diff --git a/mlir/lib/Conversion/VectorToGPU/NvGpuSupport.cpp b/mlir/lib/Conversion/VectorToGPU/NvGpuSupport.cpp index a0d16e537b5b..af14aaa1deee 100644 --- a/mlir/lib/Conversion/VectorToGPU/NvGpuSupport.cpp +++ b/mlir/lib/Conversion/VectorToGPU/NvGpuSupport.cpp @@ -124,6 +124,14 @@ getMmaSyncRegisterType(const WarpMatrixInfo &type) { LLVM::getFixedVectorType(IntegerType::get(ctx, 8), 4), 4, 32, inferNumRegistersPerMatrixFragment(type)}; } + + // int4 operand + if (elType.isInteger(4)) { + return FragmentElementInfo{ + LLVM::getFixedVectorType(IntegerType::get(ctx, 4), 8), 8, 32, + inferNumRegistersPerMatrixFragment(type)}; + } + // Integer 32bit acc operands if (elType.isInteger(32)) { return FragmentElementInfo{ @@ -212,7 +220,7 @@ FailureOr getLdMatrixParams(const WarpMatrixInfo &type, params.contiguousDimType = transpose ? IteratorType::Parallel : IteratorType::Reduction; - if (params.targetLayout == NVVM::MMALayout::row) { + if (params.contiguousDimType == IteratorType::Reduction) { params.numTiles = (shape[0] / kNumRowsPerTile) * ((shape[1] * elType.getIntOrFloatBitWidth()) / 128); } else { diff --git a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp index 74e81e961455..4e7cf6b31cd0 100644 --- a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp +++ b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp @@ -524,11 +524,6 @@ createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder, return failure(); } - NVVM::MMALayout targetLayout = - warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::B - ? NVVM::MMALayout::col - : NVVM::MMALayout::row; - Value laneId = builder.create(loc); SmallVector elements; @@ -543,8 +538,9 @@ createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder, bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity(); - // Vectorized loads. - if (!isTransposeLoad && targetLayout == NVVM::MMALayout::row) { + // If we are not transposing, then we can use vectorized loads. Otherwise, we + // must load each element individually. + if (!isTransposeLoad) { if (!loadedElType.isa()) { loadedElType = VectorType::get({1}, loadedElType); } @@ -566,11 +562,10 @@ createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder, result = builder.create(loc, el, result, builder.getI64ArrayAttr(i)); } - } else if (isTransposeLoad && targetLayout == NVVM::MMALayout::col) { + } else { if (auto vecType = loadedElType.dyn_cast()) { loadedElType = vecType.getElementType(); } - // Load each element individually. for (int i = 0; i < vectorType.getShape()[0]; i++) { for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1]; innerIdx++) { @@ -592,8 +587,6 @@ createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder, op.getLoc(), el, result, builder.getI64ArrayAttr({i, innerIdx})); } } - } else { - return failure(); } valueMapping[op.getResult()] = result; diff --git a/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops-mma-sync.mlir b/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops-mma-sync.mlir index 479533d1fa41..42dc06c937d4 100644 --- a/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops-mma-sync.mlir +++ b/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops-mma-sync.mlir @@ -407,3 +407,205 @@ func.func @m16n8k8_tf32_f32_row_row_row(%arg0: memref<20x20xf32, 3>, %arg1: memr vector.transfer_write %D, %arg2[%c0, %c0] {in_bounds = [true, true]} : vector<16x8xf32>, memref<20x20xf32> return } + +// ----- + +//######################################################### +// INT4 row-col-row +//######################################################### + +// CHECK-DAG: [[$rowA0_map:#.+]] = affine_map<()[s0] -> (s0 mod 16)> +// CHECK-DAG: [[$colA0_map:#.+]] = affine_map<()[s0] -> ((s0 floordiv 16) * 32)> +// CHECK-DAG: [[$rowB0_map:#.+]] = affine_map<()[s0] -> (s0 mod 8)> +// CHECK-DAG: [[$colB0_map:#.+]] = affine_map<()[s0] -> ((s0 floordiv 8) * 32)> +// CHECK-DAG: [[$rowC0_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4)> +// CHECK-DAG: [[$colC0_map:#.+]] = affine_map<()[s0] -> (s0 * 2 - (s0 floordiv 4) * 8 +// CHECK-DAG: [[$rowC8_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4 + 8)> + +#map1 = affine_map<(d0, d1, d2) -> (d0, d2)> +#map2 = affine_map<(d0, d1, d2) -> (d1, d2)> +#map3 = affine_map<(d0, d1, d2) -> (d0, d1)> + +// CHECK-LABEL: func @m16n8k64_int4_row_col_row +func.func @m16n8k64_int4_row_col_row(%arg0: memref<128x128xi4, 3>, %arg1: memref<128x128xi4, 3>, %arg2: memref<128x128xi32>) { + %cst = arith.constant 0 : i4 + %cst0 = arith.constant 0 : i32 + %cst_0 = arith.constant dense<0> : vector<32x8xi4> + %c0 = arith.constant 0 : index + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowA0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colA0_map]]()[[[lane]]] + // CHECK: nvgpu.ldmatrix %arg0[[[row]], [[col]]] {numTiles = 4 : i32, transpose = false} : memref<128x128xi4, 3> -> vector<4x8xi4> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowB0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colB0_map]]()[[[lane]]] + // CHECK: nvgpu.ldmatrix %arg1[[[row]], [[col]]] {numTiles = 2 : i32, transpose = false} : memref<128x128xi4, 3> -> vector<2x8xi4> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowC0_map]]()[{{%.+}}] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[{{%.+}}] + // CHECK: vector.load %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + + // CHECK: [[row:%.+]] = affine.apply [[$rowC8_map]]()[{{%.+}}] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[{{%.+}}] + // CHECK: vector.load %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + // CHECK-NOT: vector.load + + %A = vector.transfer_read %arg0[%c0, %c0], %cst {in_bounds = [true, true]} : memref<128x128xi4, 3>, vector<16x64xi4> + %B = vector.transfer_read %arg1[%c0, %c0], %cst {in_bounds = [true, true]} : memref<128x128xi4, 3>, vector<8x64xi4> + %C = vector.transfer_read %arg2[%c0, %c0], %cst0 {in_bounds = [true, true]} : memref<128x128xi32>, vector<16x8xi32> + // CHECK: [[d:%.+]] = nvgpu.mma.sync({{.*}}) {mmaShape = [16, 8, 64]} : (vector<4x8xi4>, vector<2x8xi4>, vector<2x2xi32>) -> vector<2x2xi32> + %D = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %A, %B, %C : vector<16x64xi4>, vector<8x64xi4> into vector<16x8xi32> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[v:%.+]] = vector.extract [[d]][0] : vector<2x2xi32> + // CHECK: [[row:%.+]] = affine.apply [[$rowC0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.store [[v]], %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + + // CHECK: [[v:%.+]] = vector.extract [[d]][1] : vector<2x2xi32> + // CHECK: [[row:%.+]] = affine.apply [[$rowC8_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.store [[v]], %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + vector.transfer_write %D, %arg2[%c0, %c0] {in_bounds = [true, true]} : vector<16x8xi32>, memref<128x128xi32> + return +} + +// ----- + +//######################################################### +// INT8 row-col-row +//######################################################### + +// CHECK-DAG: [[$rowA0_map:#.+]] = affine_map<()[s0] -> (s0 mod 16)> +// CHECK-DAG: [[$colA0_map:#.+]] = affine_map<()[s0] -> ((s0 floordiv 16) * 16)> +// CHECK-DAG: [[$rowB0_map:#.+]] = affine_map<()[s0] -> (s0 mod 8)> +// CHECK-DAG: [[$colB0_map:#.+]] = affine_map<()[s0] -> ((s0 floordiv 8) * 16)> + +// CHECK-DAG: [[$rowC0_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4)> +// CHECK-DAG: [[$colC0_map:#.+]] = affine_map<()[s0] -> (s0 * 2 - (s0 floordiv 4) * 8)> +// CHECK-DAG: [[$rowC8_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4 + 8)> + + +#map0 = affine_map<(d0, d1) -> (d1, d0)> +#map1 = affine_map<(d0, d1, d2) -> (d0, d2)> +#map2 = affine_map<(d0, d1, d2) -> (d1, d2)> +#map3 = affine_map<(d0, d1, d2) -> (d0, d1)> + +// CHECK-LABEL: func @m16n8k32_int8_row_col_row +func.func @m16n8k32_int8_row_col_row(%arg0: memref<128x128xi8, 3>, %arg1: memref<128x128xi8, 3>, %arg2: memref<128x128xi32>) { + %cst_0 = arith.constant dense<0> : vector<32x8xi8> + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + %cst = arith.constant 0 : i8 + %cst0 = arith.constant 0 : i32 + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowA0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colA0_map]]()[[[lane]]] + // CHECK: nvgpu.ldmatrix %arg0[[[row]], [[col]]] {numTiles = 4 : i32, transpose = false} : memref<128x128xi8, 3> -> vector<4x4xi8> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowB0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colB0_map]]()[[[lane]]] + // CHECK: nvgpu.ldmatrix %arg1[[[row]], [[col]]] {numTiles = 2 : i32, transpose = false} : memref<128x128xi8, 3> -> vector<2x4xi8> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[row:%.+]] = affine.apply [[$rowC0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.load %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + // CHECK: [[row:%.+]] = affine.apply [[$rowC8_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.load %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + // CHECK-NOT: vector.load %arg2{{.*}} + + %A = vector.transfer_read %arg0[%c0, %c0], %cst {in_bounds = [true, true]} : memref<128x128xi8, 3>, vector<16x32xi8> + %B = vector.transfer_read %arg1[%c0, %c0], %cst {in_bounds = [true, true]} : memref<128x128xi8, 3>, vector<8x32xi8> + %C = vector.transfer_read %arg2[%c0, %c0], %cst0 {in_bounds = [true, true]} : memref<128x128xi32>, vector<16x8xi32> + // CHECK: [[d:%.+]] = nvgpu.mma.sync({{.*}}) {mmaShape = [16, 8, 32]} : (vector<4x4xi8>, vector<2x4xi8>, vector<2x2xi32>) -> vector<2x2xi32> + %D = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %A, %B, %C : vector<16x32xi8>, vector<8x32xi8> into vector<16x8xi32> + + // CHECK: [[lane:%.+]] = gpu.lane_id + // CHECK: [[v:%.+]] = vector.extract [[d]][0] : vector<2x2xi32> + // CHECK: [[row:%.+]] = affine.apply [[$rowC0_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.store [[v]], %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + // CHECK: [[v:%.+]] = vector.extract [[d]][1] : vector<2x2xi32> + // CHECK: [[row:%.+]] = affine.apply [[$rowC8_map]]()[[[lane]]] + // CHECK: [[col:%.+]] = affine.apply [[$colC0_map]]()[[[lane]]] + // CHECK: vector.store [[v]], %arg2[[[row]], [[col]]] : memref<128x128xi32>, vector<2xi32> + vector.transfer_write %D, %arg2[%c0, %c0] {in_bounds = [true, true]} : vector<16x8xi32>, memref<128x128xi32> + return +} + +// ----- + +#map0 = affine_map<(d0, d1) -> (d1, d0)> +#map1 = affine_map<(d0, d1, d2) -> (d0, d2)> +#map2 = affine_map<(d0, d1, d2) -> (d1, d2)> +#map3 = affine_map<(d0, d1, d2) -> (d0, d1)> + +// CHECK-DAG: [[$rowA0_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4)> +// CHECK-DAG: [[$colA0_map:#.+]] = affine_map<()[s0] -> (s0 mod 4)> +// CHECK-DAG: [[$rowA8_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4 + 8)> +// CHECK-DAG: [[$colA4_map:#.+]] = affine_map<()[s0] -> (s0 mod 4 + 4)> + +// CHECK-DAG: [[$rowB0_map:#.+]] = affine_map<()[s0] -> (s0 mod 8)> +// CHECK-DAG: [[$colB0_map:#.+]] = affine_map<()[s0] -> ((s0 floordiv 8) * 4)> + +// CHECK-DAG: [[$rowC_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4 + 16)> +// CHECK-DAG: [[$rowC8_map:#.+]] = affine_map<()[s0] -> (s0 floordiv 4 + 24)> +// CHECK-DAG: [[$colC_map:#.+]] = affine_map<()[s0] -> (s0 * 2 - (s0 floordiv 4) * 8 + 8)> + +// CHECK-LABEL: func @m16n8k8_tf32_f32_col_col_row +func.func @m16n8k8_tf32_f32_col_col_row(%arg0: memref<20x20xf32, 3>, %arg1: memref<20x20xf32, 3>, %arg2: memref<20x20xf32>) { + %cst_0 = arith.constant dense<0.000000e+00> : vector<16x8xf32> + %c0 = arith.constant 0 : index + %c16 = arith.constant 16 : index + %c8 = arith.constant 8 : index + %c1 = arith.constant 1 : index + %c3 = arith.constant 3 : index + %cst = arith.constant 0.000000e+00 : f32 + + // CHECK: [[c_frag:%.+]] = arith.constant {{.*}} : vector<2x2xf32> + + // CHECK-DAG: [[row:%.+]] = affine.apply [[$rowA0_map]] + // CHECK-DAG: [[col:%.+]] = affine.apply [[$colA0_map]] + // CHECK: [[a_el0:%.+]] = memref.load {{%.+}} : memref<20x20xf32, 3> + // CHECK: [[a_frag0:%.+]] = vector.insert [[a_el0]], {{.*}} [0, 0] : f32 into vector<4x1xf32> + + // CHECK-DAG: [[row:%.+]] = affine.apply [[$rowA8_map]] + // CHECK-DAG: [[col:%.+]] = affine.apply [[$colA0_map]] + // CHECK: [[a_el0:%.+]] = memref.load {{%.+}} : memref<20x20xf32, 3> + // CHECK: [[a_frag0:%.+]] = vector.insert [[a_el0]], {{.*}} [1, 0] : f32 into vector<4x1xf32> + + // CHECK: [[a_el:%.+]] = memref.load {{%.+}} : memref<20x20xf32, 3> + // CHECK: [[a_frag:%.+]] = vector.insert [[a_el]], {{.*}} [2, 0] : f32 into vector<4x1xf32> + // CHECK: [[a_el:%.+]] = memref.load {{%.+}} : memref<20x20xf32, 3> + // CHECK: [[a_frag:%.+]] = vector.insert [[a_el]], {{.*}} [3, 0] : f32 into vector<4x1xf32> + + // CHECK-DAG: [[row:%.+]] = affine.apply [[$rowB0_map]] + // CHECK-DAG: [[col:%.+]] = affine.apply [[$colB0_map]] + // CHECK: [[b_frag:%.+]] = nvgpu.ldmatrix %arg1[[[row]], [[col]]] {numTiles = 2 : i32, transpose = false} + + // CHECK: [[d_frag:%.+]] = nvgpu.mma.sync([[a_frag]], [[b_frag]], [[c_frag]]) + // CHECK-SAME: mmaShape = [16, 8, 8] + // CHECK-SAME: -> vector<2x2xf32> + %A = vector.transfer_read %arg0[%c0, %c0], %cst {in_bounds = [true, true], permutation_map = #map0} : memref<20x20xf32, 3>, vector<16x8xf32> + %B = vector.transfer_read %arg1[%c0, %c0], %cst {in_bounds = [true, true]} : memref<20x20xf32, 3>, vector<8x8xf32> + %D = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"], + kind = #vector.kind} %A, %B, %cst_0 : vector<16x8xf32>, vector<8x8xf32> into vector<16x8xf32> + + // CHECK: vector.extract [[d_frag]][0] : vector<2x2xf32> + // CHECK: affine.apply [[$rowC_map]] + // CHECK: affine.apply [[$colC_map]] + // CHECK: vector.store + // CHECK: vector.extract [[d_frag]][1] : vector<2x2xf32> + // CHECK: affine.apply [[$rowC8_map]] + // CHECK: affine.apply [[$colC_map]] + // CHECK: vector.store + vector.transfer_write %D, %arg2[%c16, %c8] {in_bounds = [true, true]} : vector<16x8xf32>, memref<20x20xf32> + return +} \ No newline at end of file