[MSP430] Align the _Complex ABI with current msp430-gcc

Assembler output is checked against msp430-gcc 9.2.0.50 from TI.

Reviewed By: asl

Differential Revision: https://reviews.llvm.org/D82646
This commit is contained in:
Anatoly Trosinenko 2020-07-09 17:25:32 +03:00
parent 28cd3cbc12
commit 67422e4294
2 changed files with 266 additions and 1 deletions

View File

@ -7475,10 +7475,49 @@ ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
namespace {
class MSP430ABIInfo : public DefaultABIInfo {
static ABIArgInfo complexArgInfo() {
ABIArgInfo Info = ABIArgInfo::getDirect();
Info.setCanBeFlattened(false);
return Info;
}
public:
MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
ABIArgInfo classifyReturnType(QualType RetTy) const {
if (RetTy->isAnyComplexType())
return complexArgInfo();
return DefaultABIInfo::classifyReturnType(RetTy);
}
ABIArgInfo classifyArgumentType(QualType RetTy) const {
if (RetTy->isAnyComplexType())
return complexArgInfo();
return DefaultABIInfo::classifyArgumentType(RetTy);
}
// Just copy the original implementations because
// DefaultABIInfo::classify{Return,Argument}Type() are not virtual
void computeInfo(CGFunctionInfo &FI) const override {
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (auto &I : FI.arguments())
I.info = classifyArgumentType(I.type);
}
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty) const override {
return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
}
};
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
public:
MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
: TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
};

View File

@ -0,0 +1,226 @@
// REQUIRES: msp430-registered-target
// RUN: %clang -target msp430 -Os -S -o- %s | FileCheck %s
volatile int N;
volatile int i16_1, i16_2;
volatile long i32_1, i32_2;
volatile long long i64_1, i64_2;
volatile float f1, f2;
volatile double d1, d2;
_Static_assert(sizeof(int) == 2, "Assumption failed");
_Static_assert(sizeof(long) == 4, "Assumption failed");
_Static_assert(sizeof(long long) == 8, "Assumption failed");
void complex_i16_arg_first(int _Complex x, int n) {
// CHECK-LABEL: @complex_i16_arg_first
i16_1 = __real__ x;
// CHECK-DAG: mov r12, &i16_1
i16_2 = __imag__ x;
// CHECK-DAG: mov r13, &i16_2
N = n;
// CHECK-DAG: mov r14, &N
// CHECK: ret
}
void complex_i16_arg_second(int n, int _Complex x) {
// CHECK-LABEL: @complex_i16_arg_second
N = n;
// CHECK-DAG: mov r12, &N
i16_1 = __real__ x;
// CHECK-DAG: mov r13, &i16_1
i16_2 = __imag__ x;
// CHECK-DAG: mov r14, &i16_2
// CHECK: ret
}
void complex_i32_arg_first(long _Complex x, int n) {
// CHECK-LABEL: @complex_i32_arg_first
i32_1 = __real__ x;
// CHECK-DAG: mov r12, &i32_1
// CHECK-DAG: mov r13, &i32_1+2
i32_2 = __imag__ x;
// CHECK-DAG: mov r14, &i32_2
// CHECK-DAG: mov r15, &i32_2+2
N = n;
// CHECK-DAG: mov 2(r1), &N
// CHECK: ret
}
void complex_i32_arg_second(int n, long _Complex x) {
// CHECK-LABEL: @complex_i32_arg_second
N = n;
// CHECK-DAG: mov r12, &N
i32_1 = __real__ x;
// CHECK-DAG: mov 2(r1), &i32_1
// CHECK-DAG: mov 4(r1), &i32_1+2
i32_2 = __imag__ x;
// CHECK-DAG: mov 6(r1), &i32_2
// CHECK-DAG: mov 8(r1), &i32_2+2
// CHECK: ret
}
void complex_i64_arg_first(long long _Complex x, int n) {
// CHECK-LABEL: @complex_i64_arg_first
i64_1 = __real__ x;
// CHECK-DAG: mov 2(r1), &i64_1
// CHECK-DAG: mov 4(r1), &i64_1+2
// CHECK-DAG: mov 6(r1), &i64_1+4
// CHECK-DAG: mov 8(r1), &i64_1+6
i64_2 = __imag__ x;
// CHECK-DAG: mov 10(r1), &i64_2
// CHECK-DAG: mov 12(r1), &i64_2+2
// CHECK-DAG: mov 14(r1), &i64_2+4
// CHECK-DAG: mov 16(r1), &i64_2+6
N = n;
// CHECK-DAG: mov r12, &N
// CHECK: ret
}
void complex_i64_arg_second(int n, long long _Complex x) {
// CHECK-LABEL: @complex_i64_arg_second
N = n;
// CHECK-DAG: mov r12, &N
i64_1 = __real__ x;
// CHECK-DAG: mov 2(r1), &i64_1
// CHECK-DAG: mov 4(r1), &i64_1+2
// CHECK-DAG: mov 6(r1), &i64_1+4
// CHECK-DAG: mov 8(r1), &i64_1+6
i64_2 = __imag__ x;
// CHECK-DAG: mov 10(r1), &i64_2
// CHECK-DAG: mov 12(r1), &i64_2+2
// CHECK-DAG: mov 14(r1), &i64_2+4
// CHECK-DAG: mov 16(r1), &i64_2+6
// CHECK: ret
}
void complex_float_arg_first(float _Complex x, int n) {
// CHECK-LABEL: @complex_float_arg_first
f1 = __real__ x;
// CHECK-DAG: mov r12, &f1
// CHECK-DAG: mov r13, &f1+2
f2 = __imag__ x;
// CHECK-DAG: mov r14, &f2
// CHECK-DAG: mov r15, &f2+2
N = n;
// CHECK-DAG: mov 2(r1), &N
// CHECK: ret
}
void complex_float_arg_second(int n, float _Complex x) {
// CHECK-LABEL: @complex_float_arg_second
N = n;
// CHECK-DAG: mov r12, &N
f1 = __real__ x;
// CHECK-DAG: mov 2(r1), &f1
// CHECK-DAG: mov 4(r1), &f1+2
f2 = __imag__ x;
// CHECK-DAG: mov 6(r1), &f2
// CHECK-DAG: mov 8(r1), &f2+2
// CHECK: ret
}
void complex_double_arg_first(double _Complex x, int n) {
// CHECK-LABEL: @complex_double_arg_first
d1 = __real__ x;
// CHECK-DAG: mov 2(r1), &d1
// CHECK-DAG: mov 4(r1), &d1+2
// CHECK-DAG: mov 6(r1), &d1+4
// CHECK-DAG: mov 8(r1), &d1+6
d2 = __imag__ x;
// CHECK-DAG: mov 10(r1), &d2
// CHECK-DAG: mov 12(r1), &d2+2
// CHECK-DAG: mov 14(r1), &d2+4
// CHECK-DAG: mov 16(r1), &d2+6
N = n;
// CHECK-DAG: mov r12, &N
// CHECK: ret
}
void complex_double_arg_second(int n, double _Complex x) {
// CHECK-LABEL: @complex_double_arg_second
d1 = __real__ x;
// CHECK-DAG: mov 2(r1), &d1
// CHECK-DAG: mov 4(r1), &d1+2
// CHECK-DAG: mov 6(r1), &d1+4
// CHECK-DAG: mov 8(r1), &d1+6
d2 = __imag__ x;
// CHECK-DAG: mov 10(r1), &d2
// CHECK-DAG: mov 12(r1), &d2+2
// CHECK-DAG: mov 14(r1), &d2+4
// CHECK-DAG: mov 16(r1), &d2+6
N = n;
// CHECK-DAG: mov r12, &N
// CHECK: ret
}
int _Complex complex_i16_res(void) {
// CHECK-LABEL: @complex_i16_res
int _Complex res;
__real__ res = 0x1122;
// CHECK-DAG: mov #4386, r12
__imag__ res = 0x3344;
// CHECK-DAG: mov #13124, r13
return res;
// CHECK: ret
}
long _Complex complex_i32_res(void) {
// CHECK-LABEL: @complex_i32_res
long _Complex res;
__real__ res = 0x11223344;
// CHECK-DAG: mov #13124, r12
// CHECK-DAG: mov #4386, r13
__imag__ res = 0x55667788;
// CHECK-DAG: mov #30600, r14
// CHECK-DAG: mov #21862, r15
return res;
// CHECK: ret
}
long long _Complex complex_i64_res(void) {
// CHECK-LABEL: @complex_i64_res
long long _Complex res;
__real__ res = 0x1122334455667788;
// CHECK-DAG: mov #30600, 0(r12)
// CHECK-DAG: mov #21862, 2(r12)
// CHECK-DAG: mov #13124, 4(r12)
// CHECK-DAG: mov #4386, 6(r12)
__imag__ res = 0x99aabbccddeeff00;
// CHECK-DAG: mov #-256, 8(r12)
// CHECK-DAG: mov #-8722, 10(r12)
// CHECK-DAG: mov #-17460, 12(r12)
// CHECK-DAG: mov #-26198, 14(r12)
return res;
// CHECK: ret
}
float _Complex complex_float_res(void) {
// CHECK-LABEL: @complex_float_res
float _Complex res;
__real__ res = 1;
// CHECK-DAG: clr r12
// CHECK-DAG: mov #16256, r13
__imag__ res = -1;
// CHECK-DAG: clr r14
// CHECK-DAG: mov #-16512, r15
return res;
// CHECK: ret
}
double _Complex complex_double_res(void) {
// CHECK-LABEL: @complex_double_res
double _Complex res;
__real__ res = 1;
// CHECK-DAG: clr 0(r12)
// CHECK-DAG: clr 2(r12)
// CHECK-DAG: clr 4(r12)
// CHECK-DAG: mov #16368, 6(r12)
__imag__ res = -1;
// CHECK-DAG: clr 8(r12)
// CHECK-DAG: clr 10(r12)
// CHECK-DAG: clr 12(r12)
// CHECK-DAG: mov #-16400, 14(r12)
return res;
// CHECK: ret
}