[PartialInlining] Profile based cost analysis

Implemented frequency based cost/saving analysis
and related options.

The pass is now in a state ready to be turne on
in the pipeline (in follow up).

Differential Revision: http://reviews.llvm.org/D32783

llvm-svn: 302967
This commit is contained in:
Xinliang David Li 2017-05-12 23:41:43 +00:00
parent 3f6dd7a86c
commit 66bdfca77a
10 changed files with 535 additions and 69 deletions

View File

@ -16,6 +16,7 @@
#include "llvm/ADT/Statistic.h" #include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h" #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
@ -42,6 +43,11 @@ STATISTIC(NumPartialInlined,
static cl::opt<bool> static cl::opt<bool>
DisablePartialInlining("disable-partial-inlining", cl::init(false), DisablePartialInlining("disable-partial-inlining", cl::init(false),
cl::Hidden, cl::desc("Disable partial ininling")); cl::Hidden, cl::desc("Disable partial ininling"));
// This is an option used by testing:
static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
cl::init(false), cl::ZeroOrMore,
cl::ReallyHidden,
cl::desc("Skip Cost Analysis"));
static cl::opt<unsigned> MaxNumInlineBlocks( static cl::opt<unsigned> MaxNumInlineBlocks(
"max-num-inline-blocks", cl::init(5), cl::Hidden, "max-num-inline-blocks", cl::init(5), cl::Hidden,
@ -53,6 +59,15 @@ static cl::opt<int> MaxNumPartialInlining(
"max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
cl::desc("Max number of partial inlining. The default is unlimited")); cl::desc("Max number of partial inlining. The default is unlimited"));
// Used only when PGO or user annotated branch data is absent. It is
// the least value that is used to weigh the outline region. If BFI
// produces larger value, the BFI value will be used.
static cl::opt<int>
OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
cl::Hidden, cl::ZeroOrMore,
cl::desc("Relative frequency of outline region to "
"the entry block"));
namespace { namespace {
struct FunctionOutliningInfo { struct FunctionOutliningInfo {
@ -84,8 +99,6 @@ struct PartialInlinerImpl {
bool run(Module &M); bool run(Module &M);
Function *unswitchFunction(Function *F); Function *unswitchFunction(Function *F);
std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
private: private:
int NumPartialInlining = 0; int NumPartialInlining = 0;
std::function<AssumptionCache &(Function &)> *GetAssumptionCache; std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
@ -93,11 +106,84 @@ private:
Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI; Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
ProfileSummaryInfo *PSI; ProfileSummaryInfo *PSI;
bool shouldPartialInline(CallSite CS, OptimizationRemarkEmitter &ORE); // Return the frequency of the OutlininingBB relative to F's entry point.
// The result is no larger than 1 and is represented using BP.
// (Note that the outlined region's 'head' block can only have incoming
// edges from the guarding entry blocks).
BranchProbability getOutliningCallBBRelativeFreq(Function *F,
FunctionOutliningInfo *OI,
Function *DuplicateFunction,
BlockFrequencyInfo *BFI,
BasicBlock *OutliningCallBB);
// Return true if the callee of CS should be partially inlined with
// profit.
bool shouldPartialInline(CallSite CS, Function *F, FunctionOutliningInfo *OI,
BlockFrequencyInfo *CalleeBFI,
BasicBlock *OutliningCallBB,
int OutliningCallOverhead,
OptimizationRemarkEmitter &ORE);
// Try to inline DuplicateFunction (cloned from F with call to
// the OutlinedFunction into its callers. Return true
// if there is any successful inlining.
bool tryPartialInline(Function *DuplicateFunction,
Function *F, /*orignal function */
FunctionOutliningInfo *OI, Function *OutlinedFunction,
BlockFrequencyInfo *CalleeBFI);
// Compute the mapping from use site of DuplicationFunction to the enclosing
// BB's profile count.
void computeCallsiteToProfCountMap(Function *DuplicateFunction,
DenseMap<User *, uint64_t> &SiteCountMap);
bool IsLimitReached() { bool IsLimitReached() {
return (MaxNumPartialInlining != -1 && return (MaxNumPartialInlining != -1 &&
NumPartialInlining >= MaxNumPartialInlining); NumPartialInlining >= MaxNumPartialInlining);
} }
CallSite getCallSite(User *U) {
CallSite CS;
if (CallInst *CI = dyn_cast<CallInst>(U))
CS = CallSite(CI);
else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
CS = CallSite(II);
else
llvm_unreachable("All uses must be calls");
return CS;
}
CallSite getOneCallSiteTo(Function *F) {
User *User = *F->user_begin();
return getCallSite(User);
}
std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
CallSite CS = getOneCallSiteTo(F);
DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
BasicBlock *Block = CS.getParent();
return std::make_tuple(DLoc, Block);
}
// Returns the costs associated with function outlining:
// - The first value is the non-weighted runtime cost for making the call
// to the outlined function 'OutlinedFunction', including the addtional
// setup cost in the outlined function itself;
// - The second value is the estimated size of the new call sequence in
// basic block 'OutliningCallBB';
// - The third value is the estimated size of the original code from
// function 'F' that is extracted into the outlined function.
std::tuple<int, int, int>
computeOutliningCosts(Function *F, const FunctionOutliningInfo *OutliningInfo,
Function *OutlinedFunction,
BasicBlock *OutliningCallBB);
// Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
// approximate both the size and runtime cost (Note that in the current
// inline cost analysis, there is no clear distinction there either).
int computeBBInlineCost(BasicBlock *BB);
std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
}; };
struct PartialInlinerLegacyPass : public ModulePass { struct PartialInlinerLegacyPass : public ModulePass {
@ -223,7 +309,8 @@ PartialInlinerImpl::computeOutliningInfo(Function *F) {
// Do sanity check of the entries: threre should not // Do sanity check of the entries: threre should not
// be any successors (not in the entry set) other than // be any successors (not in the entry set) other than
// {ReturnBlock, NonReturnBlock} // {ReturnBlock, NonReturnBlock}
assert(OutliningInfo->Entries[0] == &F->front()); assert(OutliningInfo->Entries[0] == &F->front() &&
"Function Entry must be the first in Entries vector");
DenseSet<BasicBlock *> Entries; DenseSet<BasicBlock *> Entries;
for (BasicBlock *E : OutliningInfo->Entries) for (BasicBlock *E : OutliningInfo->Entries)
Entries.insert(E); Entries.insert(E);
@ -289,10 +376,54 @@ PartialInlinerImpl::computeOutliningInfo(Function *F) {
return OutliningInfo; return OutliningInfo;
} }
bool PartialInlinerImpl::shouldPartialInline(CallSite CS, // Check if there is PGO data or user annoated branch data:
OptimizationRemarkEmitter &ORE) { static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
// TODO : more sharing with shouldInline in Inliner.cpp if (F->getEntryCount())
return true;
// Now check if any of the entry block has MD_prof data:
for (auto *E : OI->Entries) {
BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
if (!BR || BR->isUnconditional())
continue;
uint64_t T, F;
if (BR->extractProfMetadata(T, F))
return true;
}
return false;
}
BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq(
Function *F, FunctionOutliningInfo *OI, Function *DuplicateFunction,
BlockFrequencyInfo *BFI, BasicBlock *OutliningCallBB) {
auto EntryFreq =
BFI->getBlockFreq(&DuplicateFunction->getEntryBlock());
auto OutliningCallFreq = BFI->getBlockFreq(OutliningCallBB);
auto OutlineRegionRelFreq =
BranchProbability::getBranchProbability(OutliningCallFreq.getFrequency(),
EntryFreq.getFrequency());
if (hasProfileData(F, OI))
return OutlineRegionRelFreq;
// When profile data is not available, we need to be very
// conservative in estimating the overall savings. We need to make sure
// the outline region relative frequency is not below the threshold
// specified by the option.
OutlineRegionRelFreq = std::max(OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
return OutlineRegionRelFreq;
}
bool PartialInlinerImpl::shouldPartialInline(
CallSite CS, Function *F /* Original Callee */, FunctionOutliningInfo *OI,
BlockFrequencyInfo *CalleeBFI, BasicBlock *OutliningCallBB,
int NonWeightedOutliningRcost, OptimizationRemarkEmitter &ORE) {
using namespace ore; using namespace ore;
if (SkipCostAnalysis)
return true;
Instruction *Call = CS.getInstruction(); Instruction *Call = CS.getInstruction();
Function *Callee = CS.getCalledFunction(); Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller(); Function *Caller = CS.getCaller();
@ -302,36 +433,166 @@ bool PartialInlinerImpl::shouldPartialInline(CallSite CS,
if (IC.isAlways()) { if (IC.isAlways()) {
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
<< NV("Callee", Callee) << NV("Callee", F)
<< " should always be fully inlined, not partially"); << " should always be fully inlined, not partially");
return false; return false;
} }
if (IC.isNever()) { if (IC.isNever()) {
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
<< NV("Callee", Callee) << " not partially inlined into " << NV("Callee", F) << " not partially inlined into "
<< NV("Caller", Caller) << NV("Caller", Caller)
<< " because it should never be inlined (cost=never)"); << " because it should never be inlined (cost=never)");
return false; return false;
} }
if (!IC) { if (!IC) {
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
<< NV("Callee", Callee) << " not partially inlined into " << NV("Callee", F) << " not partially inlined into "
<< NV("Caller", Caller) << " because too costly to inline (cost=" << NV("Caller", Caller) << " because too costly to inline (cost="
<< NV("Cost", IC.getCost()) << ", threshold=" << NV("Cost", IC.getCost()) << ", threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return false; return false;
} }
const DataLayout &DL = Caller->getParent()->getDataLayout();
// The savings of eliminating the call:
int NonWeightedSavings = getCallsiteCost(CS, DL);
BlockFrequency NormWeightedSavings(NonWeightedSavings);
auto RelativeFreq =
getOutliningCallBBRelativeFreq(F, OI, Callee, CalleeBFI, OutliningCallBB);
auto NormWeightedRcost =
BlockFrequency(NonWeightedOutliningRcost) * RelativeFreq;
// Weighted saving is smaller than weighted cost, return false
if (NormWeightedSavings < NormWeightedRcost) {
ORE.emit(
OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", Call)
<< NV("Callee", F) << " not partially inlined into "
<< NV("Caller", Caller) << " runtime overhead (overhead="
<< NV("Overhead", (unsigned)NormWeightedRcost.getFrequency())
<< ", savings="
<< NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) << ")"
<< " of making the outlined call is too high");
return false;
}
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call) ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
<< NV("Callee", Callee) << " can be partially inlined into " << NV("Callee", F) << " can be partially inlined into "
<< NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
<< " (threshold=" << " (threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return true; return true;
} }
// TODO: Ideally we should share Inliner's InlineCost Analysis code.
// For now use a simplified version. The returned 'InlineCost' will be used
// to esimate the size cost as well as runtime cost of the BB.
int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
int InlineCost = 0;
const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (isa<DbgInfoIntrinsic>(I))
continue;
if (CallInst *CI = dyn_cast<CallInst>(I)) {
InlineCost += getCallsiteCost(CallSite(CI), DL);
continue;
}
if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
InlineCost += getCallsiteCost(CallSite(II), DL);
continue;
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
continue;
}
InlineCost += InlineConstants::InstrCost;
}
return InlineCost;
}
std::tuple<int, int, int> PartialInlinerImpl::computeOutliningCosts(
Function *F, const FunctionOutliningInfo *OI, Function *OutlinedFunction,
BasicBlock *OutliningCallBB) {
// First compute the cost of the outlined region 'OI' in the original
// function 'F':
int OutlinedRegionCost = 0;
for (BasicBlock &BB : *F) {
if (&BB != OI->ReturnBlock &&
// Assuming Entry set is small -- do a linear search here:
std::find(OI->Entries.begin(), OI->Entries.end(), &BB) ==
OI->Entries.end()) {
OutlinedRegionCost += computeBBInlineCost(&BB);
}
}
// Now compute the cost of the call sequence to the outlined function
// 'OutlinedFunction' in BB 'OutliningCallBB':
int OutliningFuncCallCost = computeBBInlineCost(OutliningCallBB);
// Now compute the cost of the extracted/outlined function itself:
int OutlinedFunctionCost = 0;
for (BasicBlock &BB : *OutlinedFunction) {
OutlinedFunctionCost += computeBBInlineCost(&BB);
}
assert(OutlinedFunctionCost >= OutlinedRegionCost &&
"Outlined function cost should be no less than the outlined region");
int OutliningRuntimeOverhead =
OutliningFuncCallCost + (OutlinedFunctionCost - OutlinedRegionCost);
return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead,
OutlinedRegionCost);
}
// Create the callsite to profile count map which is
// used to update the original function's entry count,
// after the function is partially inlined into the callsite.
void PartialInlinerImpl::computeCallsiteToProfCountMap(
Function *DuplicateFunction,
DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
std::vector<User *> Users(DuplicateFunction->user_begin(),
DuplicateFunction->user_end());
Function *CurrentCaller = nullptr;
BlockFrequencyInfo *CurrentCallerBFI = nullptr;
auto ComputeCurrBFI = [&,this](Function *Caller) {
// For the old pass manager:
if (!GetBFI) {
if (CurrentCallerBFI)
delete CurrentCallerBFI;
DominatorTree DT(*Caller);
LoopInfo LI(DT);
BranchProbabilityInfo BPI(*Caller, LI);
CurrentCallerBFI = new BlockFrequencyInfo(*Caller, BPI, LI);
} else {
// New pass manager:
CurrentCallerBFI = &(*GetBFI)(*Caller);
}
};
for (User *User : Users) {
CallSite CS = getCallSite(User);
Function *Caller = CS.getCaller();
if (CurrentCaller != Caller) {
CurrentCaller = Caller;
ComputeCurrBFI(Caller);
} else {
assert(CurrentCallerBFI && "CallerBFI is not set");
}
BasicBlock *CallBB = CS.getInstruction()->getParent();
auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
if (Count)
CallSiteToProfCountMap[User] = *Count;
else
CallSiteToProfCountMap[User] = 0;
}
}
Function *PartialInlinerImpl::unswitchFunction(Function *F) { Function *PartialInlinerImpl::unswitchFunction(Function *F) {
if (F->hasAddressTaken()) if (F->hasAddressTaken())
@ -347,21 +608,21 @@ Function *PartialInlinerImpl::unswitchFunction(Function *F) {
if (PSI->isFunctionEntryCold(F)) if (PSI->isFunctionEntryCold(F))
return nullptr; return nullptr;
std::unique_ptr<FunctionOutliningInfo> OutliningInfo = if (F->user_begin() == F->user_end())
computeOutliningInfo(F); return nullptr;
if (!OutliningInfo) std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
if (!OI)
return nullptr; return nullptr;
// Clone the function, so that we can hack away on it. // Clone the function, so that we can hack away on it.
ValueToValueMapTy VMap; ValueToValueMapTy VMap;
Function *DuplicateFunction = CloneFunction(F, VMap); Function *DuplicateFunction = CloneFunction(F, VMap);
BasicBlock *NewReturnBlock = BasicBlock *NewReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
cast<BasicBlock>(VMap[OutliningInfo->ReturnBlock]); BasicBlock *NewNonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
BasicBlock *NewNonReturnBlock =
cast<BasicBlock>(VMap[OutliningInfo->NonReturnBlock]);
DenseSet<BasicBlock *> NewEntries; DenseSet<BasicBlock *> NewEntries;
for (BasicBlock *BB : OutliningInfo->Entries) { for (BasicBlock *BB : OI->Entries) {
NewEntries.insert(cast<BasicBlock>(VMap[BB])); NewEntries.insert(cast<BasicBlock>(VMap[BB]));
} }
@ -390,7 +651,7 @@ Function *PartialInlinerImpl::unswitchFunction(Function *F) {
BasicBlock *PreReturn = NewReturnBlock; BasicBlock *PreReturn = NewReturnBlock;
// only split block when necessary: // only split block when necessary:
PHINode *FirstPhi = getFirstPHI(PreReturn); PHINode *FirstPhi = getFirstPHI(PreReturn);
unsigned NumPredsFromEntries = OutliningInfo->ReturnBlockPreds.size(); unsigned NumPredsFromEntries = OI->ReturnBlockPreds.size();
if (FirstPhi && FirstPhi->getNumIncomingValues() > NumPredsFromEntries + 1) { if (FirstPhi && FirstPhi->getNumIncomingValues() > NumPredsFromEntries + 1) {
NewReturnBlock = NewReturnBlock->splitBasicBlock( NewReturnBlock = NewReturnBlock->splitBasicBlock(
@ -408,14 +669,14 @@ Function *PartialInlinerImpl::unswitchFunction(Function *F) {
Ins = NewReturnBlock->getFirstNonPHI(); Ins = NewReturnBlock->getFirstNonPHI();
RetPhi->addIncoming(&*I, PreReturn); RetPhi->addIncoming(&*I, PreReturn);
for (BasicBlock *E : OutliningInfo->ReturnBlockPreds) { for (BasicBlock *E : OI->ReturnBlockPreds) {
BasicBlock *NewE = cast<BasicBlock>(VMap[E]); BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(NewE), NewE); RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(NewE), NewE);
OldPhi->removeIncomingValue(NewE); OldPhi->removeIncomingValue(NewE);
} }
++I; ++I;
} }
for (auto E : OutliningInfo->ReturnBlockPreds) { for (auto E : OI->ReturnBlockPreds) {
BasicBlock *NewE = cast<BasicBlock>(VMap[E]); BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
NewE->getTerminator()->replaceUsesOfWith(PreReturn, NewReturnBlock); NewE->getTerminator()->replaceUsesOfWith(PreReturn, NewReturnBlock);
} }
@ -443,50 +704,107 @@ Function *PartialInlinerImpl::unswitchFunction(Function *F) {
BlockFrequencyInfo BFI(*DuplicateFunction, BPI, LI); BlockFrequencyInfo BFI(*DuplicateFunction, BPI, LI);
// Extract the body of the if. // Extract the body of the if.
Function *ExtractedFunction = Function *OutlinedFunction =
CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, &BFI, &BPI) CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, &BFI, &BPI)
.extractCodeRegion(); .extractCodeRegion();
// Inline the top-level if test into all callers. bool AnyInline =
std::vector<User *> Users(DuplicateFunction->user_begin(), tryPartialInline(DuplicateFunction, F, OI.get(), OutlinedFunction, &BFI);
DuplicateFunction->user_end());
for (User *User : Users) {
CallSite CS;
if (CallInst *CI = dyn_cast<CallInst>(User))
CS = CallSite(CI);
else if (InvokeInst *II = dyn_cast<InvokeInst>(User))
CS = CallSite(II);
else
llvm_unreachable("All uses must be calls");
if (IsLimitReached())
continue;
OptimizationRemarkEmitter ORE(CS.getCaller());
if (!shouldPartialInline(CS, ORE))
continue;
DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
BasicBlock *Block = CS.getParent();
ORE.emit(OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", DLoc, Block)
<< ore::NV("Callee", F) << " partially inlined into "
<< ore::NV("Caller", CS.getCaller()));
InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
InlineFunction(CS, IFI);
NumPartialInlining++;
// update stats
NumPartialInlined++;
}
// Ditch the duplicate, since we're done with it, and rewrite all remaining // Ditch the duplicate, since we're done with it, and rewrite all remaining
// users (function pointers, etc.) back to the original function. // users (function pointers, etc.) back to the original function.
DuplicateFunction->replaceAllUsesWith(F); DuplicateFunction->replaceAllUsesWith(F);
DuplicateFunction->eraseFromParent(); DuplicateFunction->eraseFromParent();
if (!AnyInline && OutlinedFunction)
OutlinedFunction->eraseFromParent();
return OutlinedFunction;
}
bool PartialInlinerImpl::tryPartialInline(Function *DuplicateFunction,
Function *F,
FunctionOutliningInfo *OI,
Function *OutlinedFunction,
BlockFrequencyInfo *CalleeBFI) {
if (OutlinedFunction == nullptr)
return false;
return ExtractedFunction; int NonWeightedRcost;
int SizeCost;
int OutlinedRegionSizeCost;
auto OutliningCallBB =
getOneCallSiteTo(OutlinedFunction).getInstruction()->getParent();
std::tie(SizeCost, NonWeightedRcost, OutlinedRegionSizeCost) =
computeOutliningCosts(F, OI, OutlinedFunction, OutliningCallBB);
// The call sequence to the outlined function is larger than the original
// outlined region size, it does not increase the chances of inlining
// 'F' with outlining (The inliner usies the size increase to model the
// the cost of inlining a callee).
if (!SkipCostAnalysis && OutlinedRegionSizeCost < SizeCost) {
OptimizationRemarkEmitter ORE(F);
DebugLoc DLoc;
BasicBlock *Block;
std::tie(DLoc, Block) = getOneDebugLoc(DuplicateFunction);
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
DLoc, Block)
<< ore::NV("Function", F)
<< " not partially inlined into callers (Original Size = "
<< ore::NV("OutlinedRegionOriginalSize", OutlinedRegionSizeCost)
<< ", Size of call sequence to outlined function = "
<< ore::NV("NewSize", SizeCost) << ")");
return false;
}
assert(F->user_begin() == F->user_end() &&
"F's users should all be replaced!");
std::vector<User *> Users(DuplicateFunction->user_begin(),
DuplicateFunction->user_end());
DenseMap<User *, uint64_t> CallSiteToProfCountMap;
if (F->getEntryCount())
computeCallsiteToProfCountMap(DuplicateFunction, CallSiteToProfCountMap);
auto CalleeEntryCount = F->getEntryCount();
uint64_t CalleeEntryCountV = (CalleeEntryCount ? *CalleeEntryCount : 0);
bool AnyInline = false;
for (User *User : Users) {
CallSite CS = getCallSite(User);
if (IsLimitReached())
continue;
OptimizationRemarkEmitter ORE(CS.getCaller());
if (!shouldPartialInline(CS, F, OI, CalleeBFI, OutliningCallBB,
NonWeightedRcost, ORE))
continue;
ORE.emit(
OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction())
<< ore::NV("Callee", F) << " partially inlined into "
<< ore::NV("Caller", CS.getCaller()));
InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
InlineFunction(CS, IFI);
// Now update the entry count:
if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
uint64_t CallSiteCount = CallSiteToProfCountMap[User];
CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
}
AnyInline = true;
NumPartialInlining++;
// Update the stats
NumPartialInlined++;
}
if (AnyInline && CalleeEntryCount)
F->setEntryCount(CalleeEntryCountV);
return AnyInline;
} }
bool PartialInlinerImpl::run(Module &M) { bool PartialInlinerImpl::run(Module &M) {

View File

@ -1,4 +1,4 @@
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis -S | FileCheck %s
; This test checks to make sure that the CodeExtractor ; This test checks to make sure that the CodeExtractor
; properly sets the entry count for the function that is ; properly sets the entry count for the function that is

View File

@ -1,4 +1,4 @@
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck %s ; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -skip-partial-inlining-cost-analysis -S | FileCheck %s
; This test checks to make sure that CodeExtractor updates ; This test checks to make sure that CodeExtractor updates
; the exit branch probabilities for multiple exit blocks. ; the exit branch probabilities for multiple exit blocks.

View File

@ -1,7 +1,7 @@
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -partial-inliner -S | FileCheck %s
; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s ; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s ; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s
; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s ; RUN: opt < %s -passes=partial-inliner -skip-partial-inlining-cost-analysis -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s
; Function Attrs: nounwind uwtable ; Function Attrs: nounwind uwtable
define i32 @bar(i32 %arg) local_unnamed_addr #0 { define i32 @bar(i32 %arg) local_unnamed_addr #0 {

View File

@ -0,0 +1,41 @@
; RUN: opt < %s -skip-partial-inlining-cost-analysis -partial-inliner -S | FileCheck %s
; RUN: opt < %s -skip-partial-inlining-cost-analysis -passes=partial-inliner -S | FileCheck %s
define i32 @Func(i1 %cond, i32* align 4 %align.val) !prof !1 {
; CHECK: @Func({{.*}}) !prof [[REMAINCOUNT:![0-9]+]]
entry:
br i1 %cond, label %if.then, label %return
if.then:
; Dummy store to have more than 0 uses
store i32 10, i32* %align.val, align 4
br label %return
return: ; preds = %entry
ret i32 0
}
define internal i32 @Caller1(i1 %cond, i32* align 2 %align.val) !prof !3{
entry:
; CHECK-LABEL: @Caller1
; CHECK: br
; CHECK: call void @Func.1_
; CHECK: br
; CHECK: call void @Func.1_
%val = call i32 @Func(i1 %cond, i32* %align.val)
%val2 = call i32 @Func(i1 %cond, i32* %align.val)
ret i32 %val
}
define internal i32 @Caller2(i1 %cond, i32* align 2 %align.val) !prof !2{
entry:
; CHECK-LABEL: @Caller2
; CHECK: br
; CHECK: call void @Func.1_
%val = call i32 @Func(i1 %cond, i32* %align.val)
ret i32 %val
}
; CHECK: [[REMAINCOUNT]] = !{!"function_entry_count", i64 150}
!1 = !{!"function_entry_count", i64 200}
!2 = !{!"function_entry_count", i64 10}
!3 = !{!"function_entry_count", i64 20}

View File

@ -0,0 +1,107 @@
; The outlined region has high frequency and the outlining
; call sequence is expensive (input, output, multiple exit etc)
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck %s
; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck %s
; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis -max-num-inline-blocks=2 -S | FileCheck --check-prefix=NOCOST %s
; RUN: opt < %s -passes=partial-inliner -skip-partial-inlining-cost-analysis -max-num-inline-blocks=2 -S | FileCheck --check-prefix=NOCOST %s
; Function Attrs: nounwind
define i32 @bar_hot_outline_region(i32 %arg) local_unnamed_addr #0 {
bb:
%tmp = icmp slt i32 %arg, 0
br i1 %tmp, label %bb1, label %bb16, !prof !1
bb1: ; preds = %bb
%tmp2 = tail call i32 (...) @foo() #0
%tmp3 = tail call i32 (...) @foo() #0
%tmp4 = tail call i32 (...) @foo() #0
%tmp5 = tail call i32 (...) @foo() #0
%tmp6 = tail call i32 (...) @foo() #0
%tmp7 = tail call i32 (...) @foo() #0
%tmp8 = add nsw i32 %arg, 1
%tmp9 = tail call i32 @goo(i32 %tmp8) #0
%tmp10 = tail call i32 (...) @foo() #0
%tmp11 = icmp eq i32 %tmp10, 0
br i1 %tmp11, label %bb12, label %bb16
bb12: ; preds = %bb1
%tmp13 = tail call i32 (...) @foo() #0
%tmp14 = icmp eq i32 %tmp13, 0
%tmp15 = select i1 %tmp14, i32 0, i32 3
br label %bb16
bb16: ; preds = %bb12, %bb1, %bb
%tmp17 = phi i32 [ 2, %bb1 ], [ %tmp15, %bb12 ], [ 0, %bb ]
ret i32 %tmp17
}
define i32 @bar_cold_outline_region(i32 %arg) local_unnamed_addr #0 {
bb:
%tmp = icmp slt i32 %arg, 0
br i1 %tmp, label %bb1, label %bb16, !prof !2
bb1: ; preds = %bb
%tmp2 = tail call i32 (...) @foo() #0
%tmp3 = tail call i32 (...) @foo() #0
%tmp4 = tail call i32 (...) @foo() #0
%tmp5 = tail call i32 (...) @foo() #0
%tmp6 = tail call i32 (...) @foo() #0
%tmp7 = tail call i32 (...) @foo() #0
%tmp8 = add nsw i32 %arg, 1
%tmp9 = tail call i32 @goo(i32 %tmp8) #0
%tmp10 = tail call i32 (...) @foo() #0
%tmp11 = icmp eq i32 %tmp10, 0
br i1 %tmp11, label %bb12, label %bb16
bb12: ; preds = %bb1
%tmp13 = tail call i32 (...) @foo() #0
%tmp14 = icmp eq i32 %tmp13, 0
%tmp15 = select i1 %tmp14, i32 0, i32 3
br label %bb16
bb16: ; preds = %bb12, %bb1, %bb
%tmp17 = phi i32 [ 2, %bb1 ], [ %tmp15, %bb12 ], [ 0, %bb ]
ret i32 %tmp17
}
; Function Attrs: nounwind
declare i32 @foo(...) local_unnamed_addr #0
; Function Attrs: nounwind
declare i32 @goo(i32) local_unnamed_addr #0
; Function Attrs: nounwind
define i32 @dummy_caller(i32 %arg) local_unnamed_addr #0 {
bb:
; CHECK-LABEL: @dummy_caller
; CHECK-NOT: br i1
; CHECK-NOT: call{{.*}}bar_hot_outline_region.
; NOCOST-LABEL: @dummy_caller
; NOCOST: br i1
; NOCOST: call{{.*}}bar_hot_outline_region.
%tmp = tail call i32 @bar_hot_outline_region(i32 %arg)
ret i32 %tmp
}
define i32 @dummy_caller2(i32 %arg) local_unnamed_addr #0 {
bb:
; CHECK-LABEL: @dummy_caller2
; CHECK: br i1
; CHECK: call{{.*}}bar_cold_outline_region.
; NOCOST-LABEL: @dummy_caller2
; NOCOST: br i1
; NOCOST: call{{.*}}bar_cold_outline_region.
%tmp = tail call i32 @bar_cold_outline_region(i32 %arg)
ret i32 %tmp
}
attributes #0 = { nounwind }
!llvm.ident = !{!0}
!0 = !{!"clang version 5.0.0 (trunk 301898)"}
!1 = !{!"branch_weights", i32 2000, i32 1}
!2 = !{!"branch_weights", i32 1, i32 100}

View File

@ -1,5 +1,5 @@
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis -S | FileCheck %s
; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s ; RUN: opt < %s -passes=partial-inliner -skip-partial-inlining-cost-analysis -S | FileCheck %s
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s ; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s
; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s ; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT %s

View File

@ -1,7 +1,7 @@
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -partial-inliner -S | FileCheck %s
; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s ; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=3 -S | FileCheck --check-prefix=LIMIT3 %s ; RUN: opt < %s -partial-inliner -max-num-inline-blocks=3 -skip-partial-inlining-cost-analysis -S | FileCheck --check-prefix=LIMIT3 %s
; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=3 -S | FileCheck --check-prefix=LIMIT3 %s ; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=3 -skip-partial-inlining-cost-analysis -S | FileCheck --check-prefix=LIMIT3 %s
; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT2 %s ; RUN: opt < %s -partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT2 %s
; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT2 %s ; RUN: opt < %s -passes=partial-inliner -max-num-inline-blocks=2 -S | FileCheck --check-prefix=LIMIT2 %s

View File

@ -1,5 +1,5 @@
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -skip-partial-inlining-cost-analysis -partial-inliner -S | FileCheck %s
; RUN: opt < %s -passes=partial-inliner -S | FileCheck %s ; RUN: opt < %s -skip-partial-inlining-cost-analysis -passes=partial-inliner -S | FileCheck %s
define internal i32 @inlinedFunc(i1 %cond, i32* align 4 %align.val) { define internal i32 @inlinedFunc(i1 %cond, i32* align 4 %align.val) {
entry: entry:

View File

@ -1,5 +1,5 @@
; RUN: opt < %s -partial-inliner | llc -filetype=null ; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis | llc -filetype=null
; RUN: opt < %s -partial-inliner -S | FileCheck %s ; RUN: opt < %s -partial-inliner -skip-partial-inlining-cost-analysis -S | FileCheck %s
; This testcase checks to see if CodeExtractor properly inherits ; This testcase checks to see if CodeExtractor properly inherits
; target specific attributes for the extracted function. This can ; target specific attributes for the extracted function. This can
; cause certain instructions that depend on the attributes to not ; cause certain instructions that depend on the attributes to not