSchedInfo::computeIssueGaps(const vector<InstrRUsage>& instrRUForClasses)
|
||||
{
|
||||
int numOpCodes = mii->getNumRealOpCodes();
|
||||
instrRUsages.resize(numOpCodes);
|
||||
|
||||
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
|
||||
&& "numOpCodes invalid for implementation of class OpCodePair!");
|
||||
|
||||
// First, compute issue gaps between pairs of classes based on common
|
||||
// resources usages for each class, because most instruction pairs will
|
||||
// usually behave the same as their class.
|
||||
//
|
||||
int classPairGaps[numSchedClasses][numSchedClasses];
|
||||
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
|
||||
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++)
|
||||
{
|
||||
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
|
||||
instrRUForClasses[toSC]);
|
||||
classPairGaps[fromSC][toSC] = classPairGap;
|
||||
}
|
||||
|
||||
// Now, for each pair of instructions, use the class pair gap if both
|
||||
// instructions have identical resource usage as their respective classes.
|
||||
// If not, recompute the gap for the pair from scratch.
|
||||
|
||||
longestIssueConflict = 0;
|
||||
|
||||
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
|
||||
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++)
|
||||
{
|
||||
int instrPairGap =
|
||||
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
|
||||
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
|
||||
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
|
||||
|
||||
if (instrPairGap > 0)
|
||||
{
|
||||
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
|
||||
conflictLists[fromOp].push_back(toOp);
|
||||
longestIssueConflict = max(longestIssueConflict, instrPairGap);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Check if fromRVec and toRVec have *any* common entries.
|
||||
// Assume the vectors are sorted in increasing order.
|
||||
// Algorithm copied from function set_intersection() for sorted ranges (stl_algo.h).
|
||||
inline static bool
|
||||
RUConflict(const vector<resourceId_t>& fromRVec,
|
||||
const vector<resourceId_t>& toRVec)
|
||||
{
|
||||
bool commonElementFound = false;
|
||||
|
||||
unsigned fN = fromRVec.size(), tN = toRVec.size();
|
||||
unsigned fi = 0, ti = 0;
|
||||
while (fi < fN && ti < tN)
|
||||
if (fromRVec[fi] < toRVec[ti])
|
||||
++fi;
|
||||
else if (toRVec[ti] < fromRVec[fi])
|
||||
++ti;
|
||||
else
|
||||
{
|
||||
commonElementFound = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return commonElementFound;
|
||||
}
|
||||
|
||||
|
||||
static cycles_t
|
||||
ComputeMinGap(const InstrRUsage& fromRU, const InstrRUsage& toRU)
|
||||
{
|
||||
cycles_t minGap = 0;
|
||||
|
||||
if (fromRU.numBubbles > 0)
|
||||
minGap = fromRU.numBubbles;
|
||||
|
||||
if (minGap < fromRU.numCycles)
|
||||
{
|
||||
// only need to check from cycle `minGap' onwards
|
||||
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++)
|
||||
{
|
||||
// check if instr. #2 can start executing `gap' cycles after #1
|
||||
// by checking for resource conflicts in each overlapping cycle
|
||||
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
|
||||
for (cycles_t c = 0; c <= numOverlap-1; c++)
|
||||
if (RUConflict(fromRU.resourcesByCycle[gap + c],
|
||||
toRU.resourcesByCycle[c]))
|
||||
{// conflict found so minGap must be more than `gap'
|
||||
minGap = gap+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return minGap;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue